SOME NEW AND GENERALIZED DISTRIBUTIONS FOR RELIABILITY AND LIFETIME DATA ANALYSIS

BY

THATAYAONE MOAKOFI
Reg No. 14000642
MSc Statistics

Department of Mathematics and Statistical Sciences
Botswana International University of Science and Technology
E-mail: thatayaone.moakofi@studentmail.biust.ac.bw Tel:+267 77198976

A Dissertation/Thesis Submitted to the College of Science in Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Statistics of BIUST

Supervisors:

Prof. Broderick O. Oluyede Prof. Boikanyo Makubate
Department of Mathematical and Statistical Sciences
College of Science, BIUST
Email: oluyedeo@biust.ac.bw

Signature:..Signature:..
Date:..Date:..

November, 2020
Declaration and Copyright

I, Thatayaone Moakofi, declare that this dissertation is my own original work and that it has not been presented and will not be presented to any other university for a similar or any other degree award.

Signature

This thesis is copyright material protected under the Berne Convention, the Copyright Act of 1999 and other international and national enactments, in that behalf, on intellectual property. It must not be reproduced by any means, in full or in part, except for short extracts in fair dealing; for researcher private study, critical scholarly review or discourse with an acknowledgment, without the written permission of the office of the Provost, on behalf of both the author and the BIUST.
Certification

The undersigned certifies that he has read and hereby recommends for acceptance by the College of science a dissertation titled: SOME NEW AND GENERALIZED DISTRIBUTIONS FOR RELIABILITY AND LIFETIME DATA ANALYSIS, in fulfillment of the requirements for the degree of Master of Science in Statistics of the BIUST.

Supervisors:

Prof. Broderick O. Oluyede
Department of Mathematical and Statistical Sciences
College of Science, BIUST
Email: oluyedeo@biust.ac.bw

Prof. Boikanyo Makubate
Department of Mathematical and Statistical Sciences
College of Science, BIUST
makubateb@biust.ac.bw

Signature: [Signature]
Date: 09/11/2020

Signature: [Signature]
Date: 09/11/2020
Dedication

This thesis is wholeheartedly dedicated to the memory of my mother Botsalo Moakofi, who made me the person I am today by providing all forms of support.

To my family (lost and alive). And lastly, I dedicate this work to the Almighty God, thank you for the guidance, power of mind, protection and for the gift of life.
Acknowledgements

I would like to express my sincere gratitude to Professor Broderick O. Oluyede and Professor Boikanyo Makubate for their support, guidance and patience throughout my study and research at Biust.

Also, I would also like to send special thanks to my family for their encouragement and support throughout my endeavor in education. Special thanks to all my colleagues especially Tsie Ramodimo and Whatmore Sengweni for the support and friendship offered.
Contents

1

1.1 Introduction .. 1

1.2 Some Generators of Distributions 5

 1.2.1 Competing Risk Method 5

 1.2.2 Compounding Method 5

 1.2.3 Gamma Generator 6

 1.2.4 Marshall-Olkin-G Generator 6

 1.2.5 Half-Logistic-G Generator 6

1.3 Some Properties of Distributions 7

 1.3.1 Survival Function 7

 1.3.2 Quantile Function 7

 1.3.3 Hazard Rate and Reverse Hazard Rate 8

 1.3.4 Moments .. 8

 1.3.5 Conditional Moments 9

 1.3.6 Mean Deviations 9

 1.3.7 Lorenz and Bonferroni Curves 9

 1.3.8 Distribution of Order Statistics 10

 1.3.9 Rényi Entropy 10

 1.3.10 Estimation ... 10

 1.3.11 Goodness of Fit Statistics 11

1.4 Aims and Objectives .. 12

1.5 Outline of Thesis ... 12

2 A New Generalized Lindley-Weibull Class of Distributions with Applications 14
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 The Model, Sub-models and Properties</td>
<td>15</td>
</tr>
<tr>
<td>2.1.1 Some Sub-Classes of the LWPS Distribution</td>
<td>16</td>
</tr>
<tr>
<td>2.1.2 Quantile Function</td>
<td>17</td>
</tr>
<tr>
<td>2.1.3 Expansion of Density</td>
<td>17</td>
</tr>
<tr>
<td>2.1.4 Moments</td>
<td>17</td>
</tr>
<tr>
<td>2.1.5 Conditional Moments</td>
<td>20</td>
</tr>
<tr>
<td>2.1.6 Mean Deviation, Lorenz and Bonferroni Curves</td>
<td>22</td>
</tr>
<tr>
<td>2.1.7 Order Statistics and Rényi Entropy</td>
<td>23</td>
</tr>
<tr>
<td>2.1.8 Maximum Likelihood Estimation</td>
<td>25</td>
</tr>
<tr>
<td>2.2 A Sub-Model of LWPS Distribution and Properties</td>
<td>26</td>
</tr>
<tr>
<td>2.2.1 Hazard and Reverse Hazard Functions</td>
<td>27</td>
</tr>
<tr>
<td>2.2.2 Quantile Function</td>
<td>28</td>
</tr>
<tr>
<td>2.2.3 Some Sub-models of the LWL Distribution</td>
<td>29</td>
</tr>
<tr>
<td>2.2.4 Moments and Conditional Moments</td>
<td>30</td>
</tr>
<tr>
<td>2.2.5 Maximum Likelihood Estimation</td>
<td>31</td>
</tr>
<tr>
<td>2.3 Simulation Study</td>
<td>32</td>
</tr>
<tr>
<td>2.4 Applications</td>
<td>32</td>
</tr>
<tr>
<td>2.4.1 The Fracture Toughness of Alumina Data</td>
<td>34</td>
</tr>
<tr>
<td>2.4.2 Carbon Fibre Data</td>
<td>36</td>
</tr>
<tr>
<td>2.5 Conclusions</td>
<td>37</td>
</tr>
<tr>
<td>3 A New Gamma Generalized Lindley-Log-logistic (GELLLoG) Distribution</td>
<td>39</td>
</tr>
<tr>
<td>3.1 The Model, Series Expansion of Density Function, Sub-models,</td>
<td>40</td>
</tr>
<tr>
<td>Hazard and Quantile Functions</td>
<td>41</td>
</tr>
<tr>
<td>3.1.1 Series Expansion of Density Function</td>
<td>41</td>
</tr>
<tr>
<td>3.1.2 Sub-models of GELLLoG Distribution</td>
<td>42</td>
</tr>
<tr>
<td>3.1.3 Hazard and Quantile Functions</td>
<td>44</td>
</tr>
<tr>
<td>3.2 Moments, Conditional Moments, Mean and Median Deviations</td>
<td>45</td>
</tr>
<tr>
<td>3.2.1 Moments and Moment Generating Function</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2 Conditional Moments</td>
<td>49</td>
</tr>
<tr>
<td>3.2.3 Mean Deviation, Lorenz and Bonferroni Curves</td>
<td>50</td>
</tr>
<tr>
<td>3.3 Order Statistics and Rényi Entropy</td>
<td>51</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.3.1 Order Statistics</td>
<td>51</td>
</tr>
<tr>
<td>3.3.2 Rényi Entropy</td>
<td>54</td>
</tr>
<tr>
<td>3.4 Maximum Likelihood Estimation</td>
<td>55</td>
</tr>
<tr>
<td>3.5 Simulation Study</td>
<td>58</td>
</tr>
<tr>
<td>3.6 Applications</td>
<td>59</td>
</tr>
<tr>
<td>3.6.1 Lifetime data</td>
<td>60</td>
</tr>
<tr>
<td>3.6.2 Repair lifetimes of an airborne transceiver</td>
<td>61</td>
</tr>
<tr>
<td>3.7 Concluding Remarks</td>
<td>63</td>
</tr>
<tr>
<td>4 Marshall-Olkin Lindley-Log-logistic Distribution (MOLLLoG)</td>
<td>64</td>
</tr>
<tr>
<td>4.1 MOLLLoG Distribution, Expansion of Density Function,</td>
<td></td>
</tr>
<tr>
<td>Sub-models, Hazard and Quantile Functions</td>
<td>64</td>
</tr>
<tr>
<td>4.1.1 Expansion of Density Function</td>
<td>66</td>
</tr>
<tr>
<td>4.1.2 Sub-models of MOLLLoG Distribution</td>
<td>67</td>
</tr>
<tr>
<td>4.1.3 Hazard and Quantile Functions</td>
<td>68</td>
</tr>
<tr>
<td>4.2 Moments, Conditional Moments and Mean Deviations</td>
<td>69</td>
</tr>
<tr>
<td>4.2.1 Conditional Moments</td>
<td>72</td>
</tr>
<tr>
<td>4.2.2 Mean Deviation, Lorenz and Bonferroni Curves</td>
<td>73</td>
</tr>
<tr>
<td>4.2.3 Mean Deviations</td>
<td>74</td>
</tr>
<tr>
<td>4.2.4 Bonferroni and Lorenz Curves</td>
<td>75</td>
</tr>
<tr>
<td>4.3 Order Statistics and Rényi Entropy</td>
<td>75</td>
</tr>
<tr>
<td>4.3.1 Order Statistics</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2 Rényi Entropy</td>
<td>76</td>
</tr>
<tr>
<td>4.4 Estimation</td>
<td>77</td>
</tr>
<tr>
<td>4.5 Monte Carlo Simulations</td>
<td>78</td>
</tr>
<tr>
<td>4.6 Applications</td>
<td>79</td>
</tr>
<tr>
<td>4.6.1 Data on halfway house (Failure times in days (49 Cases))</td>
<td>82</td>
</tr>
<tr>
<td>4.6.2 Survival data set</td>
<td>83</td>
</tr>
<tr>
<td>4.7 Concluding Remarks</td>
<td>85</td>
</tr>
<tr>
<td>5 The Half Logistic Log-logistic Weibull Distribution (HLLLoGW)</td>
<td>86</td>
</tr>
<tr>
<td>5.1 HLLLoGW Distribution, Expansion of Density Function,</td>
<td></td>
</tr>
<tr>
<td>Sub-models, Hazard and Quantile Functions</td>
<td>87</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Graph of pdf of Lindley-Weibull-logarithmic distribution 27
2.2 Plots of hazard function for different parameter values 28
2.3 Fitted densities and Probability plots of The Fracture Toughness of Alumina Data 35
2.4 Fitted densities and Probability plots of Carbon fibre data 37

