
HOCHSCHILD COHOMOLOGY OF SULLIVAN
ALGEBRAS AND MAPPING SPACES BETWEEN

MANIFOLDS

J.-B. GATSINZI

Abstract. Let e : Nn → Mm be an embedding of closed, ori-
ented manifolds of dimension n and m respectively. We study
the relationship between the homology of the free loop space LM
on M and of the space LNM of loops of M based in N and
define a shriek map H∗(e)! : H∗(LM,Q) → H∗(LNM,Q) using
Hochschild cohomology and study its properties. In particular we
extend a result of Félix on the injectivity of the map induced by
aut1 M → map(N,M ; f) on rational homotopy groups when M
and N have the same dimension and f : N → M is a map of non
zero degree.

1. Introduction

All spaces are assumed to be simply connected and (co)homology
coefficients are taken in the field Q of rationals. If M is a compact
oriented manifold of dimension m and LM = map(S1,M) the space of
free loops in M , then there is an intersection product

µ : Hp+m(LM)⊗Hq+m(LM)→ Hp+q+m(LM)

which induces a graded multiplication on H∗(LM) = H∗+m(LM), turn-
ing it into a commutative graded algebra [3]. Consider the embedding
e : N → M of a closed, oriented submanifold of degree n. Construct
the pullback

(1) LNM
ẽ //

p̃

��

LM

p

��
N e

// M,
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2 J.-B. GATSINZI

where p is the evaluation of a loop at 1 ∈ S1. There is also an intersec-
tion product on H∗(LNM) = H∗+n(LNM), turning it into commutative
graded algebra [15].

We consider a morphism f : (A, d) → (B, d) which models the em-
bedding e, where (A, d) and (B, d) are Poincaré duality commutative
differential graded algebras (cdga for short) [5]. We show that there is
an A-linear shriek map f! : (B, d)→ (A, d) of degreem−n. We consider
induced maps HH∗(f) : HH∗(A,A) → HH∗(A,B) and HH∗(f!) :
HH∗(A,B) → HH∗(A,A) in Hochschild cohomology. Moreover we
obtain the following.

Theorem 1. The composition map

HH∗(f!) ◦HH∗(f) : HH∗(A,A)→ HH∗(A,A)

is the multiplication by the Poincaré dual of the fundamental class of
N in M .

Theorem 2. Let g : Nm → Mm be a map between manifolds of same
dimension m such deg f ̸= 0 and f : (A, d) → (B, d) a cdga model of
g. Then

HH∗(A,A)→ HH∗(A,B)

is injective.

The above result suggests that H(g̃) : H∗(LNM) → H∗(LM) is an
injective algebra morphism, where g̃ : LNM → LM is the pullback of
g : N →M along the fibration p : LM →M defined by p(γ) = γ(0).

The paper is organized as follows: In Section 2 we define a shriek
map f! : (B, d)→ (A, d) and prove Theorem 1. In Section 3, we recall a
resolution to compute HH∗(C∗(M), C∗(N)) and in Section 4 we prove
Theorem 2.

2. A shriek map

We first recall some facts in Rational Homotopy Theory. We make
use of Sullivan models for which the standard reference is [6]. All vec-
tor spaces are over the ground field Q. A differential graded algebra
(A, d) is a direct sum of vector spaces Ap, that is, A = ⊕p≥0A

p together
with a graded multiplication µ : Ap ⊗ Aq → Ap+q which is associative.
An element a ∈ Ap is called homogeneous of degree |a| = p. Moreover
there is a differential d : Ap → Ap+1 which an algebra derivation, that
is, d(ab) = (da)b+ (−1)|a|a(db) and satisfies d2 = 0.
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MAPPING SPACES BETWEEN MANIFOLDS 3

A graded algebra A is called commutative if ab = (−1)|a||b|ba for
a, b ∈ A. If (A, d) is a commutative differential graded algebra, then
H∗(A, d) is graded commutative. A morphism f : (A, d) → (B, d) of
cdga’s is called a quasi-isomorphism if H∗(f) is an isomorphism. A
cdga (A, d) is called simply connected if H0(A) = Q and H1(A) = 0.

A commutative graded algebra A is free if it is of the form ∧V =
S(V even) ⊗ E(V odd), where V even = ⊕i≥1V

2i and V odd = ⊕i≥0V
2i+1.

