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Abstract
Understanding population exposure to precipitation-related extreme events is important for
effective climate change adaptation and mitigation measures. We analyze extreme precipitation
using indices (EPIs), including consecutive dry days (CDD), annual total precipitation, simple
daily intensity, and the number of extremely wet days, under the past and future climatic
conditions over East Africa. The exposure of the East African population to these extreme events at
1.5 ◦C and 2.0 ◦C global warming levels (GWLs) is analyzed based on Climate Model
Intercomparison Project phase 6 models. Exposure is computed from extremely wet and dry days
(R95p and CDD, respectively). Under both GWLs, EPIs (except CDD) averaged over East Africa
are projected to increase under the Shared Socio-economic Pathways (SSP)2-4.5 and SSP5-8.5
scenarios. The largest increase in wet events will likely occur in eastern and northern Kenya. The
results also reveal an intensification of precipitation extremes over Burundi, Rwanda, and some
parts of Uganda. However, small changes are expected over most parts of Kenya and Tanzania.
Examination of population exposure to EPIs shows that the most prominent and net intense
occurrence is over Burundi, Rwanda, and some parts of Uganda. In contrast, less change is noted to
occur over vast parts of Kenya and Tanzania. Meanwhile, limiting the warming target to less than
1.5 ◦C but not more than 2.0 ◦C has 37% (44.2%) and 92% (4%) less impact on the occurrence of
EPIs for R95p (CDD) under SSP2-4.5 (SSP5-8.5) scenarios, respectively. The study establishes that
future exposure is predominantly driven by changes in population compared to other factors such
as climate or concurrent changes in climate and population (the nonlinear interaction effect). For
instance, climate effects are anticipated to contribute∼10.6% (12.6%) of the total change in
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population exposure under 1.5 ◦C (2.0 ◦C) warming levels, while population and interaction
effects are expected to contribute∼77.4% (71.9%) and 12% (15.5%), respectively, under 1.5 ◦C
(2.0 ◦C) scenarios. Interestingly, the projected changes in regional exposure due to the interaction
effects under SSP2-4.5 are greater than the climate effect, while the reverse pattern is observed
under SSP5-8.5. For example, under SSP5-8.5, climate effects for 1.5 ◦C and 2.0 ◦C are larger (after
population effect) with∼3.8× 105 (15.7%) and∼6.1× 105 (17.5%) billion person-mm,
respectively. The high exposure noted over East Africa calls for a shift in policies to instate suitable
adaptation measures to cushion the already vulnerable population.

1. Introduction

The world is warming due to human-caused green-
house gas emissions, resulting in substantial regional
climate changes (IPCC 2021). The latest Intergov-
ernmental Panel on Climate Change (IPCC) report,
the 6th Assessment Report (AR6), revealed that
the occurrence of climate extremes is linked to the
observed increase in global mean surface air tem-
perature (IPCC 2021). The increase in temperature
intensifies surface evaporation that raises the water
content in the atmosphere and increases the probab-
ility of extreme precipitation events in some regions
(Pfahl et al 2017). Extreme precipitation is associated
with devastating socio-economic impacts on agricul-
ture, transport, and other climate-dependent sectors
(IPCC 2014). It is projected that the frequency and
intensity of extreme events will increase with the rise
in global mean surface temperature (GMST) (IPCC
2014, 2021,Westra et al 2014, Dosio and Fischer 2018,
Madakumbura et al 2019, Chen et al 2020, Lim Kan
Sian et al 2021).

Many studies have investigated the variability of
past and future climate extremes across Africa’s sub-
regions. For instance, Kendon et al (2019) projec-
ted an increase in mean and extreme precipitation
across most parts of Africa using the convection-
permitting (4.5 km grid-spacing) model. East Africa
(EA) is prone and vulnerable to the impacts of cli-
mate extremes. The livelihood of the region’s popu-
lation is mainly dependent on rain-fed agriculture.
Unfortunately, the rainfall over the region exhibits
high spatio-temporal variability. Recent studies have
reported a decrease in rainfall over the region since
1999 (Ongoma and Chen 2017, Ayugi et al 2018,
2021c, Mumo et al 2019, Ngoma et al 2021a), com-
pounding the impact of weather and climate haz-
ards on the fast-growing local population. Observed
and projected trends in precipitation or temperat-
ure extremes over EA region have been noted in
recent studies (i.e. Shongwe et al 2011, Omondi et al
2014, Cattaini et al 2018, Ayugi et al 2021a). For
instance, a study byCattani et al (2018) noted an over-
all increasing trend during the October to Decem-
ber (OND) season for PRCPTOT, R1mm, and SDII
over eastern EA, with the exception of Kenya. On
the other hand, Gebrechorkos et al (2019) remarked
that most precipitation indices showed increasing