3.1 Plots of GELLLoG Density Function 41
3.2 Plots of GELLLoG Hazard Function 44
3.3 Plots of Skewness and Kurtosis for parameter alpha 48
3.4 Plots of Skewness and Kurtosis for parameter c 48
3.5 Plots of Skewness and Kurtosis for parameter delta 49
3.6 Fitted Densities and Probability Plots of the Lifetime Data 61
3.7 Fitted Densities and Probability Plots of the Repair Lifetimes of an Airborne Transceiver Data 63

4.1 Plots of MOLLLoG Density Function 66
4.2 Plots of MOLLLoG Hazard Function 68
4.3 Plots of Skewness and Kurtosis for parameter δ and c 72
4.4 Fitted Densities and Probability Plots of the Data on Halfway House 83
4.5 Fitted Densities and Probability Plots of the Survival Times Data 85

5.1 Plots of HLWLLoG Density Function 88
5.2 Plots of HLLLLoGW Hazard Function 91
5.3 Plots of Skewness and Kurtosis for shape parameters β and c ... 95
5.4 Fitted Densities and Probability Plots for Time to Failure of kevlar 49/epoxy strands tested at various stress level data 106
5.5 Fitted Densities and Probability Plots of Lifetimes of 20 Electronic Components Data 108
List of Tables

1 List of Publications, Accepted and Submitted Papers xiv
1.1 Useful Quantities for Some Power Series Distributions 5

2.1 Table of Quantile for LWL Distribution 29
2.2 Moments for LWL distribution for some parameter values 30
2.3 Monte Carlo Simulation Results ... 32
2.4 MLEs of the parameters, SEs in parenthesis and the goodness−of−fit statistics for Fracture Toughness of Alumina Data 35
2.5 Carbon Fiber Data ... 36
2.6 MLEs of the parameters, SEs in parenthesis and the goodness−of−fit statistics for Carbon fibre data 37

3.1 Table of Quantiles for GELLoG Distribution 45
3.2 Moments for Selected Parameters Values of GELLoG Distribution 48
3.3 Monte Carlo Simulation Results ... 58
3.4 Estimates of Models for Lifetime Data 60
3.5 Estimates of Models for repair lifetimes of an airborne transceiver
 Data ... 62

4.1 Table of Quantile for MOLLLoG Distribution 69
4.2 Table of Moments for Selected Parameters for MOLLLoG
 Distribution ... 71
4.3 Monte Carlo Simulation Results ... 78
4.4 Monte Carlo Simulation Results ... 79
4.5 Estimates of Models for Data on Halfway House 82
4.6 Estimates of Models for Survival Data 84
5.1 Table of Quantile for HLLLoGW Distribution 92
5.2 Table of Moments for Selected Parameters for HLLLoGW Distribution ... 94
5.3 Monte Carlo Simulation Results ... 101
5.4 Monte Carlo Simulation Results ... 102
5.5 MLEs of the parameters, SEs in parenthesis and the goodness-of-fit statistics for kevlar 49/epoxy failure time data . . . 105
5.6 Estimates of Models for Lifetimes of 20 Electronic Components Data 107
Abstract

New distributions namely, Lindley-Weibull Power Series (LWPS) class of distributions and the special case called Lindley-Weibull logarithmic (LWL) distribution, a new gamma generalized Lindley log-logistic (GELLLoG) distribution, Marshall-Olkin Lindley log-logistic (MOLLLoG) distribution and half logistic log-logistic Weibull (HLLLoGW) distribution and their sub-models are presented. Structural properties including hazard and reverse hazard functions, quantile function, moments, conditional moments, mean deviations, Bonferroni and Lorenz curves, Rényi entropy, distribution of order statistics and maximum likelihood estimates of the above proposed distributions are presented. Applications of the presented models to real data sets are given in order to illustrate the applicability and usefulness of the proposed distributions. These distributions were also compared to some non-nested models.
List of Publications, Accepted and Submitted Papers

Table 1: List of Publications, Accepted and Submitted Papers

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Status</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A New Generalized Lindley-Weibull Class of Distributions with Applications</td>
<td>Accepted</td>
<td>Mathematica Slovaka</td>
</tr>
<tr>
<td>A New Gamma Generalized Lindley-Log-logistic (GELLLoG) Distribution</td>
<td>Accepted</td>
<td>JAS</td>
</tr>
<tr>
<td>Marshall-Olkin Lindley-Log-logistic Distribution</td>
<td>Accepted</td>
<td>Mathematica Slovaka</td>
</tr>
</tbody>
</table>
Chapter 1

1.1 Introduction

The Lindley, log-logistic and Weibull distributions are widely used in several areas including reliability, economics, finance as well as actuarial sciences. However, these models have a limited range of behaviour and do not provide adequate fit to all the practical situations.

Adding parameters to a well-established distribution is one of the well established techniques for obtaining more flexible new families of distributions (Cordeiro and Lemonte [19]). These models constitute flexible family of distributions in terms of the varieties of shapes and hazard functions. In many applied areas such as reliability, lifetime analysis, finance and insurance, there is a clear need for extended and generalized forms of these distributions. For that reason, several methods for generating new families of distributions have been studied. In real life applications, empirical hazard rate curves often exhibit non-monotonic shapes such as a bathtub, upside-down bathtub (uni-modal) and others. So, increased interest in generating new families of distributions that can provide more flexibility in lifetime modeling is desirable.

