
Appl. Set-Valued Anal. Optim. 3 (2021), No. 2, pp. 193-202
Available online at http://asvao.biemdas.com
https://doi.org/10.23952/asvao.3.2021.2.04

CONVERGENCE THEOREMS FOR A FIXED POINT OF η-DEMIMETRIC
MAPPINGS IN BANACH SPACES

NASEER SHAHZAD1,∗, HABTU ZEGEYE2

1Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Mathematics and Statistical Sciences,

Botswana International University of Science and Technology, Palapye, Botswana

Abstract. The purpose of this paper is to propose and investigate an algorithm for solving a fixed point
of η-demimetric mappings. We establish the strong convergence of the proposed algorithm under some
mild conditions in Banach spaces. We apply these results to obtain new strong convergence theorems
which are connected with the η-demimetric fixed point problems in Hilber/Banach spaces.
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1. INTRODUCTION

Let C be a nonempty subset of a real smooth Banach space E with its dual E∗. Let η ∈
(−∞,1) and p ∈ (1,∞). A mapping T : C→ E with F(T ) 6= /0 is called η-demimetric (see,
[1, 2]) if, for any x ∈C and x∗ ∈ F(T ), there exists jp

E(x−T x) ∈ Jp
E(x−T x) such that

〈x− x∗, jp
E(x−T x)〉 ≥ 1−η

2
||x−T x||p, (1.1)

where Jp
E is the generalized duality mapping from E into 2E∗ defined by

Jp
E (x) := { f ∈ E∗ : 〈x, f 〉= ‖x‖p ,‖ f‖= ‖x‖p−1}. (1.2)

We note that, in (1.2), if p = 2, then J2
E = JE is called the normalized duality mapping. It is

well-known (see, for example, ([3, 4]) that if E is smooth, then Jp
E is one-to-one and single

valued and it also satisfies
Jp

E (x) = ‖x‖
p−2 JE(x), x 6= 0.

Furthermore, if E is uniformly smooth , then Jp
E is uniformly continuous on bounded subsets of

E; if E is reflexive, strictly convex and smooth Banach space, then Jq
E∗ : E∗→ 2E is one-to-one,

surjective, and it is the duality mapping from E∗ into E. Thus, Jp
EJq

E∗ = IE∗ and Jq
E∗J

p
E = IE ,

where q is a real number satisfying 1
p +

1
q = 1 (see, e.g., [5, 6]). We also note that if E := H, a

real Hilbert space, then JH = I, where I is the identity mapping.
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We remark that inequality (1.1) is equivalent to

〈x− x∗,JE(x−T x)〉 ≥ 1−η

2
||x−T x||2,

for all x ∈C and x∗ ∈ F(T ).
Let E be a reflexive, strictly convex, and smooth Banach space and let A : E → 2E∗ be a

maximal monotone mapping with A−1(0) 6= /0. Then, for each x ∈ E and r > 0, consider the
mapping defined by JA

r x := {z ∈ E : 0 ∈ J(z− x)+ rAz} (equivalently, JA
r = (I +(Jp

E)
−1A)−1 :

E → E∗), which is point-to-point and nonexpansive mapping (see, for example, Proposition
57.5(b) of [7]). Then, the resolvent JA

r of A with A−1(0) nonempty is (−1)-demimetric (see,
for example, [8]). Let C be a nonempty, closed and convex subset of a strictly convex, reflexive
and smooth real Banach space E. Let PC be the metric projection of E onto C. Then PC is
(−1)-demimetric (see [9]). Other examples of η-demimetric mappings in Hilbert spaces are
those mappings in a class of demicontractive mappings. A mapping T : C→ H, where C is a
subset of a Hilbert space H, is called k-demicontractive if there exists k ∈ [0,1) such that

||T x−T x∗||2 ≤ ||x− x∗||2 + k||x−T x||2,

for each x ∈C and x∗ ∈ F(T ). We note that the class of k-demicontractive mappings contains
the class of quasi-nonexpansive mappings, that is, F(T ) 6= /0 and

||T x−T x∗|| ≤ ||x− x∗||, for all x ∈C,x∗ ∈ F(T ).