and decreasing trends in Ethiopia, Kenya, and Tan-
zania, but no general pattern was observed. How-
ever, recent studies (Ongoma et al 2018, Ayugi et al
2021a) that examined the projected changes in rain-
fall over the region reported varying findings. To illus-
trate, Ongoma et al (2018) projected an increase in
very wet and extreme very wet days over the region
during themid and end of the 21st century. According
to related studies (Ogega et al 2020, Ayugi et al 2021a),
there is a projected increase in precipitation intensity
and heavy precipitation events over EA. Furthermore,
Dosio et al (2019, 2021) showed that both global
and regional models agree on a projected increase
in precipitation intensity and daily maximum pre-
cipitation amount over EA. The same findings were
recently reported by Luhunga and Songoro (2020) in
a study that focused on extreme climatic events over
the Lake Victoria region. These findings over EA are
supported by recent studies that employed regional
climatemodels from the coordinated regional climate
downscaling experiment framework (Nikulin et al
2018, Osima et al 2018, Dosio et al 2019, Ogega et al
2020, Ayugi et al 2020, Onyutha 2020, Tan et al 2020,
Tegegne et al 2021).

There is a need for studies to understand the
future changes in climate extremes and the associated
impacts, and very importantly, to quantify the implic-
ations of limiting global warming levels (GWLs) to
1.5 ◦C.Understanding the period of occurrence of the
extremes and the spatial coverage is important since
the two are necessary for quantifying future vulnerab-
ility and risk of climate disasters from which effective
climate change adaptation and mitigation measures
can be devised.

Globally, Liu et al (2020) projected that approx-
imately 30% of the global population (2.97 billion
people) will be exposed to precipitation extremes at
least 10 d yr−1 under the Representative Concentra-
tion Pathway (RCP)8.5-SSP3 scenario by the middle
of this century (2046–2065). The study observed the
need for more attention on Asia and Africa due to
their rapid population and gross domestic product
(GDP) growth, in agreement with Chen et al (2020),
since socio-economic effects play a significant role
in the changes in exposure at both global and con-
tinental scales. Chen et al (2020) projected a global
increase in population exposure of 2.3% following
an increase in surface air temperature to 2.0 ◦C.
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Zhao et al (2021) reported that extreme precipitation
events and population exposure are projected to
increase with warming levels over the Indus River
Basin. Marengo et al (2021) studied extreme rainfall
and hydro-geo-meteorological disaster risk in 1.5 ◦C,
2.0 ◦C, and 4.0 ◦C global warming scenarios: an ana-
lysis for Brazil. The projections showed that densely
populated areas are the most exposed to landslides
and floods. They further noted that the exposure
was projected to persist and aggravate for warming
above 2.0 ◦C. The observations by Marengo et al
(2021) agreed with the findings of Zhang et al (2018)
over monsoon regions where it was projected that
0.5 ◦C less warming would reduce the risk of popu-
lation exposure to once-in-20 year extreme precipita-
tion events by 22%–46%. Over China, Chen and Sun
(2020) and Wang et al (2020) projected an increase
in exposure of about 21.6% under the RCP4.5-SSP2
scenario by the end of the 21st century, despite a pro-
jected decline in population, thus stressing the need to
address GHG emissions as efforts to minimize expos-
ure to precipitation extremes. Similar findings were
reported by other researchers (Wang et al 2020, Ma
and Yuan 2021).

Across Africa, Weber et al (2020) projected an
increase in the population size exposed to climate
extremes under RCP8.5-SSP3 by 47-folds, compared
to the present day. The study further showed that the
interaction between climate and population growth
is the major factor influencing changes in exposure
at the end of the century. The aforementioned study
agreed with the findings of Rohat et al (2019) that
explored future exposure to dangerous heat, driven
by climatic and demographic changes across 173 large
African cities. The study noted an increase of 20–52
times, reaching 86–217 billion persons-days per year
by the 2090s, depending on the scenario (Rohat et al
2019).

The Climate Model Intercomparison Project
phase 6 (CMIP6; Eyring et al 2016) presents the pro-
spects for advancing our understanding of climate
change impacts resulting from compounded global
warming. Relevant stakeholders urgently need accur-
ate and reliable evidence that will enable them to deal
with pertinent issues such as those that pinpoint the
exact tendencies of historical changes, the magnitude
of the shift, future changes, and population exposure.
However, there is still insufficient information on the
projections of EA precipitation extremes under the
CMIP6 radiative forcings and their possible impact
on the local population. To the best of our know-
ledge, this study is the first to investigate the popula-
tion’s exposure to extreme precipitation at 1.5 ◦C and
2 ◦C warming levels across EA using CMIP6 mod-
els under shared socio-economic pathways (SSP2-4.5
and SSP5-8.5). These SSP-based scenarios consist of a
set of baseline scenarios, which describe future devel-
opments in the absence of climate change or new
climate policies beyond those in place today, as well

as mitigation scenarios that explore the implications
of climate change mitigation policies applied to the
baseline scenarios (O’Neill et al 2017). The outcome
of this research is important in understanding the
impacts of precipitation extremes. Thus, we aim to
address the following questions in this study: (a) to
what extent could the exposure to the precipitation
extremes over EA be avoided if the GWLs increase
is limited to 1.5◦ compared to other temperature
increases? And (b) what are the roles of climate and
population changes on the exposure?

