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Abstract – This paper presents predictive models for blast-

induced fragmentation at Orapa Diamond Mine in Botswana 

using machine learning algorithms namely artificial neural 

networks (ANN), particle swarm optimization artificial neural 

networks (PSO-ANN), and genetic algorithm artificial neural 

networks. A dataset consisting of 50 blasts with eight blast design 

parameters such as burden, spacing, hole depth, hole diameter, 

maximum charge per delay, stemming length, powder factor, 

distance from the monitoring point as input parameters, and 

fragmentation as the output parameter are used. The main goal 

of production blasting is to achieve proper fragmentation. Rock 

fragmentation has a direct influence on the mill throughput and 

diggability which in turn affect the overall mine economics. 

Hence accurate prediction of fragmentation is crucial in arriving 

at an economical outcome. Root mean square error and 

determination coefficient (R2) indices were used to validate and 

compare the performance of the models. PSO-ANN demonstrated 

superiority over the other hybrid models in predicting 

fragmentation with the highest accuracy and lowest error. The 

results of sensitivity analysis showed that hole depth has the most 

influence on fragmentation while maximum charge per delay 

has the least influence on fragmentation.  

Keywords - Rock fragmentation; blasting; artificial neural 

network; particle swarm optimisation; genetic algorithm; 

sensitivity analysis. 

I.  INTRODUCTION  

The main goal of production blasting in the mining 
industry is to achieve proper rock fragmentation. Subsequent 
processes such as loading, hauling, and crushing are 
significantly influenced by production blasting. The quality 
of fragmentation is used as an indicator of the efficiency of a 
blast. As a result, blast design parameters play a significant 
role in producing the desired fragmentation [1]. Uniform 
particle size distribution leads to increased mill throughput 
due to the increased diggability of the fragmented rock that 
translates into the performance of the loader and excavator 
used. In addition, proper fragmentation eliminates the need 
for secondary blasting [2]. All these lead to improved overall 
plant or mine economics. Hence accurate prediction of rock 
fragmentation plays a significant role in the economies of 
operating the mines.  

Parameters influencing rock fragmentation are divided 
into three categories, namely, rock mass properties, blast 
geometry, and explosive properties [3-6]. From the literature, 
there are several empirical models developed for forecasting 
blast-induced rock fragmentation [7-10]. Empirical models 
are only able to consider a few effective parameters thus 
making them inaccurate and unreliable. Furthermore, 
acquiring all the relevant effective parameters is not possible 
as their non-linear relationships are not known or are 
difficult to quantify [11-12].  

To overcome the limitations of empirical models, the 
application of artificial intelligence techniques has been 
highlighted by several researchers in the field of engineering 
and rock mechanics [13-18]. Zhou et al. [19] predicted blast-
induced rock fragmentation using artificial neural network 
(ANN), support vector regression (SVR), adaptive neuro-
fuzzy inference system (ANFIS), adaptive neuro-fuzzy 
inference system combined with genetic algorithm (ANFIS-
GA), and adaptive neuro-fuzzy inference combined with 
firefly algorithm (ANFIS-FFA). ANFIS-GA performed 
better compared to the other models in predicting rock 
fragmentation. ANN and multivariate regression analysis 
(MVRA) was applied in forecasting rock fragmentation by 
Monjezi et al. [20]. Burden-to-spacing ratio, hole diameter, 
stemming, total charge per delay, powder factor, maximum 
holes per delay, point load index, and delays between the 
rows were considered as inputs in their study. The ANN 
method showed superiority over MVRA in predicting rock 
fragmentation with an R2 value of 0.985 and an RMSE value 
of 0.995.  

Bahrami et al. [21] proposed an ANN model for 
estimating rock fragmentation. A four-layer neural network 
was found to be optimum in predicting rock fragmentation. 
Sensitivity analysis from the same study revealed that 
blastability index, charge per delay, burden, and powder 
factor are the most effective parameters for fragmentation. 
Shams et al. [12] offered a fuzzy inference system (FIS) and 
MVRA model for predicting rock fragmentation. The results 
showed that the FIS model was more accurate in predicting 
fragmentation than MVRA, with an RMSE of 2.423 and a 
variance account (VAF) of 92.195%. sShi et al. [22] 
predicted the mean particle size of rock fragmentation due to 
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bench blasting using support vector machine (SVM), 
MVRA, and the Kuznetsov empirical model. The prediction 
accuracy of SVM was more acceptable than the other 
methods.  