Several authors have studied various methods for fixed points of k-demicontractive mappings
(see, for example, [10, 11]). It was shown in [12] that k-demicontractive mappings are k-
demimetric.

In 2016, Hojo and Takahashi [13] used the shrinking projection method to approximate fixed
points of η-demimetric mappings in Banach spaces. Indeed, they proved the following result.

Theorem 1.1. Let C be a nonempty, closed and convex subset of a uniformly convex and smooth
Banach space E. Let η be in (−∞,1). Let T : C → C be an η-demimetric and demiclosed
mapping with with F(T ) 6= /0. Let x1 ∈C, C1 =C and {xn} be a sequence generated by

zn = αnxn +(1−αn)T xn,
Cn = {z ∈C : 2〈xn− z,JE(xn− zn)〉 ≥ (1−η)||xn− zn||2},
Qn = {z ∈C : 〈xn− z,JE(x1− xn)〉 ≥ 0},
xn+1 = PCn∩Qnx1,n≥ 1,

(1.3)

where 0 ≤ αn ≤ a < 1 for some a ∈ R. Then, the sequence {xn} converges strongly to a point
ẑ0 ∈ F(T ), where ẑ0 = PF(T )x1.

We observe that Algorithms (1.3) requires to calculate Cn and Qn, which are not easy at each
iterative step. This leads us to the following question.
Question: Can one obtain an iterative scheme which converges strongly to a fixed point of an
η-demimetric mapping and does not involve the calculation of Cn and Qn for each iterative step
in Banach spaces?

Motivated and inspired by Hojo and Takahashi [13], we study a new iterative scheme for fixed
points of η-demimetric mappings. We obtain strong convergence of the scheme under some
mild conditions in the setting of Banach spaces. Our results provide an affirmative answers to
the above question.
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2. PRELIMINARIES

A real Banach space E is said to be smooth if limt→0
||x+ty||−||x||

t exists for each x,y∈ S(E) :=
{x ∈ E : ||x||= 1}. A space E is called q-uniformly smooth if there exist a constant c > 0 and a
real number q ∈ (1,∞) such that ρE(τ)≤ cτq, where ρE : [0,∞)→ [0,∞) is defined by

ρE(τ) := sup
{‖x+ y‖+‖x− y‖

2
−1 : ‖x‖= 1,‖y‖= τ

}
.

E is called uniformly smooth if limτ→0
ρE(τ)

τ
= 0. A Banach space E is called uniformly convex

if and only if σ(ε)> 0, for every ε ∈ (0,2], where σ : (0,2]→ [0,1] is defined by

σ(ε) = inf
{

1−||x+ y
2
|| : ||x||= ||y||= 1;ε = ||x− y||

}
.

Let p > 0. Then, E is said to be p−uniformly convex if there exists a constant c > 0 such that
σ(ε)≥ cε p, for all ε ∈ (0,2].

We remark that E is uniformly smooth if and only if E∗ is uniformly convex (see [14]). We
also know that E is q-uniformly smooth if and only if its dual E∗ is p-uniformly convex. The
examples of such spaces are the Lp, lp and W p

m spaces for 1 < p < ∞ (see, for example, [15]),
where

Lp (lp) or W p
m is

{
2-uniformly smooth and p-uniformly convex if 2≤ p < ∞;
2-uniformly convex and p-uniformly smooth if 1 < p < 2.

The following result was proved by Xu [15] in q-uniformly smooth spaces.

Lemma 2.1. Let x,y ∈ E. If E is q-uniformly smooth, then there is a cq > 0 such that

||x+ y||q ≤ ||x||q +q〈y,Jq
E(x)〉+ cq||y||q. (2.1)

Let 1 < q, p < ∞ with 1
p +

1
q = 1. The Bregman distance with power p is defined by

φp(x,y) =
1
q
||x||p−〈Jp

Ex,y〉+ 1
p
||y||p. (2.2)

Lemma 2.2. [16] Let E be a real smooth and uniformly convex Banach space and let {xn} and
{yn} be two sequences of E. If either {xn} or {yn} is bounded and φp(xn,yn)→ 0 as n→ ∞,
then xn− yn→ 0 as n→ ∞.