2. Data methods

2.1. Data
The study utilizes historical and future precipitation
and surface air temperature datasets from 26 CMIP6
models (Eyring et al 2016). The datasets cover two
time slices: 1850–2014 and 2015–2100 for histor-
ical and future periods, respectively. The comparison
analysis is conducted relative to the baseline period
given in the AR6: 1995–2014. The SSP2-4.5 and SSP5-
8.5 scenarios that represent modest mitigation and
worst-case scenarios are utilized in the study. The
SSP2-4.5 scenario is considered a more plausible out-
come where modest mitigation implementation will
curb global warming to ∼2.5 ◦C warming relative to
the pre-industrial period by the end of the 21st cen-
tury (O’Neill et al 2017). On the other hand, SSP5-
8.5, also referred to as ‘business as usual’, represents
a fossil-fuel intensive future, void of stringent cli-
mate mitigation, leading to nearly 5 ◦C of warming
by the end of the century. The choice of the two radi-
ative forcing scenarios from the available five pos-
sible frameworks is informed based on the assump-
tion that differences in climate outcomes from the
different scenarios for the same global pathways are
likely small relative to varying regional climate fea-
tures or/and inter-model uncertainties (O’Neill et al
2017). The first realization ensemble is considered in
the study to allow equal comparable analysis, except
for a few GCMs having the first variation member
as r1i1p1f2 or r1i1p1f3. Table S1 (available online
at stacks.iop.org/ERL/17/044051/mmedia) shows the
first ensemble member of models employed in the
study, their country of origin, and native resolutions.

The estimation of population changes is estab-
lished using projections obtained from SSPs scenarios
(Jones and O’Neill 2016). The socio-economic data-
sets are sourced from the Inter-Sectoral ImpactModel
Intercomparsion Project framework (Warszawski
et al 2014). The SSPs for projected population are
available at a global scale on 50 × 50 km grid-
level. Given the varying grid resolution for models
and observed datasets, re-gridding is performed at
1◦ × 1◦ using a bilinear interpolation technique.
Jones (1999) recommends using bilinear interpola-
tion when re-gridding from coarser to finer resolu-
tion, while a conservative technique can be employed
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Table 1. Names, abbreviations, definitions, and units of climate indices used in the study.

Category Description Acronym Unit

Duration indices Consecutive dry days CDD day
Percentile-based index Extremely wet days R95p mm
Threshold-based index Heavy precipitation days R20mm days
Intensity-based index Wet-day intensity SDII mm d−1

Annual precipitation total Wet-day precipitation amount PRCPTOT mm

when re-gridding from finer to coarser resolution.
For consistency, this study combines the population
under SSP2 and SSP5 with CMIP6 models under
both scenarios to estimate population exposure cor-
respondingly. Liu et al (2020) employed a similar
approach.

2.2. Methods
2.2.1. Timings of the 1.5 ◦C and 2 ◦C warming targets
This study uses the warming thresholds of 1.5 ◦C and
2.0 ◦C relative to pre-industrial levels. It should be
noted that the 1.5 ◦C and 2 ◦C GWLs are extrac-
ted from the SSPs that focus on rapid (transient)
cases and not quasi-stabilized climate states (Rogelj
et al 2018), since there is a difference in climate
between rapid warming and stabilized climate states
(Rugenstein et al 2019, King et al 2020). The time
of the specified thresholds is defined as the first year
when the 21 year running mean of the GMST reaches
1.5 ◦C and 2 ◦C relative to preindustrial levels. To
determine a relatively stable climatology, two 10 year
periods around the specific threshold are compared
with the reference period based on annual mean tem-
perature datasets to assess the changes in EPIs as
used in previous studies (e.g. Shi et al 2018, Fu et al
2018, Wang et al 2020, Zhao et al 2021). All precipita-
tion indices are thus computed using a 20 year mean
period to determine the warming levels at 1.5 ◦C
and 2.0 ◦C. Table S2 shows the timing of 1.5 ◦C
and 2 ◦C global warming above pre-industrial levels
under SSP2-4.5 and SSP5-8.5.