Hasanipanah et al. [23] offered ANFIS combined with 
particle swarm optimization (PSO) model to predict rock 
fragmentation. In their study, SVM and nonlinear multiple 
regression (NLMR) methods were used. About 72 blasts 
were investigated, and the results showed that ANFIS-PSO is 
more accurate in predicting fragmentation than SVM and 
NLMR.  

This study presents three data-driven models for 
predicting rock fragmentation. We used three methods, 
namely, ANN with gradient descend, ANN with PSO, and 
ANN with GA. The contributions of this paper are: 

• A blast dataset consisting of 8 blast design parameters 
were collected from Orapa Diamond Mine, in 
Botswana for training and testing the models. The 
data sample size is 50. 

• ANN is optimised by using GA and PSO to predict 
rock fragmentation, instead of the usual gradient 
descend method. 

• Sensitivity analysis is conducted to determine the 
most effective parameters on rock fragmentation. 

II. DATA SETS 

In this study, a database consisting of 50 blasts has been 

collected from the Orapa Diamond Mine, in Botswana, to 

construct and verify the proposed PSO-ANN, GA-ANN, 

and ANN models. The parameters considered in this study 

are burden, spacing, hole depth, hole diameter, maximum 

charge per delay, stemming length, powder factor, and 

distance from the monitoring point as inputs and 

fragmentation as the output. The blast geometry parameters 

are shown in Fig. 1. Split desktop software was used to 

analyse the images obtained using a digital camera. Before 

implementing the modelling process, the data was first pre-

processed which included cleaning and normalisation. It 

was then divided into train and test sets, 80% and 20%, 

respectively. Table 1 shows the range of parameters used in 

this study. 

 

 
 
Fig. 1. Schematic Diagram of Blast Geometry  

 

I. METHODS 

Hybrid algorithms are used that combine the search 

properties of ANN with that of PSO and GA algorithms as a 

way of optimizing its performance in solving the given 

problem. 
 

TABLE I.  THE RANGE OF THE INPUT AND OUTPUT PARAMETERS 

Parameter Type Unit Symbol Min Max 

Burden  input m B 4 8 

Spacing  input m S 4 7 

Stemming length  input m St 4 8 

Hole depth  input m HD 12.28 16.29 

Hole diameter  input mm D 127 250 

Distance - blast face input m DI 438 1500 

Charge per delay input kg MC 27 61.4 

Powder factor  input kg/m3 Pf 0.3 1 

Fragmentation  output % F 70 81 

 

A. ARTIFICIAL NEURAL NETWORKS  

 The machine learning algorithm ANN was initially 
introduced by McCulloch and Pitts in 1943 and it has  gained 
popularity due to the rise in computing capacity [24]. ANNs 
are inspired by the way neurons in the human brain process 
information. Three main constituents make up a typical 
ANN, namely, the network architecture, the transfer 
function, and the learning rule [25]. A simple neural network 
architecture consists of neurons in three layers (input, 
hidden, and output), connected by weights. The weighted 
total of the inputs and the bias is computed using a transfer 
function. After the transfer function computes the sum, the 
activation function gets the outcome and provides threshold 
values over which the neurons of the network will fire. The 
most applied learning rule for training ANNs is the 
backpropagation (BP) algorithm [26]. In the BP-ANN, input 
data is first forward propagated in the input layer, through 
the hidden layer, to the output layer. The error is computed 
in the output layer by taking the difference between the 
actual and predicted output as shown in (1)  
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 (1) 

 

where Ani and Pni are actual and predicted values of the ith 

neuron, i is the total number of neurons, and n is the dataset 
number. 

 The result is then backpropagated to update the 
individual weights as shown in (2) and (3). The process is 
iterated until the error is minimised [27] 

 

 (2) 

 =  (3) 

 

where Outk is the output of the kth neuron, u is the learning 

rate, and En is the mean square error (MSE) of the ANN. 