Let C be a nonempty, closed and convex subset of a smooth and strictly convex real Banach
space E. The Bregman projection is the unique minimizer of the Bregman distance [17] given
by

ΠCx = argmin
y∈C

φp(x,y),x ∈ E.

If E = H, a Hilbert space, then the Bregman projection ΠC reduces to the metric projection PC
from H onto C.

We remark that the Bregman projection has the following properties (see [3]):

〈Jp
E(x)− Jp

E(ΠCx),z−ΠCx〉 ≤ 0, ∀z,∈C, (2.3)

and

φp(ΠCx,z)≤ φp(x,z)−φp(x,ΠCx), ∀z ∈C. (2.4)
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Let Vp : E∗×E→ [0,+∞) be defined by

Vp(x̄,x) =
1
q
||x̄||q−〈x̄,x〉+ 1

p
||x||p,∀x ∈ E, x̄ ∈ E∗.

Then, we observe that Vp is characterized by

Vp(x̄,x) = φp((J
p
E)
−1(x̄),x), (2.5)

for all x ∈ E and x̄ ∈ E∗. Vp is convex in the first variable, that is, for all z ∈ E,

φp

(
(Jp

E)
−1
( N

∑
i=1

tiJ
p
E(xi)

)
,z
)
≤

N

∑
i=1

tiφp(xi,z), (2.6)

where {xi}N
i=1 ⊂ E and {ti}N

i=1 ⊂ (0,1) with
N
∑

i=1
ti = 1 (see, e.g., [18]). Moreover, by the subd-

ifferential inequality, we have

Vp(x̄,x)≤Vp(x̄+ ȳ,x)−〈ȳ,(Jp
E)
−1(x̄)− x〉, (2.7)

for all x ∈ E and x̄, ȳ ∈ E∗ (see also [19, 20]).
We also need the following lemmas.

Lemma 2.3. [21] Let {an} be a sequence of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+1 for all i∈N. Then there exists an increasing sequence {mk} ⊂
N such that mk→∞ and the following properties are satisfied by all (sufficiently large) numbers
k ∈ N: amk ≤ amk+1 and ak ≤ amk+1. In fact, mk is the largest number n in the set {1,2, ...,k}
such that the condition an ≤ an+1 holds.

Lemma 2.4. [22] Let {an} be a sequence of nonnegative real numbers satisfying the following
relation: an+1 ≤ (1−αn)an +αnδn, n ≥ n0, where {αn} ⊂ (0,1) and {δn} ⊂ R satisfying the
following conditions: ∑

∞
n=1 αn = ∞, and limsupn→∞ δn ≤ 0. Then, limn→∞ an = 0.

Lemma 2.5. [2] Let C be a nonempty, closed and convex subset of a smooth and strictly convex
Banach space E. Let η be in (−∞,1). Let T be an η-demimetric mapping of C into E. Then
F(T ) is closed and convex

3. MAIN RESULTS

Let C be a subset of a real Banach space E, and let T : C→ E be a mapping. The mapping
(I−T ) is called demiclosed at zero if for a sequence {xn} ⊂C such that xn ⇀ x and xn−T xn→
0, then x = T x. Throughout this section, unless otherwise specified, we assume that p > 1 and
q > 1 satisfying 1

p +
1
q = 1, and {αn} ⊂ (0,e)⊂ (0,1) satisfying limn→∞ αn = 0, ∑

∞
n=1 αn = ∞.

We now in a position to prove our main theorem.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a p-uniformly convex and
smooth real Banach space E. Let T : C→ E be an η-demimetric mapping with F(T ) 6= /0. For
arbitrary x0,u ∈C, define an iterative sequence by{

yn = (Jp
E)
−1[Jp

Exn− tnJp
E(xn−T xn)

]
,

xn+1 = ΠC(J
p
E)
−1[αnJp

Eu+(1−αn)J
p
Eyn
]
,

(3.1)

where 0 < δ ≤ tn ≤ γ <
( (1−η)q

2cq

) 1
q−1 , for all n≥ 0 and cq is the constant in (2.1). Then {xn} is

bounded.
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Proof. Fix x∗ ∈ F(T ). From (2.2), (3.1) and Lemma 2.1, we obtain