2.2.2. Extreme precipitation indices and estimates of
avoided impacts
The study employs five precipitation indices defined
by the expert team on climate change detection and
indices. The summary of the indices used in this study
is presented in table 1. Each index represents dif-
ferent categories of precipitation occurrences, such
as precipitation intensity, duration, and frequency.
They include the duration of dry days (CDD), the
simple daily intensity (SDII), very heavy precipitation
(>20mm) days greater (R20mm), extremely wet days
(R95p), and annual total precipitation (PRCPTOT).
Zhang et al (2011) provide details on the climate
indices used for examining the impacts of climate
change. The reliability of the climate indices has been
affirmed in numerous studies across various regions
(Akinsanola et al 2020, 2021, Dike et al 2020, Zhu
and Yang 2020, Ayugi et al 2021b). To assess how the

precipitation indices differ between future and refer-
ence period, the climatological mean difference was
computed and the Student t-test for unequal vari-
ances was performed to evaluate their statistical signi-
ficance at the 95% confidence level. In order to ascer-
tain the possible scenario of avoiding the impacts of
higher warming at 2.0 ◦C above pre-industrial levels,
the avoided impacts (AI) caused by additional 0.5 ◦C
warming is computed from equation (1);

AI=

[(
GW2.0 −GW1.5

GW2.0

)]
× 100% (1)

where GW2.0 and GW1.5 denote the change in 1.5 ◦C
and 2.0 ◦C warming, respectively, relative to the
present baseline. A similar approach has been used in
other recent studies (e.g. Chen et al 2020, Wang et al
2020).

2.2.3. Exposure to extreme precipitation
In the present study, population exposure (PE) is
defined as the number of people exposed to R95p or
CDD(Jones et al 2015, Liu et al 2017, Coffel et al 2018,
Zhao et al 2021). The R95p (CDD) represents the pre-
valence of flood (drought) extremes that can affect the
region (Kilavi et al 2018, Ongoma et al 2018, Haile
et al 2020, Tan et al 2020, Wainwright et al 2020).
The PE for R95p is measured in person.mm while
CDD is computed in person.day. The study adopts
20 year averages for precipitation extremes and pop-
ulation to reduce the inter-annual variations (Chen
et al 2020). Population exposure to EPIs is estimated
by multiplying the annual frequency of extreme pre-
cipitation events (i.e. R95p and CDD) by the num-
ber of people (Jones et al 2015, Chen et al 2020).
Considering the two SSPs employed in CMIP6 mod-
els (SSP2-4.5 and SSP5-8.5) and the two SSPs pop-
ulations (SSP2 and SSP5), the study adopts a two
by two matrix of climate and population scenarios.
This framework presents the basis for computing the
expected EPIs related exposure and are identified as
SSP2-4.5|SSP2 and SSP5-8.5|SSP5. The multi-model
ensemble mean of 26 CMIP6 GCMs is used to com-
pute the spatial PE over the study region. The roles
of climate and population changes on the exposure
were also investigated as employed in previous stud-
ies (e.g. Liu et al 2017, Chen et al 2020, Iyakaremye
et al 2021, Ma and Yuan 2021). It is noteworthy to
mention that the EA population experiences diverse
risks, given that the magnitude of exposures is due
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Figure 1. East African population statistics. (a) Time series of population and (b) spatial distribution of population in million
during 1995–2100 obtained from ISIMIP2b.

to weak adaptive structures and other multi-faceted
challenges (Ahmadalipour et al 2019). Nevertheless,
this study focuses on climate risks andnot estimations
of the changes in other vulnerability and risk eval-
uations. The study employs a technique proposed
by Jones et al (2015) that examines the influence
of climate and population on exposure through the
decomposition of the change and exposure into three
effects: climate effect, population effect, and nonlin-
ear interaction effect. The exposure change (∆PE)
can be expressed mathematically using equation (2);

∆PE= Y1 × ∆X+X1 ×∆Y+∆X×∆Y (2)

where ∆PE is the total change in population expos-
ure, Y1 and X1 are population and precipitation
extremes, respectively, in the baseline period.∆Y and
∆X are the changes in population and precipitation
extremes at 1.5 ◦C and 2.0 ◦C warming levels relat-
ive to the baseline period. The term Y1 × ∆X is the
climate effect. The study ascertains the effect of cli-
mate on exposure by controlling the population in the
baseline period while allowing the climate to change
according to the projected precipitation extremes.
The X1 ×∆Y signifies population effect. In this seg-
ment, the population is allowed to vary according to
the predicted population, leaving climate unchanged
in the baseline period. ∆X × ∆Y specifies the inter-
action effect (i.e. the change in exposure that results
from simultaneous change in both climatic and pop-
ulation effects) and is computed under all the selected
SSPs × SSPs combinations as the difference between
total exposure and the sum of the climate and pop-
ulation effects. Detailed explanations and mathem-
atical equations can be obtained in related literature
that examined changes in exposure to heat extremes
or precipitation extremes at a global level or contin-
ental level (e.g. Liu et al 2017, Chen et al 2020,Ma and
Yuan 2021).

Figure 1(a) presents the projected area-averaged
population distribution under SSP2 and SSP5
scenarios, respectively, for 2015–2100, while
figure 1(b) shows the spatial area-averaged popu-
lation density over EA during 1995–2014. Currently,
the population density is mainly concentrated over
the western parts of EA, with countries like Burundi,
Rwanda, Uganda, and western Kenya having a greater
percentage of the population as compared to other
regions (figure 1(b)). The eastern side of Kenya and
parts of Tanzania have a sparse population density
distribution, except for the coastal belts.