There are very useful and important generalizations of the Lindley distribution in the literature that are suitable for modeling data with different types of hazard rate functions: increasing, decreasing, bathtub and
unimodal. (Lindley [41]) used a mixture of exponential and length-biased exponential distributions to illustrate the difference between fiducial and posterior distributions. The resulting mixture is called the Lindley (L) distribution. (Oluyede and Yang [64]) developed an extension of the Lindley distribution called the beta generalized Lindley distribution. A generalization of the Lindley distribution called Kumaraswamy Lindley distribution with applications to lifetime data was presented by (Oluyede et al. [65]). (Ghitany et al. [29]) investigated the properties of Lindley distribution. (Nadarajah et al. [52]) studied the mathematical and statistical properties of the exponentiated or generalized Lindley (GL) distribution. The cumulative distribution function (cdf) and probability density function (pdf) of the GL distribution are given by

\[
G_{GL}(x; \alpha, \lambda) = \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \exp(-\lambda x) \right]^\alpha, \tag{1.1}
\]

and

\[
g_{GL}(x; \alpha, \lambda) = \frac{\alpha \lambda^2}{1 + \lambda} (1 + x) \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \exp(-\lambda x) \right]^{\alpha-1} \exp(-\lambda x), \tag{1.2}
\]

for \(x > 0, \lambda > 0,\) and \(\alpha > 0.\) This distribution is the exponentiated Lindley distribution. (Ghitany et al. [28]) presented results on a two-parameter Lindley distribution referred to as power-Lindley distribution. (Zakerzadeh and Dolati [87]) looked at a different generalization of the Lindley distribution.

Lindley distribution is a mixture of exponential and gamma distributions, that is \(f(x; \lambda) = (1 - p)f_G(x; \lambda) + pf_E(x; \lambda)\) with \(p = \frac{1}{1+x},\) where \(f_G(x; \lambda) \equiv GAM(2, \lambda),\) and \(f_E(x; \lambda) \equiv EXP(\lambda).\)

The log-logistic distribution (known as the Fisk distribution) plays an important role in income. It is the probability distribution of a random variable whose logarithm has logistic distribution. Some generalization of the log-logistic model have appeared in the literature. For example, beta log-logistic distribution presented by (Lemonte [39]) and the log-logistic Weibull distribution by (Oluyede et al. [66]).

There are several extensions of the Weibull model which are able to depict more complex hazard rates like upside-down bathtub-shaped or unimodal shapes. Generalizations of the Weibull distribution in the literature include
work by (Xie et al. [86]), (Bebbington et al. [9]), (Cordeiro et al. [20]) and (Silva et al.[76]). (Lai et al. [36]) presented modification of Weibull distribution. (Cordeiro et al. [17]) tackled Lindley-Weibull and its applications. (Lai et al. [35]) studied modified Weibull distribution. (Famoye et al. [24]) developed the beta Weibull distribution. (Pal et al. [58]) introduced the exponentiated Weibull distribution. (Mudholkar and Srivastata [49]) developed the generalized Weibull distribution.

The new Lindley-Weibull distribution and power series distributions are compounded, to introduce a new class of distributions called the Lindley-Weibull power series (LWPS) distribution and its sub-model called Lindley-Weibull logarithmic (LWL) distribution. Recently, Several generalized distributions are proposed in the literature including the exponential-power series (EP) distribution by (Chahkandi and Ganjali [12]), Weibull-power series (WPS) distributions by (Morais and Barreto-Souza [48]), generalized exponential-power series (GEP) distribution by (Mahmoudi and Jafari [44]), complementary exponential power series by (Flores et al. [26]), extended Weibull-power series (EWPS) distribution by (Silva et al. [74]), double bounded Kumaraswamy power series by (Bidram and Nekoukhou [11]), Burr XII power series by (Silva and Cordeiro [75]), generalized linear failure rate-power series (GLFRP) distribution by (Alamatsaz and Shams [79]), Birnbaum-Saunders power series distribution by (Bourguignon et al. [10]), linear failure rate-power series by (Mahmoudi and Jafari [45]), and complementary extended Weibull-power series by (Cordeiro and Silva [21]). Similar procedures are used by (Roman et al. [68]), (Lu and Shi [43]), (Nadarajah et al. [53]) and (Louzada et al. [42]). (Oluyede et al. [67]) developed a new Burr XII-Weibull-Logarithmic distribution, (Nekoukhou et al. [60]) introduced a Flexible Skew Generalized Normal Distribution, (Shams Harandi and Alamatsaz [77]) presented Alpha-skew Laplace distribution, (Nekoukhou et al. [61]) looked at an extension of the exponentiated Weibull distribution, (Shams Harandi and Alamatsaz [78]) investigated a complementary generalized linear failure rate-geometric distribution and (Najarzadegan and Alamatsaz [57]) looked at a new generalization of weighted geometric distribution for
survival and lifetime data analysis. For compounding continuous distributions with discrete distributions, (Nadarajah et al. [56]) introduced the package Compounding in R software (R Development Core Team, [69]).

(Marshall and Olkin [47]) developed an important method of including an extra shape parameter to a given baseline model thus defining an extended distribution. The Marshall-Olkin transformation provides a wide range of behaviors with respect to the baseline distribution (Santos-Neo et al. [71]). Marshall-Olkin transformation was applied to several well-known distributions: Weibull (Ghittany et al. [27], Zhang and Xie [88]). More recently, general results were given by (Barreto-Souza et al. [8]) and (Cordeiro and Lemonte [19]). (Krishna et al. [33]) established Marshall-Olkin Fréchet distribution and its applications. (Santos-Nero et al. [53]) introduces a new class of models called the Marshall-Olkin extended Weibull family of distributions which defines at least twenty-one special models. (Lepetu et al. [40]) tackled Marshall-Olkin Log-Logistic Extended Weibull distribution. (Chakraborty and Handique [13]) presented the generalized Marshall-Olkin Kumaraswamy-G distribution. (Lazhar [37]) developed and studied the properties of the Marshall-Olkin extended generalized Gompertz distribution. (Kumar [34]) discussed the ratio and inverse moments of Marshall-Olkin extended Burr Type III distribution based on lower generalized order statistics. (Usman and Haq [82]) studied the Marshall-Olkin extended inverted Kumaraswamy distribution. (Javed et al. [32]) developed the Marshall-Olkin Kappa distribution. (Afify et al. [2]) presented the Marshall-Olkin additive Weibull distribution with variable shapes for the hazard rate. However, these authors do not employ the Marshall-Olkin transformation in extending the Lindley-log-logistic distribution (Oluyede et al. [63]). The combined distribution of Lindley and log-logistic is obtained from the product of the reliability or survival functions of the Lindley and log-logistic distributions via competing risk model. The Marshall-Olkin transformation is then employed to obtain a new model called Marshall-Olkin Lindley log-logistic (MOLLLoG) distribution.
1.2 Some Generators of Distributions

In this section, several generators used in this thesis to extend some standard and new lifetime distributions are discussed.

1.2.1 Competing Risk Method

Consider a series system and assume that the lifetime of the components follow $F_1(x)$ and $F_2(x)$ distributions with reliability functions $R_1(x) = 1 - F_1(x)$ and $R_2(x) = 1 - F_2(x)$, respectively. The reliability $R(x) = P(X > x)$ of the system is given by

$$R(x) = \prod_{i=1}^{2} R_i(x). \quad (1.3)$$

The resulting cdf is given by $F(x) = 1 - R(x)$. In the context of reliability, a series model is named a competing risk model. The corresponding pdf is obtained by differentiating $F(x)$.

1.2.2 Compounding Method

Let N be a zero truncated discrete random variable having a power series distribution, whose probability mass function (pmf) is given by

$$P(N = n) = \frac{a_n \theta^n}{C(\theta)}, n = 1, 2, 3, ..., \quad (1.4)$$

where $C(\theta) = \sum_{n=1}^{\infty} a_n \theta^n$ is finite, $\theta > 0$ and $\{a_n\}_{n \geq 1}$ a sequence of positive real numbers. The power series family of distributions includes binomial, Poisson, geometric and logarithmic distributions (Johnson et.al). Table 1.1 shows some useful quantities including $a_n, C(\theta), C^{-1}(\theta), C'(\theta)$ and $C''(\theta)$ for the binomial, Poisson, geometric and logarithmic distributions.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>$C(\theta)$</th>
<th>$C'(\theta)$</th>
<th>$C''(\theta)$</th>
<th>$C^{-1}(\theta)$</th>
<th>a_n</th>
<th>Parameter Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>$(1 + \theta)^{m-1}$</td>
<td>$m(1 + \theta)^{m-1}$</td>
<td>$m(m - 1)(1 + \theta)^{m-2}$</td>
<td>$(\theta - 1)^{1/m} - 1$</td>
<td>$\binom{m}{n}$</td>
<td>$(0, 1)$</td>
</tr>
<tr>
<td>Poisson</td>
<td>$e^\theta - 1$</td>
<td>e^θ</td>
<td>e^θ</td>
<td>$\log(1 + \theta)$</td>
<td>$(n!)^{-1}$</td>
<td>$(0, \infty)$</td>
</tr>
<tr>
<td>Geometric</td>
<td>$\theta(1 - \theta)^{-1}$</td>
<td>$(1 - \theta)^{-2}$</td>
<td>$2(1 - \theta)^{-3}$</td>
<td>$\theta(1 + \theta)^{-1}$</td>
<td>1</td>
<td>$(0, 1)$</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>$-\log(1 - \theta)$</td>
<td>$(1 - \theta)^{-1}$</td>
<td>$(1 - \theta)^{-2}$</td>
<td>$1 - e^{-\theta}$</td>
<td>n^{-1}</td>
<td>$(0, 1)$</td>
</tr>
</tbody>
</table>
1.2.3 Gamma Generator