φp(yn,x∗) = φp

(
(Jp

E)
−1[Jp

Exn− tnJp
E(xn−T xn)

]
,x∗
)

=
1
q
||Jp

Exn− tnJp
E(xn−T xn)||q−〈Jp

Exn,x∗〉+ tn〈Jp
E(xn−T xn),x∗〉+

1
p
||x∗||p

≤ 1
q

(
||Jp

Exn||q−qtn〈Jp
E(xn−T xn),xn〉+ tq

n cq||Jp
E(xn−T xn)||q

)
−〈Jp

Exn,x∗〉

+ tn〈Jp
E(xn−T xn),x∗〉+

1
p
||x∗||p

=
1
q
||xn||p− tn〈Jp

E(xn−T xn),xn− x∗〉+
tq
n cq

q
||Jp

E(xn−T xn)||q−〈Jp
Exn,x∗〉+

1
p
||x∗||p

≤ 1
q
||xn||p− tn

(1−η)

2
||xn−T xn||p +

tq
n cq

q
||xn−T xn||p−〈Jp

Exn,x∗〉+
1
p
||x∗||p,

which implies that

φp(yn,x∗) ≤ φp(xn,x∗)− tn
((1−η)

2
− tq−1

n
cq

q

)
||xn−T xn||p. (3.2)

Now, from (3.1) and (3.2), we derive

φp(xn+1,x∗) ≤ αnφp(u,x∗)+(1−αn)φp(yn,x∗)

≤ αnφp(u,x∗)+(1−αn)φp(xn,x∗)

−(1−αn)tn
((1−η)

2
− tq−1

n
cq

q

)
||(I−T )xn||p.

Since
(1−η)

2
− tq−1

n
cq

q
> 0,

it follows that

φp(xn+1,y∗)≤+αnφp(u,x∗)+(1−αn)φp(xn,x∗).

Now, we show that {φp(xn,x∗)} is a bounded sequence. It suffices to show that φp(xn,x∗)≤M
for all n ≥ 1, where M := max{φp(u,x∗),φp(x0,x∗)}. Note that if n = 0, then φp(x0,x∗) ≤M.
Assume that φp(xn,x∗)≤M, for n≥ 1. Then

φp(xn+1,x∗)≤ (1−αn)φp(xn,x∗)+αnφp(u,x∗)≤M.

This shows that {φ(xn,x∗)} is bounded and hence {xn} and {yn} are also bounded. �

Theorem 3.2. Let C be a nonempty, closed and convex subset of a p-uniformly convex and
smooth real Banach space E. Let η be in (−∞,1). Let T : C→ E be an η-demimetric mapping.
Assume that I − T is demiclosed at zero and F(T ) 6= /0. For arbitrary x0,u ∈ C, define an
iterative sequence {xn} by (3.1). Then, {xn} converges strongly to x̂ = ΠF(T )u.

Proof. From Theorem 3.1, we know that {xn} is bounded. Take x̂ = ΠF(T )u. Using (2.3), we
get

〈Jp
Eu− Jp

E x̂,z− x̂〉 ≤ 0,∀z ∈ F(T ). (3.3)
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Now, from (2.5), (2.6), (2.7) and (3.1), we obtain

φp(xn+1, x̂)≤ φp
(
(Jp

E)
−1(αnJp

Eu+(1−αn)J
p
Eyn), x̂

)
=Vp

(
αnJp

Eu+(1−αn)J
p
Eyn, x̂

)
=Vp

(
αnJp

Eu+(1−αn)J
p
Eyn−αn(J

p
Eu− Jp

E x̂), x̂
)

+ 〈αn(J
p
Eu− Jp

E x̂),xn+1− x̂〉
=Vp

(
αnJp

E x̂+(1−αn)J
p
Eyn, x̂

)
+αn〈Jp

Eu− Jp
E x̂,xn+1− x̂〉

= φp
(
(Jp

E)
−1(αnJp

E x̂+(1−αn)J
p
Eyn), x̂

)
+αn〈Jp

Eu− Jp
E x̂,xn+1− x̂〉

≤ αnφp(x̂, x̂)+(1−αn)φp(yn, x̂)+αn〈Jp
Eu− Jp

E x̂,xn+1− x̂〉
= (1−αn)φp(yn, x̂)+αn〈Jp

Eu− Jp
E x̂,xn+1− x̂〉,

≤ (1−αn)φp(xn, x̂)+αn〈Jp
Eu− Jp

E x̂,xn+1− x̂〉

− (1−αn)tn
((1−η)