3. Results and discussions

3.1. Projected changes in extremes precipitation in
1.5 ◦C/2.0 ◦Cwarmer climate
The changes in precipitation indices, except for CDD
and heavy precipitation days (R20mm), are expressed
as percentage changes relative to the reference period.
Indices such as PRCPTOT, SDII, CDD, and R20mm
are presented in the supplementarymaterial as figures
S3–S6, respectively. For demonstration, the results
of R95p are shown in figure 2. The region experi-
ences a pronounced increase in R95p by approxim-
ately 12% under SSP2-4.5 based on 1.5 ◦C global
warming. However, the increase in R95p under SSP5-
8.5 considering 2.0 ◦C global warming rises to about
18%. The increase inR95p under SSP2-4.5 scenario in
1.5 ◦C warming climates is approximately 8% smal-
ler than in 2.0 ◦C, and even 13% smaller in 0.5 ◦C
less warming between 1.5 ◦C and 2.0 ◦Cwarming cli-
mates. The areas with insignificant R95p change dif-
ferences are mainly observed in southern Kenya and
much of central and eastern Tanzania (figure 2(c)).
The maximum increase occurs in eastern Kenya, con-
sistent with the findings ofOsima et al (2018) that was
based on the CMIP5 dataset. The spatial distribution
of changes for SDII is similar to that of R95p,while the
change values in SDII are smaller than that of R95p
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Figure 2. Spatial pattern of projected changes (%) in R95p over EA relative to 1995–2014 for 1.5 ◦C and 2.0 ◦C warming. The
results are based on the (a) SSP2-4.5/1.5 ◦C; (b) SSP2-4.5/2.0 ◦C (d) SSP5-8.5/1.5 ◦C, and (e) SSP5-8.5/2.0 ◦C scenario. Subplots
along the right column (c), (f) show the spatial pattern of half-a-degree difference between SSP2-4.5/2.0 ◦C and SSP2-4.5/1.5 ◦C
(c); and between SSP5-8.5/2.0 ◦C and SSP5-8.5/1.5 ◦C (f). Dotted areas are significant at the 95% confidence level.

(figure S4). The area-mean increase in SDII across
EA is also lower under SSP5-8.5 than under SSP2-4.5
scenario in 1.5 ◦C warming climate (figure S4).

Spatial mean average of extreme precipitation
indices over EA, and the inter-model spread for
1.5 ◦C and 2.0 ◦C of global warming are presented in
figure 3, while spatial changes for CDD and R20mm
are shown in figures S5 and S6, respectively. Unlike
other extreme precipitation indices, CDD show a
lower change for SSP5-8.5 compared to SSP2-4.5
at 2.0 ◦C warming climates (figures 3(b) and S5).
Besides, large uncertainties can be seen from themod-
els for CDD across EA under the SSP5-8.5 scen-
ario, with model spreads ranging from −2 to 3 d
under the 1.5 ◦C warming target and −2 to 5 d
under the 2 ◦Cwarming target (figure 3). Spatial ana-
lysis shows significant changes along southern Tan-
zania, where a notable increase in dry days is pro-
jected to occur at 6–8 d for SSP2-4.5 and SSP5-8.5
scenarios, respectively (figures S5(a), (b), (d), (e)).
There is a remarkable difference in 0.5 ◦C less warm-
ing, with most parts of the region showing fewer
changes in CDD in both scenarios (figures S5(c)
and (f)). The magnitude of precipitation changes

in R20mm shows significant changes along western
sides and is less pronounced under SSP5-8.5/1.5 ◦C
as compared to SSP2-4.5/1.5 ◦C (figures S6(a) and
(d)). Nonetheless, under SSP2-4.5/2.0 ◦C and SSP5-
8.5/2.0 ◦C scenarios, the region will experience signi-
ficant changes in R20mm across most parts (figures
S6(b) and (d)). Most parts of the study area will
encounter a remarkable increase in R20mm under
SSP2-4.5/0.5 ◦C as compared to SSP5-8.5/0.5 ◦C
(figures S6(c) and (f)). Persistent, significant occur-
rence of R20mm is projected to occur over the west-
ern sides of the study area under the two scenarios for
0.5 ◦C less warming (figures S6(c) and (f)).