A Sullivan algebra is a cdga (∧V, d), where V = ⊕i≥1V
i admits a ho-

mogeneous basis {xi}i∈I indexed by a well ordered set I such dxi ∈
∧({xi})i<j. A Sullivan algebra is called minimal if dV ⊂ ∧≥2V [6].
If there is a quasi-isomorphism f : (∧V, d) → (A, d), where (∧V, d) is
a (minimal) Sullivan algebra, then we say that (∧V, d) is a (minimal)
Sullivan model of (A, d). Any connected cdga (A, d) admits a Sullivan
model [6].

To a simply connected topological space X of finite type, Sullivan
associates in a functorial way a cdga APL(X) of piecewise linear forms
on X such H∗(APL(X)) ∼= H∗(X,Q) [16]. A Sullivan model of X is a
Sullivan model of APL(X). Moreover any cdga (A, d) is called a model
of X if there is a sequence of quasi-isomorphisms

(A, d)→ (A1, d)← . . .→ (An−1, d)← APL(X).

We state here the fundamental result of Sullivan algebras.

Proposition 3. If (A, d) is a simply connected cdga then there is a
minimal Sullivan algebra (∧V, d) together with a quasi-isomorphism
(∧V, d)→ (A, d). Moreover (∧V, d) is unique up to isomorphism. It is
called the minimal Sullivan model of (A, d) [6, § 12].

Definition 4. A simply connected space X is called formal if there is
a quasi-isomorphism (∧V, d)→ H∗(∧V, d), where (∧V, d) is a Sullivan
model of X. Formal spaces include spheres, compact Lie groups and
complex projective spaces.

Definition 5. (1) A connected graded commutative algebra A is
called an oriented Poincaré duality algebra of dimension n if
there is a linear map ϵ : An → Q such that the induced bilin-
ear forms, β : Ak ⊗ An−k defined by β(x ⊗ y) = ϵ(ab), are non
degenerate.

(2) A commutative differential graded algebra (A, d) is a Poincaré
algebra of formal dimension n if A is an oriented Poincaré du-
ality algebra such that ϵ(dAn−1) = 0.
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4 J.-B. GATSINZI

Remark 6. It comes from the definition that there is a cocycle ωA ∈ An

such that ϵ(ωA) = 1. We call [ωA] the fundamental class of (A, d). If
A is of finite type, then Ai = 0 for i > n and A is finite dimensional.
Moreover if {a1, . . . , ak} is a homogeneous basis of A, then there is
a dual homogeneous basis {a∗j} such that ϵ(aia

∗
j) = δij. We denote

by a# the dual of a in A# = Hom(A,Q). In particular ωA = ϵ# ∈
(A#)# ∼= A is the fundamental class of A. Moreover the linear map
πA : Ak → (An−k)# defined by πA(a)(x) = ϵ(ax) is an isomorphism of
A-modules of lower degree n.

If (∧V, d) is the minimal Sullivan model of a simply connected space
X, where H∗(X,Q) satisfies Poincaré duality, then (∧V, d) is quasi-
isomorphic to a Poincaré duality algebra (A, d) [13]. In particular, a
simply connected smooth manifoldM of dimensionm has a cdga-model
(A, d) which satisfies Poincaré duality in dimension m.

Let f : (A, d) → (B, d) be a map between cdga’s with Poincaré
duality in dimensions m and n respectively. We can now relate isomor-

phisms πA : A
≃→ A# and πB : B

≃→ B#.

Proposition 7. If f is surjective, then there exists a morphism of
A-modules f! : B → A making the following diagram commutative.

B

≃ πB
��

f! // A

∼=πA
��

B# f#

// A#

Proof. Let 1 ∈ B, then πB(1) = ω#
B , where ωB is a cocycle which

represents the fundamental class [ωB] ∈ Hn(B). As πA is bijective,

there exists α ∈ A such that πA(α) = f#(ω#
B ). As f is surjective, then

given b ∈ B, there exists a ∈ A such that b = f(a). Recall that B is an
A-module through the action induced by f , hence b = f(a)1 = a ∗ 1.
Therefore we define f!(b) = aα. In particular f!f(a) = aα.
We show that the above diagram commutes. Let b ∈ B and a ∈ A such
that b = f(a). On one hand

(2) f#(πB(b)) = f#(πB(b× 1)) = f#(bω#
B ),

whereas

(3) πA(f!(b)) = πA(aα) = aπA(α) = af#(ω#
B ).