2
− tq−1

n
cq

q

)
||xn−T xn||p,

and hence

φp(xn+1, x̂) ≤ (1−αn)φp(xn, x̂)+αn〈Jp
Eu− Jp

E x̂,xn− x̂〉
+αn||Jp

Eu− Jp
E x̂||.||xn+1− xn||

−(1−αn)tn
((1−η)

2
− tq−1

n
cq

q

)
||(I−T )xn||p. (3.4)

Therefore,

φp(xn+1, x̂) ≤ (1−αn)φp(xn, x̂)+αn〈Jp
Eu− Jp

E x̂,xn− x̂〉
+αn||Jp

Eu− Jp
E x̂||.||xn+1− xn||. (3.5)

Next, we show that the sequence {φp(xn, x̂)} converges strongly to zero. For this, we consider
two possible cases on {φp(xn, x̂)}.
Case 1. Assume that there exists n0 ∈ N such that the sequence of real numbers {φp(xn, x̂)} is
decreasing for all n ≥ n0. It then follows that {φp(xn, x̂)} is convergent. Since the sequences
{xn} is bounded, we conclude from (3.4) and the fact that αn→ 0 that

lim
n→∞
||xn−T xn||= 0.

It follows from (3.1) that

||Jp
Eyn− Jp

Exn||= tn||xn−T xn||p−1→ 0,

which together with the fact that (Jp
E)
−1 is uniformly continuous yields that

lim
n→∞
||yn− xn||= 0. (3.6)

Furthermore, from (3.1) and the fact that αn→ 0 as n→ ∞, we have

φp(xn+1,yn) ≤ φp((J
p
E)
−1(αnJp

Eu+(1−αn)J
p
Eyn),yn)

≤ αnφp(u,yn)+(1−αn)φ(yn,yn)→ 0 as n→ ∞.
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By using Lemma 2.2, we have xn+1− yn→ 0 as n→ ∞. Using (3.6) yields

lim
n→∞
||xn+1− xn||= 0. (3.7)

Since E is uniformly convex, which implies that it is reflexive, and {xn} is bounded in E, we
can find a subsequence {xni} of {xn}, which converges weakly to x̄ and

limsup
n→∞

〈Jp
Eu− Jp

E x̂,xn− x̂〉= lim
j→∞
〈Jp

Eu− Jp
E x̂,xn j − x̂〉. (3.8)

Furthermore, the fact that I− T is demiclosed at zero yields that x̄ ∈ F(T ). Therefore, from
(3.3) and (3.8), we obtain

limsup
n→∞

〈Jp
Eu− Jp

E x̂,xn− x̂〉 = lim
j→∞
〈xn j − x̂,Jp

Eu− Jp
E x̂〉

= 〈Jp
Eu− Jp

E x̂, x̄− x̂〉 ≤ 0. (3.9)

In view of (3.5), (3.7), (3.9) and Lemma 2.4, we conclude that φp(xn, x̂) converges strongly to
zero as n→ ∞. Therefore, {xn} converges strongly to x̂ = ΠF(T )u.

Case 2. Assume that there exists a subsequence {φp(xni, x̂)} of {φp(xn, x̂)} such that φp(xni, x̂)<
φp(xni+1, x̂) for all i ≥ 0. In view of Lemma 2.3, we can define a nondecreasing sequence
{mk} ⊂ N such that mk→ ∞ as k→ ∞ and φ(xmk , x̂)≤ φ(xmk+1, x̂), and φ(xk, x̂)≤ φ(xmk+1, x̂)
for all k ∈ N. Since the sequences {xmk} is bounded, it follows from (3.4) and the methods in
Case 1 that ||xmk−T xmk || → 0, ‖xmk+1− xmk‖→ 0 as k→ ∞ and

limsup
k→∞

〈Jp
Eu− Jp

E x̂,xmk− x̂〉 ≤ 0.