In general, for 1.5 ◦C and 2.0 ◦C of global
warming, the extreme precipitation indices averaged
over EA are projected to increase under both scen-
arios, except for CDD that demonstrate a decrease
in the northern-most parts of Kenya and Uganda.
The largest increases occurred in eastern and north-
ern Kenya for PRCPTOT, R95p, and SDII. On
the other hand, a notable increase for R20mm
occurs over the western sides of the study area
under SSP5-8.5/1.5 ◦C. Moreover, the projected
increase will intensify under higher degrees of global
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Figure 3. Projected changes in (a) PRCPTOT (%), R95p (%), SDII (%); (b) CDD (day) and R20mm (day) for spatial
area-avaraged over EA under 1.5 ◦C and 2.0 ◦C warming targets, relative to 1995–2014. The black bars indicate the uncertainty
ranges of the simulations. The filled bars show the ensemble mean, the middle line on the black bars shows the ensemble median,
and the error bars represent ranges of one SD (1σ) among models.

warming, despite the comparable inter-model spread
between different warming targets (not shown).
Under the SSP2-4.5 scenario, PRCPTOT will increase
by approximately 2% and 4% over EA for 1.5 ◦C and
2.0 ◦C of global warming, whereas R95p will signi-
ficantly increase by 12% and 18%, respectively. Pro-
jected changes under SSP5-8.5 for PRCPTOT and
R95p are 2% (10%) and 4% (20%) under 1.5 ◦C and
2.0 ◦C of GWLs. Future changes in PRCPTOT is pro-
jected to increase, which leads to a potential higher
increase in occurrences of R95p and the possibility
of flooding. The increase in SDII is slightly smal-
ler than that of PRCPTOT (figure 3(a)). The abso-
lute increase in R20mm is small under both scen-
arios (figure 3(b)). Meanwhile, limiting warming tar-
get to below 1.5 ◦C but not 2.0 ◦C will avoid 37%
(44.2%) and 92% (4%) impact occurrence of EPIs
of R95p (CDD) under SSP2-4.5 (SSP5-8.5) scenarios,
respectively (figure S7). These results indicate that
a warming climate drives the increasing tendency

of extreme precipitation indices with the exception
of CDD, implying an intensification of precipitation
processes in a warmer climate.

The findings of the present study are in agreement
with the recent studies that employed large ensemble
members from large ensembles of RCMs outputs to
project changes in extremes precipitation over EA
region (Cattani et al 2018, Osima et al 2018, Ogega
et al 2020, Dosio et al 2021). The aforementioned
studies noted an increase in precipitation extremes
over the study domain, which is mainly associated
with the alteration in the Hadley circulations and
thermodynamic impact linked to the Indian Ocean
dipole (IOD) (Hastenrath et al 2011, Endris et al 2016,
2019).

3.2. Population exposure to extreme precipitation
events as a result of additional warmings
We estimate the projected PE to precipitation
extremes based on projections obtained from SSP
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Figure 4. Spatial distribution of projected relative changes in population exposure to R95p (unit:×105 billion person mm yr−1)
compared to the recent climate (1995–2014) under SSP2-4.5 (a), (b) and SSP5-8.5 (d), (e) at different warming levels. Figures (c)
and (f) show the change in exposure from 1.5 ◦C to 2.0 ◦C warmer climates under SSP2-4.5 and SSP5-8.5, respectively. Dotted
areas are significant at the 95% confidence level.

scenarios (Jones and O’Neill 2016). Figure 4 show the
spatial variation distribution of projected changes in
population exposure to R95p relative to the baseline
period while figures 5 show the responses under two
global mean warming levels. Changes in PE to CDD
are presented in figures S8 and S9, respectively. With
the expected future warming, the PE under different
warming scenarios demonstrates the most promin-
ent net intense occurrence over Burundi, Rwanda,
and some parts of Uganda (figure 4). In contrast,
less change is noted to occur over vast parts of Kenya
and Tanzania. Comparable changes are well delin-
eated for different SSP scenarios, even though a sub-
stantial increase is expected under SSP2-4.5 scen-
arios and relatively lower exposure is projected under
1.5 ◦C as compared to 2.0 ◦C (figures 4(a), (b), (d),
(e)). The exposure to extremely wet precipitation
events under the SSP2-4.5 scenario at 1.5 ◦C warm-
ing levels is projected to occur less in most regions,
except for Burundi, Rwanda and around east Lake

Victoria basin (figures 4(a) and (b)). For example,
under the SSP2-4.5 scenario, the PE under 2.0 ◦C is
about 46 × 105 billion person mm, which declines
to 40 × 105 billion person mm under SSP5-8.5|SSP5
and 2.0 ◦C warming levels (figure 5). In compar-
ison, under 1.5 ◦C warming, exposure is reduced to
26 × 105 billion person mm (23 × 105 billion per-
son mm) under SSP2-4.5 (SSP5-8.5), respectively. In
contrast to 2.0 ◦C warming level, 0.5 ◦C less warm-
ing reveals noteworthy net changes for the expos-
ure to precipitation extremes (figures 4(c) and (f)).
The exposure is reduced to 19 × 105 billion per-
son mm (18 × 105 billion person mm) under SSP2-
4.5 (SSP5-8.5) scenarios (figure 5). The large pop-
ulation exposed to EPIs under SSP2-4.5 could be
attributed to the projected population growth, urb-
anization, and spatial patterns of development under
the SSP2 (middle of the road) scenario. The R95p
causes impacts such as water-borne disease out-
breaks, stressed sewage networks, landslides, wrecked
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Figure 5. Projected changes in population exposure under SSP2-4.5|SSP2 and SSP5-8.5|SSP5. Error bars denote the standard
deviation in the anticipated population exposure to R95p (unit:×105 billion person mm yr−1) compared to the recent climate
(1995–2014) under SSP2-4.5 and SSP5-8.5 at different warming levels. Blue bars indicate the effect of 0.5 ◦C less warming from
2.0 ◦C over spatial avarages of East African domain.