Let x ∈ A. Then

(4) f#(bω#
B )(x) = (bω#

B )(f(x)) = ω#
B (bf(x)),
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MAPPING SPACES BETWEEN MANIFOLDS 5

and

(5)
(af#(ω#

B ))(x) = (f#(ω#
B ))(ax) = ω#

B (f(ax))

= ω#
B (f(a)f(x)) = ω#

B (bf(x)).

Hence f#(bω#
B ) = af#(ωB) and the diagram commutes.

Finally we show that f! is a morphism of A-modules. If x ∈ A and
b ∈ B, then

f!(x ∗ b) = f!(f(x)b) = f!(f(xa)) = (xa)α = xf!(b).

In particular f!(b) = f!(b× 1) = a ∗ f!(1). □
Remark 8. If ωB is a cocycle representing the fundamental class of
(B, d) and f is surjective, then there exists x ∈ A such that f(x) = ωB.

Then f#(ω#
B ) = x# = πA(x

∗), where x∗ is the dual of x under a choice
of a basis {ai} of A and its dual {a∗j} (see Remark 6). If dx = 0, then
[x] ∈ H∗(A) ̸= 0 and [x∗] ∈ Hm−n(A) is non zero.

Example 9. Consider the inclusion i : CP n → CP n+k. As complex
projective spaces are formal, a cdga model of the inclusion is

f : ∧x2/(x
n+k+1
2 )→ ∧y2/(yn+1

2 ),

where f(x) = y. Then f! is defined by f!(1) = xk. Hence f!(y
i) = xk+i,

for 0 ≤ i ≤ n.

3. Hochschild cohomology

If (A, d) is a graded differential algebra and (Q, d) a graded A-
bimodule, then the Hochschild cohomology of A with coefficients in
Q is defined by HH∗(A,Q) = ExtAe(A,Q), where Ae = A⊗ Aopp.

Let A = (∧V, d) be the minimal Sullivan model of a simply connected
space X. Then

(6) P = (∧V ⊗ ∧V ⊗ ∧V̄ , D̃)→ (∧V, d)
is a semi-free resolution of ∧V as a ∧V ⊗∧V -module, where V̄ = sV [5].
Moreover, the pushout

(∧V ⊗ ∧V, d⊗ 1 + d⊗ 1)

µ

��

// // (∧V ⊗ ∧V ⊗ ∧V̄ , D̃)

��
(∧V, d) // // (∧V ⊗ ∧V̄ , D)

yields a Sullivan model (∧V ⊗∧V̄ , D) of the free loop space on X [17].
The differential is given by Dv = dv for v ∈ V and Dv̄ = −Sdv, where
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6 J.-B. GATSINZI

S is the unique derivation on ∧V ⊗∧V̄ defined by Sv = v̄ and Sv̄ = 0.

Hence if (Q, d) is a ∧V -differential module, then the Hochschild cochains
CH(A,Q) are given by

(7)
CH∗(A,Q) = (Hom∧V⊗∧V (∧V ⊗ ∧V ⊗ ∧V̄ , Q), D)

∼= (Hom∧V (∧V ⊗ ∧V̄ , Q), D).

As the differential of D on ∧V ⊗ ∧V̄ satisfies

D(∧V ⊗ ∧nV̄ ) ⊂ ∧V ⊗ ∧nV̄ ,

one gets a Hodge type decomposition

HH∗(A,Q) = ⊕i≥0HH∗
(i)(A,Q),

where HH∗
(i)(A,Q) = H∗(Hom∧V (∧V ⊗ ∧iV̄ ,∧V ), D). Moreover, if

L = s−1Der∧V , then the symmetric algebra (∧AL, d) is quasi-isomorphic
to the Hochschild cochain complex (Hom∧V (∧V ⊗ ∧V̄ ,∧V ), D) [9].
Furthermore if V is finite dimensional then HH∗(∧V,∧V ) is the ho-
mology of the complex (∧V ⊗ ∧Z,D) where Z ≃ s−1V # [10].