Finally, making use of φ(xmk , x̂)≤ φp(xmk+1, x̂) for all k ∈N, and rearranging terms in (3.5), we
derive

αmkφ(xmk , x̂)≤ φp(xmk , x̂)−φp(xmk+1, x̂)+αmk〈J
p
Eu− Jp

E x̂,xmk− x̂)〉
+αmk ||J

p
Eu− Jp

E x̂||× ||xmk+1− xmk ||.
Dividing by αmk and passing to the limit as k → ∞ in the resulting inequality, we obtain
φp(xmk , x̂)→ 0. Hence, φp(xmk+1, x̂)→ 0 as k→ ∞. Since φp(xk, x̂) ≤ φp(xmk+1, x̂), we find
that φp(xk, x̂)→ 0 as k→ ∞ and hence xk → x̂ as k→ ∞. Therefore, we have shown in both
cases that the sequence {xn} generated by (3.1) converges strongly to x̂ ∈ F(T ). This completes
the proof of this theorem. �

If, in Theorem 3.2, C = E, then ΠC is reduced to the identity mapping on E. We get the
following corollary.

Corollary 3.1. Let E be a p-uniformly convex and smooth real Banach space. Let T : E → E
be an η-demimetric mapping. Assume that I− T is demiclosed at zero and F(T ) 6= /0. For
arbitrary x0,u ∈ E, define an iterative sequence by{

yn = (Jp
E)
−1[Jp

Exn− tnJp
E(xn−T xn)

]
,

xn+1 = (Jp
E)
−1[αnJp

Eu+(1−αn)J
p
Eyn
]
,

where 0 < δ ≤ tn ≤ γ <
( (1−η)q

2cq

) 1
q−1 , for all n ≥ 0 and cq is the constant in (2.1). Then, {xn}

converges strongly to the minimum norm x̂ of F(T ).

If, in Theorem 3.2, E =H, a real Hilbert spaces, then p= 2. Hence Jp
E is the identity mapping

and cq = 1. Thus, we get the following corollary.
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Corollary 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let η

be in (−∞,1). Let T : C→H be an η-demimetric mapping. Assume that I−T is demiclosed at
zero and F(T ) 6= /0. For arbitrary x0,u ∈C, define an iterative sequence {xn} by{

yn = xn− tn(xn−T xn),
xn+1 = PC

[
αnu+(1−αn)yn

]
,n≥ 1,

where 0 < δ ≤ tn ≤ γ < (1−η), for all n ≥ 0. Then, {xn} converges strongly to an element
x̂ = PF(T )(u).

If, in Corollary 3.2, T is a self-mapping, then PC is reduced to the identity mapping on C.
Hence, we get the following corollary.

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let η

be in (−∞,1). Let T : C→C be an η-demimetric mapping. Assume that I−T is demiclosed at
zero and F(T ) 6= /0. For arbitrary x0,u ∈C, define an iterative sequence {xn} by{

yn = xn− tn(xn−T xn),
xn+1 = αnu+(1−αn)yn,n≥ 1,

where 0 < δ ≤ tn ≤ γ < (1−η), for all n ≥ 0. Then, {xn} converges strongly to an element
x̂ = PF(T )(u).

4. APPLICATIONS

In this section, we present some applications of our results in the context of convex and
nonlinear analysis problems.

The following lemmas are needed.

Lemma 4.1. [23] Let H be a real Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T : C→ H be a k-strictly pseudo-contraction. If xn ⇀ z and xn−T xn→ 0 as
n→ ∞, then z ∈ F(T ), that is, I−T is demiclosed at zero.

Lemma 4.2. [24] Let H be a real Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T : C→ C be generalized hybrid mapping. If xn ⇀ z and xn− T xn → 0 as
n→ ∞, then z ∈ F(T ).

Lemma 4.3. [9] Let C be a nonempty, closed and convex subsets of a uniformly smooth and
strictly convex Banach space E. Let PC be the metric projection from E onto C. If xn ⇀ z and
xn−PCxn→ 0 as n→ ∞, then z ∈ F(PC), i.e., I−PC is demiclosed at zero.