Let \(G(x) \) and \(g(x) \) denote the cumulative distribution function (cdf) and probability density function (pdf) of a continuous random variable \(X \), then the cdf and pdf of the Gamma-G (Zografos and Balakrishnan [90]) distribution are given by

\[
F(x) = \frac{1}{\Gamma(\delta)} \int_0^{\log(1-G(x))} t^{\delta-1} e^{-t} dt = \frac{\gamma(\delta, G(x))}{\Gamma(\delta)}, \tag{1.5}
\]

and

\[
f(x) = \frac{1}{\Gamma(\delta)} [G(x)]^{\delta-1} g(x), x \in \mathbb{R}, \delta > 0, \tag{1.6}
\]

respectively, where \(\gamma(\delta; \delta) = \int_0^x t^{\delta-1} e^{-t} dt \) is the incomplete gamma function.

1.2.4 Marshall-Olkin-G Generator

The Marshall-Olkin (Marshall and Olkin [47]) class of distributions is given by

\[
F(x; \delta) = 1 - \frac{\delta G(x)}{1 - \delta G(x)}, \tag{1.7}
\]

for \(\delta > 0 \) (tilt parameter), \(\tilde{\delta} = 1 - \delta \) and \(\overline{G}(x) = 1 - G(x) \), where \(G(x) \) is the baseline cdf. Note that when \(\delta = 1 \), we have \(G(x) = F(x) \), the baseline distribution function. The corresponding pdf is given by

\[
f(x; \delta) = \frac{\delta g(x)}{(1 - \delta G(x))^2}. \tag{1.8}
\]

Marshall and Olkin referred to the shape parameter \(\delta \) as the tilt parameter due to the fact that for all \(x > 0 \), the hazard functions are ordered based on the values of \(\delta \), that is, \(h_G(x; \delta) \leq h_F(x) \) when \(\delta \geq 1 \), and \(h_G(x; \delta) \geq h_F(x) \) when \(0 < \delta \leq 1 \).

1.2.5 Half-Logistic-G Generator

(Cordeiro [18]) define the cdf of the new type I half logistic-G (TIHL-G) family of distributions by

\[
F(x; \lambda, \xi) = \int_0^{\ln(1-G(x; \xi))} \frac{2\lambda e^{-\lambda x}}{(1 + e^{-\lambda x})^2} dx = \frac{1 - [1 - G(x; \xi)]^\lambda}{1 + [1 - G(x; \xi)]^\lambda}, \tag{1.9}
\]
where \(G(x; \epsilon) \) is the baseline cdf depending on a parameter vector \(\epsilon \) and an additional shape parameter \(\lambda > 0 \). If we take \(\lambda = 1 \) then the TIHL-G reduces to the half logistic-G (HL-G) distribution with cdf

\[
F(x; \epsilon) = \frac{G(x; \epsilon)}{1 + G(x; \epsilon)},
\]

where \(\overline{G}(x; \epsilon) = 1 - G(x; \epsilon) \).

The corresponding pdf to (1.10) is given by

\[
f(x; \epsilon) = \frac{2g(x; \epsilon)}{[1 + \overline{G}(x; \epsilon)]^2},
\]

where \(g(x; \epsilon) = \frac{dG(x; \epsilon)}{dx} \).

1.3 Some Properties of Distributions

1.3.1 Survival Function

Survival function, also known as the reliability function is defined as the probability that a unit will operate without failure for a given time under specified environmental conditions. Let \(X \) be a continuous random variable with cdf \(F(x) \) and pdf \(f(x) \), then its survival function is obtained as

\[
S(x) = \int_{x}^{\infty} f(x) \, dx = 1 - F(x).
\]

1.3.2 Quantile Function

Quantiles are an important tool for statistical analysis. They give statistical properties of the random variable \(X \), just like the distribution function. The quantile function is commonly used in statistical aspects such as generating random numbers. Let \(X \) be a continuous random variable with cdf \(F(x) \) and pdf \(f(x) \). The quantile function of \(X \) is the generalized inverse of \(F \), that is

\[
F^{-1}(u) = \inf \{ x : F(x) \geq u \}, \text{ for } 0 \leq u \leq 1.
\]
1.3.3 Hazard Rate and Reverse Hazard Rate

The hazard function, denoted \(h(x) \) plays an important role in modelling lifetime data. It is obtained as the ratio of the probability density function and the survival function, that is \(h(x) = \frac{f(x)}{S(x)} \). The hazard rate function can exhibit different shapes, that is increasing, decreasing, bathtub, upside-down bathtub and a combination of bathtub and upside-down bathtub shapes.

In case the hazard function may not capture such failures, then the reverse hazard rate function becomes a useful tool in such instances. The reverse hazard rate function is obtained by dividing the probability density function by the cumulative distribution function, that is \(\tau(x) = \frac{f(x)}{F(x)} \).

1.3.4 Moments

Moments are parameters used to describe the features of a statistical distribution (e.g. mean, variance, skewness and kurtosis). It is very useful to derive the ordinary and incomplete moments of a generalized distribution from a weighted infinite linear combination of established distributions, (for example: moments of the Odd Exponentiated Half-Logistic-G distribution from those of a weighted infinite linear combination for Exp-G distributions [1]). The \(r^{th} \) moment of a random variable \(X \) can be defined as \(\mu_r' = E(X^r) = \int x^r f(x) dx \) and the incomplete moment can be obtained as follows \(I_X(t) = \int_0^t x^r f(x) dx \). The coefficients of variation (CV), Skewness (CS) and Kurtosis (CK) can be readily obtained. The variance \((\sigma^2) \), Standard deviation (SD=\(\sigma \)), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) are given by

\[
\sigma^2 = \mu'_2 - \mu^2, \quad CV = \frac{\sigma}{\mu} = \sqrt{\frac{\mu'_2 - \mu^2}{\mu^2}} = \sqrt{\frac{\mu'_2}{\mu^2} - 1},
\]

\[
CS = \frac{E[(X - \mu)^3]}{[E(X - \mu)^2]^{3/2}} = \frac{\mu'_3 - 3\mu\mu'_2 + 2\mu^3}{(\mu'_2 - \mu^2)^{3/2}},
\]

and

\[
CK = \frac{E[(X - \mu)^4]}{[E(X - \mu)^2]^2} = \frac{\mu'_4 - 4\mu\mu'_3 + 6\mu^2\mu'_2 - 3\mu^4}{(\mu'_2 - \mu^2)^2},
\]

respectively.
1.3.5 Conditional Moments

When it comes to lifetime models, it is often of interest to find the conditional moments. Let X be a random variable with the cdf $F(x)$, then the r^{th} conditional moment of X is given by

$$E(X^r \mid X > t) = \frac{1}{F(t)} \int_t^\infty f(x)dx. \quad (1.13)$$

1.3.6 Mean Deviations

Let X be a random variable with pdf $f(x)$, the mean deviation about the mean $D(\mu)$ and the mean deviation about the median $D(M)$, are defined as

$$D(\mu) = \int_0^\infty |x - \mu| f(x)dx, \quad \text{and} \quad D(M) = \int_0^\infty |x - M| f(x)dx, \quad (1.14)$$

respectively, where $\mu = E(X)$ and $M = Median(X) = F^{-1}(1/2)$ is the median of $F(x)$. However, the following relationships can be used to evaluate the measures $D(\mu)$ and $D(M)$:

$$D(\mu) = 2\mu F(\mu) - 2\mu + 2 \int_\mu^\infty xf(x)dx, \quad (1.15)$$

and

$$D(M) = -\mu + 2 \int_M^\infty xf(x)dx. \quad (1.16)$$

1.3.7 Lorenz and Bonferroni Curves

The Lorenz and Bonferroni curves have a number of applications in different fields such as medicine, income and poverty, reliability and insurance. The Lorenz and Bonferroni curves are given by

$$L(F(x)) = \int_0^x t f(t)dt \quad E(X), \quad \text{and} \quad B(F(x)) = \frac{L(F(x))}{F(x)}, \quad (1.17)$$

or

$$L(p) = \frac{1}{\mu} \int_0^p xf(x)dx, \quad \text{and} \quad B(p) = \frac{1}{p\mu} \int_0^p xf(x)dx, \quad (1.17)$$

respectively.
1.3.8 Distribution of Order Statistics

Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with pdf $f(x)$ and cdf $F(x)$. Suppose $X_{1:n} < X_{2:n}, ... < X_{n:n}$ denote the corresponding order statistics, then the pdf of the k^{th} order statistic is given by

$$f_{k:n}(x) = \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l f(x) [F(x)]^{k+l-1}.$$ (1.18)