Assume that M is a simply connected smooth manifold of dimension
m and (∧V, d) its minimal Sullivan model. Then there is an isomor-
phism of BV-algebras H∗(LM) ∼= HH∗(∧V,∧V ) [4, 8, 7]. For closed
oriented submanifolds N and N ′ of M , we denote by PN ′

N M the space
of paths in M starting in N and ending in N ′. Let N1, N2 and N3

be submanifolds of M . When coefficients are rationals (or in Z/nZ)
Sullivan showed that there is an intersection product

µ : Hp+d(P
N2
N1

M)⊗Hq+d(P
N3
N2

M)→ Hp+q+d(P
N3
N1

M)

where d = dimN2 [15]. In particular if N1 = N2 = N3 = N , one gets a
graded commutative algebra structure onH∗(PN

N M,Q) = H∗+d(P
N
N M,Q).

We consider the subset of PN
N M consisting of loops that originate in

N . This is exactly LNM defined by the pullback of the diagram (1).
The restriction yields a product on H∗(LNM) = H∗+d(LNM).

Let e : Nn ↪→Mm be an embedding whereN is simply connected and
f : (A, d)→ (B, d) a cdga model e, where both (A, d) and (B, d) satisfy
Poincaré duality. Assume that f is surjective and let [y] ∈ Hn(B) be
the fundamental class. Let x ∈ A such that f(x) = y. We will assume
that x is a cocycle and consider [x] ∈ Hn(A, d).

Theorem 10. Under the above hypotheses, the composition

HH∗(A,A)
HH∗(f)

// HH∗(A,B)
HH∗(f!)// HH∗(A,A)
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MAPPING SPACES BETWEEN MANIFOLDS 7

is the multiplication with the Poincaré dual [x∗] ∈ Hm−n(A, d) of [x].

Proof. We consider the minimal Sullivan model ϕ : (∧V, d) → (A, d).
By Eq. (7), HH∗(A,A) is obtained as the cohomology of the complex

Hom∧V⊗∧V (∧V ⊗ ∧V ⊗ ∧V̄ ,∧V ) ∼= Hom∧V (∧V ⊗ ∧V̄ ,∧V )
≃ Hom∧V (∧V ⊗ ∧V̄ , A).

If γ ∈ Hom∧V (∧V ⊗ ∧V̄ , A), then

(CH(f!) ◦ CH(f))(γ)(x) = (f! ◦ f)(γ)(x) = αγ(x),

where α = x∗, by Remark 8. Therefore, if γ is a cocycle, then

HH∗(f!) ◦HH∗(f)([γ]) = [x∗][γ].

□
Example 11. We consider the embedding e : CP n ↪→ CP n+k for which
a Poincaré duality model is given by

f : A = ∧x2/(x
n+k+1
2 )→ ∧y2/(yn+1

2 ) = B, where f(x2) = y2.

As f is surjective, the hypotheses of Theorem 10 are satisfied. The
complex to compute HH∗(A,A) is given by (A ⊗ ∧(z1, z2(n+k)), D)
where subscripts indicate the lower degree, and Dz2(n+k) = 0, Dz1 =

(n+ k+1)xn+k
2 z2(n+k) [10]. Here an element x ∈ An = A−n is assumed

to be of lower degree −n. At chain’s level, the composition

CH∗(f!) ◦ CH(f) : (A⊗ ∧(z1, z2(n+k)), D)→ (A⊗ ∧(z1, z2(n+k)), D)

is the multiplication by xk
2.

Proposition 12. Let e : N → M be an embedding between closed,
oriented manifolds, (∧V, d) the minimal Sullivan model of M and Z =
s−1V # and LNM the pullback of Eq. (1). If f : (A, d) → (B, d) is a
model of e : N → M , then HH∗(C∗(M), C∗(N)) is computed by the
complex (B ⊗ ∧Z,D) which is the pushout of the following diagram.

(8) (A, d) //

��

(A⊗ ∧Z,D)

��
(B, d) // (B ⊗ ∧Z,D)

Proof. Let (∧V, d) be the minimal Sullivan model of M , where V is
finite dimensional. Then H∗(LM) is the homology of the complex
(∧V ⊗ ∧Z,D) where Z = s−1V # and the differential D is induced
by δ on (Der∧V, δ), where V # ⊂ Der∧V . As (∧V,D) → (A, d) is
a quasi-isomorphism, then the pushout is a model of the pullback in
Eq. 1. □
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8 J.-B. GATSINZI

However, it is not known whether H∗(LNM) and H∗(B⊗∧Z,D) are
isomorphic as algebras.