homes and buildings, damaged crops and affected
agricultural production, affected traffic conditions,
and most importantly, heavy and deadly flooding.
In contrast, the SSP5-8.5, which represents fossil-
fueled development, is characterized by a low fertil-
ity rate, high income, and sprawl pattern patterns,
thereby reducing the impact of PE to EPI. The find-
ings show that 0.5 ◦C less warming could lead to a
42.1% (43.1%) reduction in population exposed to
EPIs under SSP2-4.5 (SSP5-8.5) scenarios.

Risks related to climate change have been detec-
ted to significantly increase over recent decades and
are projected to worsen under future warmer con-
ditions (IPCC 2018, 2021). Estimating population
exposure to extreme precipitation events is key to
assessing the risk induced by extreme precipitation
and flooding. The evolution of exposure to extreme
precipitation with different warming levels signifies
the speed at which this hazard affects society. Over
the study region, the exposure of the population to
climate events remains a significant feature (Niang
et al 2014). Recent decades have witnessed an amp-
lification of wet extreme event incidences (Kilavi et al
2018, Tramblay et al 2020, Wainwright et al 2020),
mainly as a result of the positive phase of IOD (Cai

et al 2018, Endris et al 2019, Ngoma et al 2021b).
Such changes will directly impact the population that
remains vulnerable due to its low adaptive capacity
(Ahmadalipour et al 2019). The projected exposure
increase over the study domain has been found in
other regions across the globe (Chen et al 2020,Wang
et al 2020, Ma and Yuan 2021, Zhao et al 2021),
and will likely intensify due to the increase in global
warming and the proliferation of urban populations.
Lowering the warming by 0.5 ◦C in the future will
have a ripple effect in minimizing the adverse impact
of climate change, not only over the study region but
likewise at the global level (Rogelj et al 2018, Chen
et al 2020, Wang et al 2020). Overall, the exposure to
precipitation extreme events is expected to increase
substantially under a 2.0 ◦C warmer future as com-
pared to 1.5 ◦C. The present study agrees with existing
studies that project notable intensification of pluvial
occurrences over EA during the near and middle 21st
century (Nguvava et al 2019, Haile et al 2020, Tan et al
2020, Ayugi et al 2021a).

Finally, the study appraised the relative import-
ance of climate and population change under SSP2-
4.5 and SSP5-8.5 at 1.5 ◦C and 2.0 ◦C GWLs
(figure 6). Under the two scenarios explored in this
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Figure 6. EA aggregate projected changes in population exposure under (a) SSP2-4.5|SSP2 and (b) SSP5-8.5|SSP5. Error bars show
the standard deviation in the anticipated exposure due to climate, population, interaction, and total effect across the ensemble.

study (figures 6(a) and (b)), we found future expos-
ure to be predominantly driven by changes in pop-
ulation rather than climate and interaction factors.
Under SSP2-4.5, the projected change due to climate
(constant population) is nearly 2.3 (∼5.8) × 105 bil-
lion person mm at 1.5 ◦C (2.0 ◦C) warming levels.
However, population exposure (constant climate) is
∼21 (33.8× 105 billion personmm) at 1.5 ◦C(2.0 ◦C)
warming levels (figure 6(a)). In other words, cli-
mate effects are anticipated to contribute by ∼10.6%
(12.6%) of the total change in population exposure
under 1.5 ◦C (2.0 ◦C) warming levels, while pop-
ulation and interaction effects are expected to con-
tribute ∼77.4% (71.9%) and 12% (15.5%), respect-
ively, under 1.5 ◦C (2.0 ◦C) scenarios. For SSP5-8.5
scenario, the expected changes in exposure resulting
from climate effect is ∼3.8 (6.1 × 105 billion per-
son mm), i.e. 15.7% (17.5%) of the total change
at 1.5 ◦C (2.0 ◦C) warming levels, whereas popu-
lation account for 16.1 × 105 billion person mm
(75%) at 1.5 ◦C and 26 × 105 billion person mm
(66.2%) in 2.0 ◦C of the total change, respectively
(figure 6(b)). Interestingly, the projected changes in
regional exposure due to the interaction effects under
SSP2-4.5|SSP2 are bigger than the climate effect,
while the reverse pattern is observed under SSP5-
8.5|SSP5. For instance, under SSP2-4.5, the interac-
tion effect contributes about ∼3.1 × 105 billion per-
son mm (12%) and ∼7.0 × 105 billion person mm

(15.5%) of the total change in 1.5 ◦C and 2.0 ◦C
GWLs (figure 6(a)). Under the SSP5-8.5 scenario, cli-
mate effects are higher at ∼3.8 × 105 billion per-
sonmm (15.7%) of the total change in 1.5 ◦C and fur-
ther rises to ∼6.4 × 105 billion person mm (17.5%)
in 2.0 ◦C (figure 6(b)).