1.3.9 Rényi Entropy

An entropy is a measure of uncertainty or variation of a random variable. Rényi entropy is an extension of Shannon entropy. (Rényi entropy [70]) is defined to be

$$I_R(v) = \frac{1}{1-v} \log \left(\int_0^\infty [f(x)]^v dx \right), \quad v \neq 1, \; v > 0.$$ (1.19)

Rényi entropy tends to Shannon entropy as $v \to 1$.

1.3.10 Estimation

There are many methods of estimation in the literature such as maximum likelihood estimation (MLE), method of moments (MOM) and Weighted least squares estimation (WLS) to name a few. However, the most commonly used method is the MLE. The maximum likelihood principle of estimation chooses an estimate $\hat{\theta}$ of θ for a given set of observations (data) the value that is most likely to occur. The likelihood function is computed as $L(\theta, x) = L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$. The maximum likelihood estimates of the parameters ($\theta_1, \theta_2, ..., \theta_n$), denoted by (Δ) is obtained by solving the non linear equation $\frac{\partial L(\theta)}{\partial \theta_i} = 0$, using a numerical method such as Newton-Raphson procedure since the equations obtained are not in closed form. The Fisher information matrix (FIM) is the $k \times k$ symmetric matrix given by $I(\Delta) = \left[I_{\theta_i\theta_j}\right]_{k \times k} = E\left(-\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j}\right)$, $i, j = 1, 2, 3, 4$, can be numerically obtained by NLMIXED in SAS or mle2 package in R, MATLAB or MAPLE software. The total Fisher information matrix $I_n(\Delta)$ can be approximated by

$$J_n(\Delta) \approx \left[-\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j} \right]_{\Delta = \Delta}^{\Delta=\Delta}.$$ (1.20)

Note that the expectations in the Fisher Information matrix (FIM) can be obtained numerically.
1.3.11 Goodness of Fit Statistics

In order to determine which model fits a certain real life dataset well, the following statistics are used;

- -2log-likelihood statistic (-2log(L))
- Akaike Information Criterion (AIC): \(AIC = 2p - 2\ln(L) \)
- Consistent Akaike Information Criterion (AICC): \(AICC = AIC + \frac{2p}{n-p-1} \)
- Bayesian Information Criterion (BIC): \(BIC = p\ln(n) - 2\ln(L) \),

where \(L = L(\hat{\Delta}) \) is the value of the likelihood function evaluated at the parameter estimates, \(n \) is the number of observations, and \(p \) is the number of estimated parameters. The model with smallest values of these statistics is regarded as the best fit model for that particular dataset. The goodness-of-fit statistics: Cramer-von Mises (\(W^* \)) and Anderson-Darling (\(A^* \)), described by (Chen and Balakrishnan [16]) are also obtained. These statistics can be used to verify which distribution fits better to the data. The smaller the values of \(W^* \) and \(A^* \), the better the fit.

Consider \(\Delta = (\lambda, c, \delta) \), \(\hat{\Delta} = (\hat{\lambda}, \hat{c}, \hat{\delta}) \) and \(\tilde{\Delta} = (\tilde{\lambda}, \tilde{c}, 1) \), where \(\Delta \), \(\hat{\Delta} \) and \(\tilde{\Delta} \) represent a vector of parameters, a vector of unrestricted estimates and a vector of restricted estimates, respectively. Then, the likelihood ratio (LR) test can be used to compare the fit of the new distribution with its sub-models for a given data set. For example, to test \(\delta = 1 \), the LR statistic is \(\omega = 2[\ln(L(\hat{\Delta})) - \ln(L(\tilde{\Delta}))] \), where \(\hat{\Delta} \) and \(\tilde{\Delta} \) are the estimates under the null and alternative hypotheses, respectively. The LR test rejects the null hypothesis if \(\omega > \chi^2_1 \), where \(\chi^2_1 \) denote the upper 100\(\epsilon \)% point of the \(\chi^2 \) distribution with 1 degrees of freedom.

Plots of the fitted densities, the histogram of the data and probability plots (Chambers et al. [14]) are presented for each dataset. For the probability plot, we plotted \(G(x_{(j)}; \hat{\lambda}, \hat{c}, \hat{\delta}) \) against \(\frac{j - 0.375}{n + 0.25} \), \(j = 1, 2, \ldots, n \), where \(x_{(j)} \) are the ordered values of the observed data. The measures of closeness are given by the
The sum of squares

\[SS = \sum_{j=1}^{n} \left[G(x_{(j)}) - \left(\frac{j - 0.375}{n + 0.25} \right) \right]^2. \]

The plot with the smallest \(SS \) is corresponds to the best fitting model.

1.4 Aims and Objectives

The main aim of the study is to develop extensions of distributions via compounding, gamma-G, Marshall-Olkin-G and Half logistic-G approaches. The specific objectives are:

1. To develop the following models:
 - Lindley Weibull class of distributions (LWPS)
 - Gamma generalized Lindely log-logistic distribution (GELLLoG)
 - Marshall-Olkin Lindley log-logistic (MOLLLoG)
 - Half logistic log-logistic Weibull distribution (HLLLoGW)

2. Develop mathematical and statistical properties of these proposed distributions.

3. To determine maximum likelihood estimates of the proposed models using the maximum likelihood estimation (MLE).

4. To assess the accuracy of the MLE via Monte Carlo simulations.

5. To illustrate the applicability and usefulness of the proposed models by using real data sets.

1.5 Outline of Thesis

The thesis is organised as follows. In Chapter 1, the literature review, some generators of distributions and properties of distributions are presented. Chapter 2 deals with the Lindley-Weibull class of distributions obtained via compounding the Lindley Weibull and the power series distributions.
The gamma generalized Lindley log-logistic distribution obtained through the gamma generator is given in chapter 3. In Chapter 4 work on the Marshall-Olkin Lindley log-logistic obtained via the Marshall-Olkin method is presented. The half logistic log-logistic Weibull distribution obtained by combining the half logistic and log-logistic Weibull is contained in chapter 5. Last but not least conclusions and suggestions for future studies are presented in chapter 6.
Chapter 2

A New Generalized Lindley-Weibull Class of Distributions with Applications

In this chapter, a new class of distributions, referred to as the Lindley-Weibull power series (LWPS) distribution and its sub-model Lindley-Weibull logarithmic distribution are presented. The Lindley Weibull logarithmic (LWL) distribution is obtained by mixing Lindley-Weibull distribution and logarithmic distribution. In addition to develop a generalized family of distributions, the basic motivations for developing the LWPS class of distributions in practice include the following:

- to construct and generate distributions with symmetric, left-skewed, right-skewed, reversed-J shapes;
- to define new family of distributions that posses various types of hazard rate functions including monotonic as well as non-monotonic shapes;
- to construct heavy-tailed distributions for modeling real data;
- to provide consistently better fits and statistical properties compared to other competitive models;
to obtain more flexible class of distributions by introducing an extra parameter to the Lindley-Weibull distribution and improve goodness-of-fit to real data.