B. PARTICLE SWARM OPTIMISATION  

Kennedy and Eberhart et al. [28] are credited with 

developing PSO, which was first designed to simulate social 

behaviour by mimicking the movement of a flock of birds or 

a fish school. A population of potential solutions, called 

particles are used to solve the problem, and these particles 

are moved across the search space over the particle's 

position and velocity shown expressed in equations (4) and 

(5) 

  

 (4) 

 (5) 

 

where Vnew, X, and V are the new velocity, current 

position, and current velocity of particles, respectively. The 

symbol w is the inertial weight coefficient, and r1 and r2 are 

random values in the range (1,0). The symbols C1 and C2 are 

predefined acceleration coefficients, Pbest is the particle’s 

personal best position, and Gbest is the global best position 

among all particles. 

 

In addition to being led toward the best-known positions 

in the search space, which are updated as other particles find 

better positions, each particle's movement is also influenced 

by its local best-known position. The swarm migrates 

toward a better solution as a result of this [29]. PSO is a 

metaheuristic because it can search very huge areas of 

potential solutions and makes little to no assumptions about 

the problem being optimised. 

 

1) Implementation of PSO-based ANN:  

 

According to Jadav and Panchal [30], ANN has the 

drawback of getting stuck in local minima. PSO can search 

a much wider space and find global minima. Therefore 

weights and biases of the neural network are updated using 

the best positions found by the PSO algorithm. 

 

C. GENETIC ALGORITHM  

Holland [31] introduced a genetic algorithm that is 

normally employed as a method for optimisation and 

stochastic search. GA was influenced by Charles Darwin's 

theory of natural selection. The selection of the fittest 

individuals in a population is the first step in the process of 

natural selection. They give birth to offspring who carry on 

their parent's traits and will be added to the following 

generation. Parents who are more physically fit will produce 

offsprings who will outperform the offspring from parents 

who are not as fit and have a higher chance of surviving 

[32]. The fittest generation will eventually emerge because 

of this process’ continual iterations. The algorithm 

terminates when the population has converged (does not 

produce offspring which are significantly different from the 

previous generation) [33]. Five phases are considered in a 

genetic algorithm. These are: 

 

• Initial population - The process begins with a set of 

individuals which are known as a population. 

These individuals are a potential solution to the 

problem. Genes are a set of parameters (variables) 

that define an individual. A chromosome (solution) 

is made up of a string of genes.  

• Fitness function - The fitness function gauges an 

individual's level of fitness which is the ability of 

an individual to compete with other individuals. 

Based on its fitness score, an individual's 

likelihood of being chosen for reproduction is 

determined. 

• Selection - The purpose of the selection phase is to 

choose the fittest individuals based on their fitness 

ratings and allow them to pass on their genes to the 

following generation.  

• Crossover - A crossover point is picked at random 

from the genes for each set of parents to mate. A 

crossover can be a single point or double point. 

Parents' genes are exchanged among one another 

until the crossover point is achieved, at which time 

the offsprings are produced. 

• Mutation - Some of the newly produced offspring's 

genes are subjected to a low-probability random 

mutation. When using binary values, mutation 

entails changing string 1 to 0 and string 0 to 1. To 

preserve variety throughout the population and 

avoid early convergence as mutation takes place. 

 

2) Implementation of GA-based ANN 
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The algorithm GA has the significant advantage of being 

able to perform a multidirectional search and avoid being 

trapped in local optima [34-35]. Therefore, the weights and 

biases are updated using GA. 

II. RESULTS AND DISCUSSIONS  

To assess the performance of all the models, the 

determination coefficient (R2) and the root mean square 

error (RMSE) were utilised as the performance indices. 

These are expressed by equations (6) and (7): 

 

 (6) 

 

 (7) 

 

where y and y’ are measured and predicted values, 

respectively; ỹ and ỹ’ are mean measured and mean 

predicted values, respectively and N is the dataset number.  

 

 

    A good RMSE is a value close to or equal to 0 while a 

good R2 is a value close to or equal to 1. Table 2 

summarises the performance indices for all the models with 

their hyper-parameters. It is observed that the PSO-ANN 

model with 30 particles and 10 neurons in the hidden layer 

gives the highest R2 value of 0.88 and the lowest RMSE of 

1.97 compared to other models. It is therefore considered 

the optimum model for predicting rock fragmentation. A 

comparison is shown between the measured and predicted 

fragmentation by all models in Fig. 2.  

