| dc.contributor.author | Zegeye, Habtu | |
| dc.contributor.author | Tufa, Abebe Regassa | |
| dc.date.accessioned | 2021-11-15T08:38:00Z | |
| dc.date.available | 2021-11-15T08:38:00Z | |
| dc.date.issued | 2018-06-04 | |
| dc.identifier.citation | Zegeye, H. and Tufa, A. R. (2018) Halpern–Ishikawa type iterative method for approximating fixed points of non-self pseudocontractive mappings. Fixed Point Theory and Applications, 2018, 15, https://doi.org/10.1186/s13663-018-0640-5. | en_US |
| dc.identifier.issn | 16871812 | |
| dc.identifier.uri | http://repository.biust.ac.bw/handle/123456789/376 | |
| dc.description.abstract | In this paper, we define a Halpern–Ishikawa type iterative method for approximating a fixed point of a Lipschitz pseudocontractive non-self mapping T in a real Hilbert space settings and prove strong convergence result of the iterative method to a fixed point of T under some mild conditions. We give a numerical example to support our results. Our results improve and generalize most of the results that have been proved for this important class of nonlinear mappings. | en_US |
| dc.description.sponsorship | The World Academy of Sciences TWAS International Mathematical Union 3240292779 IMU Third World Academy of Sciences TWAS | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Nature | en_US |
| dc.subject | Fixed points | en_US |
| dc.subject | Monotone mappings | en_US |
| dc.subject | Pseudocontractive mappings | en_US |
| dc.title | Halpern–Ishikawa type iterative method for approximating fixed points of non-self pseudocontractive mappings | en_US |
| dc.description.level | phd | en_US |
| dc.description.accessibility | unrestricted | en_US |
| dc.description.department | mss | en_US |