dc.contributor.author |
Zegeye, Habtu |
|
dc.contributor.author |
Tufa, Abebe Regassa |
|
dc.date.accessioned |
2021-11-15T08:38:00Z |
|
dc.date.available |
2021-11-15T08:38:00Z |
|
dc.date.issued |
2018-06-04 |
|
dc.identifier.citation |
Zegeye, H. and Tufa, A. R. (2018) Halpern–Ishikawa type iterative method for approximating fixed points of non-self pseudocontractive mappings. Fixed Point Theory and Applications, 2018, 15, https://doi.org/10.1186/s13663-018-0640-5. |
en_US |
dc.identifier.issn |
16871812 |
|
dc.identifier.uri |
http://repository.biust.ac.bw/handle/123456789/376 |
|
dc.description.abstract |
In this paper, we define a Halpern–Ishikawa type iterative method for approximating a fixed point of a Lipschitz pseudocontractive non-self mapping T in a real Hilbert space settings and prove strong convergence result of the iterative method to a fixed point of T under some mild conditions. We give a numerical example to support our results. Our results improve and generalize most of the results that have been proved for this important class of nonlinear mappings. |
en_US |
dc.description.sponsorship |
The World Academy of Sciences TWAS
International Mathematical Union 3240292779 IMU
Third World Academy of Sciences TWAS |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Fixed points |
en_US |
dc.subject |
Monotone mappings |
en_US |
dc.subject |
Pseudocontractive mappings |
en_US |
dc.title |
Halpern–Ishikawa type iterative method for approximating fixed points of non-self pseudocontractive mappings |
en_US |
dc.description.level |
phd |
en_US |
dc.description.accessibility |
unrestricted |
en_US |
dc.description.department |
mss |
en_US |