The projected population exposure over EA
shows similar varying patterns to those observed in
other regions or at a continental level. The contribut-
ing factors affecting most regions and at the contin-
ental level vary from either population effects, GDP,
interactive effects, or climate effects (Winsemius et al
2016, Liu et al 2020, Chen et al 2020). For instance,
over Europe, the climate effect has a strong influ-
ence due to low population growth, while regions of
Asia, North/SouthAmerica, andOceania have a dom-
inant climate effect as compared to the interaction
effect (Liu et al 2020, Chen et al 2020). The present
study agrees with recent research that noted the chro-
nology of contributing factors in Africa, with popu-
lation accounting for >75%, followed by interactive
change and climate change having the least contri-
bution (Liu et al 2020). The aforementioned study
listed 10 countries with the highest population expos-
ure, accounting for >53% of global exposure. Inter-
estingly, among the listed nations, three countries
(including Rwanda, Burundi, and Uganda) are situ-
ated in East Africa. Other countries include: Nigeria,
the Philippines, Bangladesh, Haiti, the Netherlands,
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Luxemburg, and Belgium. Similar findings have been
observed in other studies that established the impact
of climate extremes on society’s well-being (Cook et al
2015, Harrington and Otto 2018).

Given the importance of the interaction and pop-
ulation effects, clearly, any policy response designed
to reduce population exposure to these extreme
events needs to focus at the country level by con-
sidering their socioeconomic developments (popula-
tion growth), and climate mitigation efforts. As a way
forward, the high exposure noted over EA calls for a
shift in policies with an adaptative measure to be put
in place to cushion the effect on the exposed popu-
lation. Actions such as relocations to high elevation
ground, climate smart agriculture, and water harvest-
ing will prove necessary as a first practical step to
minimize population and socio-economic losses due
to projected increases in precipitation extremes and
high population exposure noted (Schlenker et al 2013,
Nsubuga and Rautenbach 2017).

4. Summary and conclusions

We first examined the capability of CMIP6 GCMs
to simulate current EPIs across EA. We then quanti-
fied the climate change impacts on five EPIs, includ-
ing CDD, SDII, R20 mm, R95p, and PRCPTOT, and
investigated the effects of climate and population
on total exposure. The findings suggest that most
models generally demonstrate the ability to capture
the observed EPIs. Projected changes in precipitation
extremes show that all the considered EPIs (except
CDD) averaged over EA are projected to increase at
both 1.5 ◦C and 2.0 ◦C GWLs. Nevertheless, large
uncertainties were notably exhibited by the models
in projecting CDD across EA, especially under the
SSP5-8.5 scenario. Meanwhile, limiting the warm-
ing target to below 1.5 ◦C but not 2.0 ◦C will avoid
37% (44.2%) and 92% (4%) impacts on the occur-
rence of EPIs of R95p (CDD) under SSP2-4.5 (SSP5-
8.5) scenarios, respectively. These results indicate that
a warming climate drives the increasing tendency
of extreme precipitation indices with the exception
of CDD, implying an intensification of precipita-
tion processes in a warmer climate. As for expos-
ure of population to EPIs, population change shows
more influence than climate and interaction factors in
expediting the intensification of future exposure. The
findings show an increased intensification of popula-
tion exposure that corroborates the need to urgently
limit further GHG emissions and strive to realize
a carbon-free economy. While previous studies (i.e.
Rowell et al 2015, Wainwright et al 2020) noted the
challenges of GCMs in projecting mean and extreme
precipitation events over EA, we deem the results on
regional exposure to EPIs vital for regional planning
and development. One such example is by consid-
ering climate finance decision-making. Finally, the
high exposure noted over EA calls for a dire need to

have amore considered policy than a stable climate so
as to instate suitable adaptation measures to cushion
the already vulnerable population. Future studiesmay
consider population patterns in urban–rural areas
and population demographic and socio-economic
characteristics (such as age, gender, income, or educa-
tional level), which influence extreme precipitation-
related deaths or injuries. Moreover, socio-economic
development enhances social awareness and capab-
ilities to reduce disaster vulnerability in the future.
Hence, the estimated exposed population to EPIs in
this study may not be the actual view, as it does not
consider the country’s level of adaptation mechan-
isms to extreme precipitation. Overall, the climate
effects depends on the global emissions of greenhouse
gases, and therefore can only to a limited extent be
affected by the measure of the East African coun-
tries. On the other hand, the reduction of popula-
tion growth mainly depends on domestic decisions.
China has been the country exercising themost effect-
ive population policy in the world, so that their exper-
iences could be very useful in Africa as well.
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