4. Maps between manifolds of same dimension

Let f : (A, d) → (B, d) be a morphism of graded cochain alge-
bras. An f -derivation of degree k is a linear map θ : A∗ → B∗−k such
that θ(xy) = θ(x)f(y) + (−1)k|x|f(x)θ(y). We denote by Derk(A,B; f)
the vector space of all f -derivations of degree k and Der(A,B; f) =
⊕k Derk(A,B; f). Define a differential δ on Der(A,B; f) by δθ =
dBθ − (−1)|θ|θdA. If A = B and f = 1A, we get the usual Lie al-
gebra of derivations, DerA, where the Lie bracket is the the commu-
tator of two derivations. There is an action of A on DerA, defined by
(aθ)(x) = aθ(x), making (DerA, δ) a differential graded module over A.

Let M and N be compact, oriented manifolds of dimension n and
g : N → M a smooth map such that deg g ̸= 0. Consider a Poincaré
duality model f : (A, d) → (B, d) of g. Then f is injective and
B = f(A) ⊕ Z, where dZ ⊆ Z and f(A).Z [5]. Therefore Z is an
A-submodule. Moreover the projection p : B = f(A) ⊕ Z → A is a
morphism of A-modules.

Theorem 13 ([5], Theorem 2). Consider a surjective Sullivan model
ϕ : (∧V,D)→ (A, d). Then

(9) f∗ : (Der(∧V,A;ϕ), δ)→ (Der(∧V,B; f ◦ ϕ), δ)
induces an injective map in homology.

This can be interpreted in terms of rational homotopy groups of
function spaces. Let g : X → Y be a continuous map between CW
complexes where Y is finite and X of finite type and ϕ : (∧Z, d) →
(B, d) a Sullivan model of g. Consider map(X, Y ; g) be the space of
continuous mappings from X to Y which are homotopic to g. There is
a natural isomorphism [1, 2, 14]

πn(map(X, Y ; g))⊗Q ∼= Hn(Der(∧V,B;ϕ), δ), n ≥ 2.

Hence if g : N → M is a map between simply connected smooth
manifolds such that deg g ̸= 0, then the map

jM : aut1M = map(M,M ; 1M)→ map(N,M ; g)

induces an injective map

π∗(jM)⊗Q : π∗(aut1M)⊗Q→ π∗(map(N,M ; g))⊗Q.
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MAPPING SPACES BETWEEN MANIFOLDS 9

Let ϕ : (∧V, d) → (A, d) be a Sullivan model and ρ = f ◦ ϕ. We have
the following commutative diagram

H∗(Der∧V, δ)��

��

� � // HH∗(A,A)

��
H∗(Der(∧V,B; ρ), δ) �

� // HH∗(A,B),

where horizontal maps are inclusions [11]. We show that the remaining
vertical arrow is injective, which is a generalization of Theorem 13.

Theorem 14. Let g : N → M be a smooth map of non zero degree
between manifolds of same dimension n and f : (A, d) → (B, d) a
Poincaré duality model of g. Then the induced map

HH∗(A,A)
HH∗(f)

// HH∗(A,B)

is injective.

Proof. As B = f(A) ⊕ Z, then f(A) = ρ(∧V ) is a submodule of B
viewed as a ∧V -module and Z is also a ∧V -submodule of B. Therefore

Hom∧V (∧V⊗∧V̄ , B) ∼= Hom∧V (∧V⊗∧V̄ , f(A))⊕Hom∧V (∧V⊗∧V̄ , Z).

Moreover, the projection p : B = f(A)⊕Z → f(A) ∼= A is a morphism
of ∧V -modules. It induces a chain map

p∗ : Hom∧V (∧V ⊗ ∧V̄ , B)→ Hom∧V (∧V ⊗ ∧V̄ , A)

such that p∗ ◦ f∗ is the identity. Therefore f∗ is injective in homology.
□

We can then deduce the following

Corollary 15. Under the hypotheses of Theorem 14, there is an injec-
tive map H∗(f)! : H∗(LM,Q)→ H∗(LNM,Q)

Proof. Recall that there is an isomorphismHH∗(A,A) ∼= H∗(LM) [12].
Dualizing this isomorphism and using Poincaré duality yields an iso-
morphism HH∗(A,A#) ∼= H∗(LM). In the same way, there is an
isomorphism HH∗(A,B#) ∼= H∗(LNM). Hence H∗(f)! is given by the
composition

HH∗(A,A#)
(πA)−1

∗ // HH∗(A;A)
f∗ // HH∗(A,B)

(πB)∗// HH∗(A,B#).

Hence it is injective. □
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