2.1 The Model, Sub-models and Properties

In this section, some properties of the LWPS class of distributions including expansion of the density, hazard and reverse hazard functions, quantile function and sub-models, moments, conditional moments and maximum likelihood estimation of model parameters are derived. Using the method of competing risk, that is, consider a series system and assume that the lifetime of the components follow the Lindley and Weibull distributions with reliability functions $R_1(x) = (1 + \frac{\lambda x}{1 + \lambda})e^{-\lambda x}$ and $R_2(x) = e^{-\alpha x^\beta}$, respectively. The reliability $R(x) = P(X > x)$ of the system is given by $R(x) = \prod_{i=1}^{2} R_i(x)$ (see Oluyede et al. [66]). (Asgharzadeh et al. [5]) developed and presented the Weibull-Lindley or Lindley-Weibull (LW) distribution with cdf and pdf given by

\[
F_{WL}(x; \lambda, \alpha, \beta) = 1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta},
\]

and

\[
f_{WL}(x; \lambda, \alpha, \beta) = \frac{e^{-\lambda x - \alpha x^\beta}}{1 + \lambda} \left((\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1}) \right),
\]

for $x > 0$, and $\lambda, \alpha, \beta > 0$, respectively.

If a random variable X has the LW distribution, we write $X \sim LW(\lambda, \alpha, \beta)$. Note that

\[
g(x; \lambda, \alpha, \beta) = g_L(x; \lambda) \overline{G}_W(x; \alpha, \beta) + \overline{G}_L(x; \lambda) g_W(x; \alpha, \beta),
\]

where $\overline{G}_W(x; \alpha, \beta) = 1 - G_W(x; \alpha, \beta)$, $\overline{G}_L(x; \lambda) = 1 - G_L(x; \lambda)$ are the survival functions of Weibull and Lindley distributions, respectively and $g_W(x; \alpha, \beta)$ and $g_L(x; \lambda)$ are the pdf's of Weibull and Lindley distributions. In this paper, we propose the LWPS class of distributions which is obtained by mixing the Lindley-Weibull distribution and power series distributions.

Given N, let $X_1, X_2, ..., X_N$ be identically and independently distributed (iid) random variable following Lindley-Weibull distribution. Let $X_{(n)} =$
max(\(X_1, X_2, \ldots, X_n\)), then the cdf of \(X_{(n)}|N=n\) is given by

\[
F_{X_{(n)}|N=n}(x; \lambda, \alpha, \beta) = \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta}\right)^n, \lambda, \alpha, \beta > 0, n \geq 1. \tag{2.4}
\]

The Lindley-Weibull Power Series (LWPS) distribution denoted by LWPS(\(\lambda, \alpha, \beta, \theta\)) is defined by the marginal distribution of \(X_{(n)}\), that is,

\[
F_{X_{(n)}}(x) = \sum_{n=1}^{\infty} P(N = n) P(X_n \leq x | N = n)
= \sum_{n=1}^{\infty} a_n \left(\frac{\theta}{C(\theta)} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta}\right)\right)^n
= \frac{C'\left(\frac{\theta}{C(\theta)} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta}\right)\right)}{C(\theta)}, x > 0. \tag{2.5}
\]

The corresponding pdf is given by

\[
f_{X_{(n)}}(x) = \frac{\theta e^{-\lambda x - \alpha x^\beta}}{1 + \lambda} \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1}\right] C'(\frac{\theta}{C(\theta)} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta}\right)) \times \frac{C'(\frac{\theta}{C(\theta)} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta}\right))}{C(\theta)} \times \left(C(\theta) - C\left(\frac{\theta}{C(\theta)} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta}\right)\right)\right)^{-1}. \tag{2.6}
\]

The hazard function is given in equation (2.7). That is,

\[
h_r(x) = \frac{\theta e^{-\lambda x - \alpha x^\beta}}{1 + \lambda} \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1}\right] C'(\frac{\theta}{C(\theta)} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta}\right)) \times \left(C(\theta) - C\left(\frac{\theta}{C(\theta)} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta}\right)\right)\right)^{-1}. \tag{2.7}
\]

2.1.1 Some Sub-Classes of the LWPS Distribution

There are several new and well-known sub-classes that can be obtained from the LWPS class of distributions. Note that:

- If \(\lambda \to 0^+\), then we obtain the Weibull Power Series (WPS) class of distribution (Morais and Barreto-Souza [48]).

- If \(\alpha \to 0^+\), then we have the Lindley Power series (LPS) class of distributions (Warahena-Liyanage and Pararai [83]).

- If \(\beta = 1\) and \(\beta = 2\), then we have the Lindley Exponential Power Series (LEPS) class and Lindley Rayleigh Power Series (LRPS) class of distributions, respectively.
• If \(\lambda \to 0^+ \), with \(\beta = 1 \) or \(\beta = 2 \), then we obtain the Exponential Power Series (EPS) class of distributions or the Rayleigh Power Series (RPS) class of distributions, which are sub-classes of the LWPS class of distributions.

2.1.2 Quantile Function

Let \(X \) be a random variable with cdf as in (2.5). The quantile function \(Q_{X(n)}(u) \) is defined by \(F_{X(n)}(Q_{X(n)}(u)) = u, 0 \leq u \leq 1 \). That is, we solve the non-linear equation

\[
C \left(\theta \left(1 - \frac{1 + \lambda + \lambda Q_{X(n)}(u)}{1 + \lambda} e^{-\lambda Q_{X(n)}(u) - \alpha(Q_{X(n)}(u))^{\beta}} \right) \right) - uC(\theta) = 0, \tag{2.8}
\]
equivalently,

\[
\lambda Q_{X(n)}(u) + \alpha(Q_{X(n)}(u))^{\beta} - \ln \left(1 - \frac{1 + \lambda + \lambda Q_{X(n)}(u)}{1 + \lambda} \right) + \ln \left(\frac{C^{-1}(uC(\theta))}{\theta} \right) = 0. \tag{2.9}
\]

2.1.3 Expansion of Density

Expansion of the density of the LWPS class of distributions is presented in this sub-section. The LWPS density function can be expressed as a linear combination of the conditional density of \(X(n) = \max(X_1, X_2, ..., X_N) \), given \(N = n \). Note that from the derivative of equation (2.5), that is, equation (2.6) and the fact that \(C'(\theta) = \sum_{n=1}^{\infty} na_n \theta^{n-1} \), we have

\[
f_{X(n)}(x) = \sum_{n=1}^{\infty} f_{X(n)|N=n}(x; \lambda, \alpha, \beta) P(N = n), \tag{2.10}
\]
where \(f_{X(n)|N=n}(x; \lambda, \alpha, \beta) \) is the conditional pdf of \(X(n) = \max(X_1, X_2, ..., X_N) \) given \(N = n \), that is,

\[
\begin{align*}
f_{X(n)|N=n}(x; \lambda, \alpha, \beta) & = \frac{ne^{-\lambda x - \alpha x^{\beta}}}{1 + \lambda} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^{\beta}} \right)^{n-1} \\
& \times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta-1} \right]. \tag{2.11}
\end{align*}
\]

2.1.4 Moments

In order to find the moments of LWPS class of distributions the following Lemma is used.
Lemma 1.2 Let

\[L_1(\lambda, \alpha, \beta, n, z) = \int_0^\infty x^z e^{-\lambda x - \alpha x^\beta} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{n-1} \]
\[\times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta-1} \right] dx. \quad (2.12) \]

Then

\[L_1(\lambda, \alpha, \beta, n, z) = \sum_{i,j,k=0}^{\infty} \binom{n-1}{i} \binom{i}{j} \binom{j}{k} (-1)^{(i+j+k)} \lambda^i (\alpha(i+1)) \frac{\lambda^2 \Gamma(z+k+\beta l+1)}{(\lambda+1)^i} \]
\[\times \frac{\lambda^2 \Gamma(z+k+\beta l+2) + \alpha \beta (1+\lambda) \Gamma(z+k+\beta l+\beta)}{[\lambda(i+1)]^{z+k+\beta l+\beta}} \]
\[+ \frac{\alpha \beta \lambda \Gamma(z+k+\beta l+\beta+1)}{[\lambda(i+1)]^{z+k+\beta l+\beta+1}}. \]

