BIUSTRE

Surface water demand and supply of Gaborone city and surrounding areas under climate change and population growth

Show simple item record

dc.contributor.supervisor Tsidu, Gizaw Mengistu
dc.contributor.author Mphoeng, Bosa
dc.date.accessioned 2022-01-24T14:05:00Z
dc.date.available 2022-01-24T14:05:00Z
dc.date.issued 2021-09
dc.identifier.citation Mphoeng, B. (2021) Surface water demand and supply of Gaborone city and surrounding areas under climate change and population growth, Master’s Thesis, Botswana International University of Science and Technology: Palapye. en_US
dc.identifier.uri http://repository.biust.ac.bw/handle/123456789/386
dc.description Thesis (MSc Environmental Science) --Botswana International University of Science and Technology, 2021 en_US
dc.description.abstract The adequate supply of the ever-increasing demand of fresh water continues to be a global challenge due to increase in population. The anticipation for better lifestyles and improved water supply has resulted in an increase in migration from rural settlements leading to an increase in the populations of many cities globally. This study therefore investigates the variability and trends in the surface water demand and supply of the city of Gaborone and surrounding areas in response to anticipated population growth and climate change using the Water Evaluation and Planning (WEAP) model for future periods. The model was run with the current accounts and reference period set at 2014 and 2015-2100 respectively to predict their possible impacts on the water balance and allocation of the region due to varied water demands. Moreover, the study includes analysis of population trends, water production and consumption rates, hydrological information as well as projected rainfall over the catchment supplying water to Gaborone Dam. The rainfall data over the catchment, simulated in the frame work of Coupled Model Intercomparison Project Phase 5 (CMIP5) by Max Planck Institute Earth System Model Mixed Resolution (MPI-ESM-MR) for scenario periods, are statistically downscaled using the high resolution Worldclim data to spatial resolution of 1 km2 and bias corrected against Global Climatology Precipitation Center (GPCC) precipitation. The downscaled rainfall data are then employed in WEAP model and climate trend analysis. The stream flow of Notwane River has decreased from 0.65 MCM in 2006 to 0.53 MCM in 2016. The change is consistent with decrease in rainfall in the area. The WEAP simulated flow of Notwane River station with the observed flow gives an EF (Coefficient of Efficiency) of 0.91 which is a good correlation. The analysis shows that the projected population of Gaborone, Mogoditshane and Tlokweng using the high population growth rate of 3.4% will be about 4106670, 1029877, and 644092 by the year 2100 respectively. Under both RCP (Representative Concentration Pathway) 4.5 and RCP8.5 scenarios, the reservoir inflow indicates that the level of reservoirs at Foresthill, Diremogolo, Gabane hill, Oodi hill and Mabutswe will be reduced during 2080-2098 period. The unmet water demand of the whole study area will be 88.04 MCM (Million Cubic Meters) in 2050 as compared to 3666 MCM in 2100 under RCP 8.5 climate and high population growth scenarios. However, the unmet demand under RCP 4.5 climate and high population growth scenarios will be 84.65 MCM in 2050 as compared to 3569 in 2100. The climate under RCP 8.5 emission scenario will be drier than that of the RCP4.5. On the other hand, the unmet water demand will be 25.9 MCMin 2050 as compared to 355 MCMin 2100 under the RCP4.5 climate with low population growth rate of 2.2% scenario. In contrast, the v unmet demand is as high as 26.8 MCM in 2050 and 373 MCM in 2100 under the RCP 8.5 climate with low population growth rate. The unmet water demand in both high and low population growth and the dry climate of RCP8.5 climate scenario will lead to shortage of water in the city. These changes in water supply and demand of the city under various scenarios show that there is a need for various forms of water loss control interventions. For example, if the current 39% loss through leakage is reduced to 0% by 2100, the unmet water demand will reduce from 3569 to 422 MCM under RCP4.5 climate change scenario. Similarly for the RCP 8.5 climate change scenario, the unmet water demand will reduce from 3666 MCM to 436 MCM. These estimates show that mitigation of impact of climate change on water resources is possible but needs aggressive and robust interventions. en_US
dc.language.iso en en_US
dc.publisher Botswana International University of Science and Technology (BIUST) en_US
dc.subject Surface water en_US
dc.subject Climate change en_US
dc.subject Population growth en_US
dc.subject Botswana en_US
dc.title Surface water demand and supply of Gaborone city and surrounding areas under climate change and population growth en_US
dc.description.level msc en_US
dc.description.accessibility unrestricted en_US
dc.description.department ees en_US


Files in this item

This item appears in the following Collection(s)

  • Faculty of Sciences
    This collection is made up of electronic theses and dissertations produced by post graduate students from Faculty of Sciences

Show simple item record

Search BIUSTRE


Browse

My Account