BIUSTRE

Halpern–Ishikawa type iterative method for approximating fixed points of non-self pseudocontractive mappings

Show simple item record

dc.contributor.author Zegeye, Habtu
dc.contributor.author Tufa, Abebe Regassa
dc.date.accessioned 2021-11-15T08:38:00Z
dc.date.available 2021-11-15T08:38:00Z
dc.date.issued 2018-06-04
dc.identifier.citation Zegeye, H. and Tufa, A. R. (2018) Halpern–Ishikawa type iterative method for approximating fixed points of non-self pseudocontractive mappings. Fixed Point Theory and Applications, 2018, 15, https://doi.org/10.1186/s13663-018-0640-5. en_US
dc.identifier.issn 16871812
dc.identifier.uri http://repository.biust.ac.bw/handle/123456789/376
dc.description.abstract In this paper, we define a Halpern–Ishikawa type iterative method for approximating a fixed point of a Lipschitz pseudocontractive non-self mapping T in a real Hilbert space settings and prove strong convergence result of the iterative method to a fixed point of T under some mild conditions. We give a numerical example to support our results. Our results improve and generalize most of the results that have been proved for this important class of nonlinear mappings. en_US
dc.description.sponsorship The World Academy of Sciences TWAS International Mathematical Union 3240292779 IMU Third World Academy of Sciences TWAS en_US
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.subject Fixed points en_US
dc.subject Monotone mappings en_US
dc.subject Pseudocontractive mappings en_US
dc.title Halpern–Ishikawa type iterative method for approximating fixed points of non-self pseudocontractive mappings en_US
dc.description.level phd en_US
dc.description.accessibility unrestricted en_US
dc.description.department mss en_US


Files in this item

This item appears in the following Collection(s)

  • Faculty of Sciences
    This collection is made up of pre and post research articles created by both staff and students from Faculty of Sciences

Show simple item record

Search BIUSTRE


Browse

My Account