Proof: Using the series expansions

\[(1 - x)^{n-1} = \sum_{i=0}^{\infty} \binom{n-1}{i} (-1)^i x^i \quad \text{and} \quad e^{-x} = \sum_{i=0}^{\infty} \frac{(-1)^i x^i}{i!}, \quad (2.13) \]

we obtain the following

\[L_1(\lambda, \alpha, \beta, n, z) = \int_0^\infty x^z e^{-\lambda x - \alpha x^\beta} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{n-1} \]
\[\times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta-1} \right] dx \]
\[= \sum_{i,j,k=0}^{\infty} \binom{n-1}{i} \binom{i}{j} \binom{j}{k} (-1)^{(i+j+k)} \lambda^i \frac{\lambda^2 \Gamma(z+k+\beta l+1)}{(1+\lambda)^i} \int_0^\infty x^{z+k} e^{-(i+1)\lambda x} e^{-(i+1)\alpha x^\beta} \]
\[\times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta-1} \right] dx \]
\[= \sum_{i,j,k=0}^{\infty} \binom{n-1}{i} \binom{i}{j} \binom{j}{k} (-1)^{(i+j+k)} \lambda^i (\alpha(i+1)) \frac{\lambda^2 \Gamma(z+k+\beta l+1)}{(1+\lambda)^i} \int_0^\infty x^{z+k+\beta l} e^{-(i+1)\lambda x} \]
\[\times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta-1} \right] dx \]
\[= \sum_{i,j,k=0}^{\infty} \binom{n-1}{i} \binom{i}{j} \binom{j}{k} (-1)^{(i+j+k)} \lambda^i (\alpha(i+1)) \frac{\lambda^2 \Gamma(z+k+\beta l+1)}{(1+\lambda)^i} \left[\lambda^2 \int_0^\infty x^{z+k+\beta l} e^{-(i+1)\lambda x} dx \right. \]
\[+ \lambda^2 \int_0^\infty x^{z+k+\beta l+1} e^{-(i+1)\lambda x} dx + \alpha \beta (1+\lambda) \int_0^\infty x^{z+k+\beta l+\beta-1} e^{-(i+1)\lambda x} dx + \alpha \beta \lambda \int_0^\infty x^{z+k+\beta l+\beta} e^{-(i+1)\lambda x} dx \right]. \]
Let \(u = (i + 1)\lambda x \), then \(du = (i + 1)\lambda dx \), and \(x = \frac{u}{(i + 1)\lambda} \), so that

\[
L_1(\lambda, \alpha, \beta, n, z) = \sum_{i,j,k=0}^{\infty} \left(\frac{n-1}{i} \right)_{j} \left(\frac{j}{k} \right) (-1)^{(i+j)} \lambda^i (\alpha(i + 1))^j \left[\lambda^2 \Gamma(z + k + \beta l + 1) \right.
\]
\[
(1 + \lambda)^j l! \left. \right[\lambda^2 \Gamma(z + k + \beta l + 2) + \alpha \beta (1 + \lambda) \Gamma(z + k + \beta l + \beta) \right. \left. \left[\lambda(i + 1) \right]^{z+k+\beta l+\beta} \right] + \alpha \beta \lambda \Gamma(z + k + \beta l + \beta + 1) \right] \right] \right].
\]

(2.14)

The \(r \)th moment of the LWPS class of distributions is given by

\[
E(X^r) = \int_0^\infty x^r f_{X_{(n)}}(x) dx,
\]

(2.15)

and using equation (2.10), we get

\[
E(X^r) = \sum_{n=1}^{\infty} P(N = n) E(X^r_{(n)}) = \sum_{n=1}^{\infty} P(N = n) \int_0^\infty x^r f_{X_{(n)}}(x; \lambda, \alpha, \beta) dx
\]

\[
= \sum_{n=1}^{\infty} P(N = n) \frac{n}{1 + \lambda} \int_0^\infty x^{r+1} e^{-\lambda x - \alpha x^\beta} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{n-1}
\]

\[
\times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta-1} \right].
\]

Applying Lemma 1.2, it follows that the \(r \)th moment of the LWPS class of distributions is given by

\[
E(X^r) = \sum_{n=1}^{\infty} P(N = n) E(X^r_{(n)}) = \sum_{n=1}^{\infty} P(N = n) \int_0^\infty x^r f_{X_{(n)}}(x; \lambda, \alpha, \beta) dx
\]

\[
= \sum_{n=1}^{\infty} P(N = n) \frac{n}{1 + \lambda} L_1(\lambda, \alpha, \beta, n, r).
\]

(2.16)

The mean(\(\mu \)), variance(\(\sigma^2 \)), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) are given by

\[
\mu = E(X) = \sum_{n=1}^{\infty} P(N = n) \frac{n}{1 + \lambda} L_1(\lambda, \alpha, \beta, n, 1),
\]

\[
CV = \frac{\sigma}{\mu} = \sqrt{\frac{\mu_3^2 - \mu_2^2}{\mu}},
\]

\[
CS = \frac{E[(X - \mu)^3]}{[E(X - \mu)^2]^\frac{3}{2}} = \frac{\mu_3 - 3\mu_2^2 + 2\mu_3}{(\mu_2 - \mu_2^2)^\frac{3}{2}},
\]

and

\[
CK = \frac{E[(X - \mu)^4]}{[E(X - \mu)^2]^2} = \frac{\mu_4 - 4\mu_2^2 + 6\mu_2^4 - 3\mu_4}{(\mu_2 - \mu_2^2)^2}.
\]
2.1.5 Conditional Moments

Lemma 1.3. Let

\[L_2(\lambda, \alpha, \beta, n, z, t) = \int_{t}^{\infty} x^z e^{-\lambda x - \alpha x^\beta} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{n-1} \]

\[\times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1} \right] dx. \]

Then

\[L_2(\lambda, \alpha, \beta, n, z, t) = \sum_{i,j,k=0}^{\infty} \frac{(n-1)(j)(i)}{(1 + \lambda)^i l!} \]

\[\frac{\lambda^2 \Gamma(z + k + \beta l + 1, (i + 1)\lambda t)}{[\lambda(i + 1)]^{z+k+\beta l+1}} + \frac{\lambda^2 \Gamma(z + k + \beta l + 2, (i + 1)\lambda t)}{[\lambda(i + 1)]^{z+k+\beta l+2}} \]

\[+ \frac{\alpha \beta (1 + \lambda) \Gamma(z + k + \beta l + \beta, (i + 1)\lambda t)}{[\lambda(i + 1)]^{z+k+\beta l+\beta}} \]

\[+ \frac{\alpha \beta \lambda \Gamma(z + k + \beta l + \beta + 1, (i + 1)\lambda t)}{[\lambda(i + 1)]^{z+k+\beta l+\beta+1}}. \]

Proof. Using the series expansions

\[(1 - x)^{n-1} = \sum_{i=0}^{\infty} \binom{n-1}{i} (-1)^i x^i \quad \text{and} \quad e^{-x} = \sum_{i=0}^{\infty} \frac{(-1)^i x^i}{i!}, \] (2.17)
we obtain the following

\[
L_2(\lambda, \alpha, \beta, n, z, t) = \int_0^\infty x^z e^{-\lambda x - \alpha x^\beta} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{n-1} dx
\]

\[
\times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1} \right] dx
\]

\[
= \sum_{i,j,k=0}^{\infty} \frac{(n-1)}{(1+i)} \frac{(j)}{(1+j)} \frac{(-1)^i \lambda^i}{(1+\lambda)^i} \int_0^\infty x^{z+k} e^{-(i+1)\lambda x} e^{-(i+1)\alpha x^\beta} dx
\]

\[
\times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1} \right] dx
\]

\[
= \sum_{i,j,k=0}^{\infty} \frac{(n-1)}{(1+i)} \frac{(j)}{(1+j)} \frac{(-1)^i \lambda^i (\alpha(i+1))^j}{(1+\lambda)^i j!}
\]

\[
\times \int_0^\infty x^{z+k+\beta} e^{-(i+1)\lambda x} \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1} \right] dx
\]

\[
= \sum_{i,j,k=0}^{\infty} \frac{(n-1)}{(1+i)} \frac{(j)}{(1+j)} \frac{(-1)^i \lambda^i (\alpha(i+1))^j}{(1+\lambda)^i j!}
\]

\[
\times \left[\lambda^2 \int_0^\infty x^{z+k+\beta} e^{-(i+1)\lambda x} dx + \lambda^2 \int_0^\infty x^{z+k+\beta+1} e^{-(i+1)\lambda x} dx + \alpha \beta (1 + \lambda) \int_0^\infty x^{z+k+\beta+1} e^{-(i+1)\lambda x} dx
\]

\[
+ \alpha \beta \lambda \int_0^\infty x^{z+k+\beta+\beta} e^{-(i+1)\lambda x} dx \right].
\]

