Abstract:
Impact models used in water, ecology, and agriculture require accurate climatic data to simulate observed impacts. Some of these models emphasize the distribution of precipitation within a month or season rather than the overall amount. To meet this requirement, a study applied three bias correction techniques—scaled distribution mapping (SDM), quantile distribution mapping (QDM), and QDM with a separate treatment for precipitation below and above the 95th percentile threshold (QDM95)—to daily precipitation data from eleven Coupled Model Intercomparison Project Phase 6 (CMIP6) models, using the Climate Hazards Group Infrared Precipitation with Station version 2 (CHIRPS) as a reference. This study evaluated the performance of all bias-corrected CMIP6 models over Southern Africa from 1982 to 2014 in replicating the spatial and temporal patterns of precipitation across the region against three observational datasets, CHIRPS, the Climatic Research Unit (CRU), and the Global Precipitation Climatology Centre (GPCC), using standard statistical metrics. The results indicate that all bias-corrected precipitation generally performs better than native model precipitation in replicating the observed December–February (DJF) mean and seasonal cycle. The probability density function (PDF) of the bias-corrected regional precipitation indicates that bias correction enhances model performance, particularly for precipitation in the range of 3–35 mm/day. However, both corrected and uncorrected models underestimate higher extremes. The pattern correlations of the bias-corrected precipitation with CHIRPS, the GPCC, and the CRU, as compared to the correlations of native precipitation with the three datasets, have improved from 0.76–0.89 to 0.97–0.99, 0.73–0.87 to 0.94–0.97, and 0.74–0.89 to 0.97–0.99, respectively. Additionally, the Taylor skill scores of the models for replicating the CHIRPS, GPCC, and CRU precipitation spatial patterns over Southern Africa have improved from 0.57–0.80 to 0.79–0.95, 0.55–0.76 to 0.80–0.91, and 0.54–0.75 to 0.81–0.91, respectively. Overall, among the three bias correction techniques, QDM consistently demonstrated better performance than both QDM95 and SDM across various metrics. The implementation of distribution-based bias correction resulted in a significant reduction in bias and improved the spatial consistency between models and observations over the region