 

     The predicted results of the PSO-ANN model are in 

close agreement with the actual rock fragmentation, proving 

the capability of this model in forecasting blast-induced 

rock fragmentation compared to other models. Figs. 3 to 5 

show the correlations between the measured and predicted 

fragmentation by all the models. Most of the data points are 

close to the line of best fit for the PSO-ANN model 

compared to other models indicating that it gives the highest 

correlation and highest accuracy than other models. Fig. 3 

shows that the ANN model data points are the farthest from 

the line of best fit showing that the ANN model gives the 

lowest correlation and accuracy. Hence the performance of 

the ANN is significantly improved by being optimised by 

PSO. 

 

 

 

 

 

 

 

 

 

 

TABLE II.  PERFORMANCE INDICES FOR ALL THE MODELS 

GD-ANN GA-ANN PSO-ANN 

N
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R
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10 0.81 2.56 10 0.63 1.54 10 0.78 2.90 

 0.77 2.81 20 0.52 2.30 30 0.88 1.97 

 0.52 2.92 40 0.84 2.45 60 0.73 2.88 

 0.61 3.67 60 0.61 4.89 90 0.65 3.61 

12 0.75 2.78 10 0.65 3.66 10 0.79 2.63 

 0.68 3.05 20 0.59 3.90 30 0.62 2.99 

 0.63 3.97 40 0.40 4.11 60 0.54 3.43 

 0.54 4.21 60 0.47 4.26 90 0.56 3.73 

14 0.63 4.16 10 0.46 2.29 10 0.63 3.41 

 0.66 4.23 20 0.48 3.45 30 0.59 3.66 

 0.51 4.66 40 0.40 3.98 60 0.65 4.05 

 0.44 3.54 60 0.39 3.67 90 0.60 4.11 

16 0.61 4.27 10 0.43 4.24 10 0.55 4.72 

 0.55 4.39 20 0.50 4.55 30 0.48 4.23 

 0.43 4.51 40 0.55 4.73 60 0.45 4.56 

 0.38 5.67 60 0.41 4.12 90 0.52 4.79 

 

 
Fig. 2. Comparison of the Measured and Predicted Fragmentation by all 

the models 
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Fig. 3. ANN Model Performance 

 

 
 
Fig. 4. GA-ANN Model Performance 

 

 
 

Fig. 5. PSO-ANN Model Performance  
 

III. SENSITIVITY ANALYSIS 

Sensitivity analysis is conducted using the cosine 

amplitude method [36]. It is used to determine the relative 

influence of the input parameters on the output. This can be 

calculated using equation (8) and the calculated results are 

plotted in Fig. 6 

 

 

 (8) 

 

where Xi and Xj are the input and output parameters 

respectively, and m represents the number of data samples.  

 

 
Legend: HD = Hole depth, D = Hole diameter, B = Burden, S = Spacing, St 

= Stemming, DBM = Distance from blast point, Pf = Powder factor and 

MC = Maximum charge per delay. 
 

Fig. 6. Strength of Relation Between Input and Output Parameters 

 

From Fig. 6, it can be inferred that hole depth is the most 

effective parameter on fragmentation while maximum 

charge per delay is the least influential parameter on 

fragmentation. 

IV. CONCLUSIONS 

 In this paper, a PSO-ANN model was developed for 
forecasting blast-induced rock fragmentation at Orapa 
Diamond Mine in Botswana. In this regard, blast design 
parameters as well as rock fragmentation of 50 blasting 
operations were used. For comparison purposes, ANN and 
GA-ANN models were also developed using the same 
dataset. The blast design parameters considered in this study 
for predicting rock fragmentation are burden, spacing, hole 
depth, hole diameter, the maximum charge per delay, powder 
factor, stemming length, and distance from the blast point to 
the monitoring point. It was observed that the PSO-ANN 
model is more efficient in predicting fragmentation than 
ANN and GA-ANN. The R2 and RMSE values obtained for 
the PSO-ANN model are 0.88 and 1.97 respectively, while 
the values for the least performed ANN model were 
computed as 0.38 and 5.67 respectively. The results of 
sensitivity analysis indicated that maximum charge per delay 
is the most influential parameter on rock fragmentation while 
hole depth is the least effective parameter on fragmentation. 
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