Theorem 4.1. Let C be nonempty, closed and convex subset of a real Hilbert space H. Let
T : C→ C be a k-strict pseudocontractive mapping with F(T ) 6= /0. For arbitrary x0,u ∈ C,
define an iterative sequence {xn} by{

yn = xn− tn(xn−T xn),
xn+1 = αnu+(1−αn)yn,n≥ 1,

(4.1)

where 0 < δ ≤ tn ≤ γ < (1− k), for all n≥ 0. Then, {xn} converges strongly to x̂ = PF(T )(u).

Proof. Note that T is k-demimetric and I−T is demiclosed at zero. From Corollary 3.3, we get
the desired conclusion immediately. �
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If, in Corollary 3.3, T is an (α,β )-generalized hybrid mapping, then we have the following
result.

Theorem 4.2. Let C be nonempty, closed and convex subset of a real Hilbert space H. Let
T : C→ C be an (α,β ) generalized hybrid mapping with F(T ) 6= /0. For arbitrary x0,u ∈ C,
define an iterative sequence {xn} by{

yn = xn− tn(xn−T xn),
xn+1 = αnu+(1−αn)yn,n≥ 1,

(4.2)

where 0 < δ ≤ tn ≤ γ < 1, for all n≥ 0. Then, {xn} converges strongly to x̂ = PF(T )(u).

Proof. Note that T is 0-demimetric. From Lemma 4.2, we have that I−T is demiclosed. Using
Corollary 3.3, we have the desired conclusion immediately. �

If, in Corollary 3.1, T = PC, where C closed and convex subsets of a p-uniformly convex
Banach space E, then we get the following result.

Theorem 4.3. Let C be nonempty, closed and convex subset of a real p-uniformly convex Ba-
nach space E. Let PC : E → C be the projection mapping. For arbitrary x0,u ∈ E, define an
iterative sequence by {

yn = (Jp
E)
−1[Jp

Exn− tnJp
E(xn−PCxn)

]
,

xn+1 = (Jp
E)
−1[αnJp

Eu+(1−αn)J
p
Eyn
]
,

(4.3)

where 0 < δ ≤ tn ≤ γ <
( q

cq

) 1
q−1 , for all n ≥ 0 and cq is the constant in (2.1). Then, {xn}

converges strongly to x̂ = PC(u).

Proof. Take T := PC. Then, T is (−1)-demimetric and by Lemma 4.3, we have that (I−T ) is
demiclosed at zero. From Corollary 3.1, we have the desired conclusion easily. �

Furthermore, from Theorem 3.2, we also have the following strong convergence result for
finding the zero of a maximal monotone operator in Banach spaces.

Theorem 4.4. Let C be a nonempty, closed and convex subset of a p-uniformly convex and
smooth real Banach space E. Let A be a maximal monotone mapping of E into 2E∗ and let
JA

λ
= (I + λJ−1

E A) be the resolvent of A with N(A) 6= /0. For arbitrary x0,u ∈ C, define an
iterative sequence by {

yn = (Jp
E)
−1[Jp

Exn− tnJp
E(xn− JA

λ
xn)
]
,

xn+1 = ΠCJ−1
p
[
αnJpu+(1−αn)Jpyn

]
,

(4.4)

where 0 < δ ≤ tn ≤ γ <
( q

cq

) 1
q−1 , for all n ≥ 0 and cq is the constant in (2.1). Then, {xn}

converges strongly to x̂ ∈ N(A).

Proof. Note that T := JA
λ

is nonexpansive and (−1)-demimetric. Furthermore, from [13, Theo-
rem 4.6], we have that (I−JA

λ
) is demiclosed at zero. Using Theorem 3.2, we obtain the desired

conclusion immediately. �

Conclusions. Theorem 3.2 provides an algorithm which converge strongly to fixed points of
η-demimetric mappings in the setting of Banach spaces. Theorem 3.2 improves the results
announced by Hojo and Takahashi [13] in the sense that our algorithm does not require the
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involvement of computation of Cn and Qn for each iterative setp. Our results provide affirmative
answers to the question raised in Section 1.
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