Using \(u = (i + 1)\lambda x \), then \(du = (i + 1)\lambda dx \) and \(x = \frac{u}{(i+1)\lambda} \). Consequently,

\[
L_2(\lambda, \alpha, \beta, n, z, t) = \sum_{i,j,k=0}^{\infty} \frac{(n-1)}{(1+i)} \frac{(j)}{(1+j)} \frac{(-1)^i \lambda^i (\alpha(i+1))^j}{(1+\lambda)^i j!}
\]

\[
\times \left[\lambda^2 \Gamma(z + k + \beta + 1, (i+1)\lambda t) + \frac{\lambda^2 \Gamma(z + k + \beta + 2, (i+1)\lambda t)}{\Gamma(i+1)\Gamma(z+k+\beta+1)}
\]

\[
+ \frac{\alpha \beta (1 + \lambda) \Gamma(z + k + \beta + 1, (i+1)\lambda t)}{\Gamma(i+1)\Gamma(z+k+\beta+1)}
\]

\[
+ \frac{\alpha \beta \lambda \Gamma(z + k + \beta + \beta + 1, (i+1)\lambda t)}{\Gamma(i+1)\Gamma(z+k+\beta+1)} \right].
\]

Applying equation (2.10) and Lemma 1.3, the \(r \)-th conditional moment of the LWPS class of distributions is given by

\[
E(X^r \mid X > x) = \sum_{n=1}^\infty P(N = n) \frac{n}{1 + \lambda} \frac{L_2(\lambda, \alpha, \beta, n, r, x)}{1 - F_{LWPS}(x)}
\]

\[
= \sum_{n=1}^\infty \frac{a_n \theta^n L_2(\lambda, \alpha, \beta, n, r, x)}{C(\theta) - C \left(\theta \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right) \right)}.
\]

(2.18)
2.1.6 Mean Deviation, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as Lorenz and Bonferroni Curves for the LWPS distribution are presented in this section. The application of Lorenz and Bonferroni curves is not limited to economics for the study of income and poverty, but they can also be used to other areas including reliability, demography, insurance and medicine.

Mean Deviations

The mean deviation about the mean $D(\mu)$ and the mean deviation about the median $D(M)$, are defined as

$$D(\mu) = \int_0^\infty |x - \mu| f_{LWPS}(x)dx, \quad \text{and} \quad D(M) = \int_0^\infty |x - M| f_{LWPS}(x)dx,$$

(2.19)

respectively, where $\mu = E(X)$ and $M = Median(X) = F^{-1}(\frac{1}{2})$ is the median of $F_{LWPS}(\cdot)$. However, the following relationships can be used to evaluate the measures $D(\mu)$ and $D(M)$:

$$D(\mu) = 2\mu F_{LWPS}(\mu) - 2\mu + 2 \int_\mu^\infty xf_{LWPS}(x)dx,$$

(2.20)

and

$$D(M) = -\mu + 2 \int_M^\infty xf_{LWPS}(x)dx.$$

(2.21)

Using Lemma 1.3, we obtain

$$D(\mu) = 2\mu F_{LWPS}(\mu) - 2\mu + 2 \sum_{n=1}^\infty P(N = n) \frac{n}{1+\lambda} L_2(\lambda, \alpha, \beta, n, 1, \mu),$$

and

$$D(M) = -\mu + 2 \sum_{n=1}^\infty P(N = n) \frac{n}{1+\lambda} L_2(\lambda, \alpha, \beta, n, 1, M).$$

Lorenz and Bonferroni Curves

In this subsection, we present the Lorenz and Bonferroni curves for LWPS class of distributions. The Lorenz and Bonferroni curves have a number of applications in different fields such as medicine, income and poverty, reliability and insurance. The Lorenz and Bonferroni curves are given by

$$L(F_{LWPS}(x)) = \int_0^x t f_{LWPS}(t)dt \quad \text{and} \quad B(F_{LWPS}(x)) = \frac{L(F_{LWPS}(x))}{F_{LWPS}(x)},$$

22
or
\[L(p) = \frac{1}{\mu} \int_0^q x f_{LWPS}(x) dx, \quad \text{and} \quad B(p) = \frac{1}{p\mu} \int_0^q x f_{LWPS}(x) dx, \tag{2.22} \]
respectively, where \(q = F_{LWPS}^{-1}(p) \). Applying Lemma (1.3) in (2.22), we obtain
\[L(p) = \frac{1}{\mu} \left(\mu - \sum_{n=1}^{\infty} P(N = n) \frac{n}{1 + \lambda} L_2(\lambda, \alpha, \beta, n, 1, q) \right) \tag{2.23} \]
and
\[B(p) = \frac{1}{p\mu} \left(\mu - \sum_{n=1}^{\infty} P(N = n) \frac{n}{1 + \lambda} L_2(\lambda, \alpha, \beta, n, 1, q) \right). \tag{2.24} \]

2.1.7 Order Statistics and Rényi Entropy

The concept of entropy plays a very important role in information theory. The entropy of a random variable is defined in terms of its probability distribution and can be shown to be a good measure of randomness or uncertainty. In this section, we present the distribution of the order statistic and Rényi entropy.

Distribution of Order Statistics

Let \(X_1, X_2, \ldots, X_n \) be a random sample from the LWPS distribution and suppose \(X_{1:n} < X_{2:n}, \ldots < X_{n:n} \) denote the corresponding order statistics. The pdf of the \(k \)th order statistic is given by
\[f_{k:n}(x) = \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l f(x) [F(x)]^{k+l-1}. \tag{2.25} \]
Note, \(f(x) [F(x)]^{k+l-1} = \frac{1}{k+l+1} \frac{d}{dx} [F(x)]^{k+l} \). The corresponding pdf of \(f_{k:n}(x) \) is given by
\[
\begin{align*}
f_{k:n}(x) &= \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \left(\frac{-1}{k+l} \right)^l [F(x)]^{k+l} \\
&= \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \left(\frac{-1}{k+l} \right)^l \left[\frac{C\left(\theta \left(1 - \frac{1+\lambda+\lambda x}{1+\lambda} e^{-\lambda x-\alpha x^\beta}\right)\right)}{C(\theta)} \right]^{k+l} \\
&= \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \left(\frac{-1}{k+l} \right)^l F_{ELWPS}(x; \lambda, \alpha, \beta, \theta, k+l), \tag{2.26} \right.
\end{align*}
\]
where $F_{ELWPS}(x; \lambda, \alpha, \beta, \theta, k + l)$ is exponentiated LWPS (ELWPS) distribution function with parameters $\lambda, \alpha, \beta, \theta$ and $k + l$. Thus, the pdf of the k^{th} order statistic can be expressed as a linear combination of the pdf of the ELWPS class of distributions.

Rényi Entropy

In this subsection, Rényi entropy of the LWPS distribution is derived. An entropy is a measure of uncertainty or variation of a random variable. Rényi entropy is an extension of Shannon entropy. Rényi entropy is defined to be

$$I_R(v) = \frac{1}{1-v} \log \left(\int_0^\infty [f_{LWPS}(x; \lambda, \alpha, \beta, \theta)]^v dx \right), \quad v \neq 1, \quad v > 0. \quad (2.27)$$

Rényi entropy tends to Shannon entropy as $v \to 1$. Note that

$$[f_{LWPS}(x; \lambda, \alpha, \beta, \theta)]^v = f_{LWPS}^v(x)$$
can be written as

$$I_R(v) = 1 - \frac{1}{v} \log \left(\int_0^\infty \left[\sum_{n=1}^\infty P(N = n) \frac{n}{1 + \lambda} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{(n-1)v} \times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta \frac{x^{\beta-1}}{1 + \lambda x} \int_0^\infty \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{(n-1)v} \times \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta \frac{x^{\beta-1}}{1 + \lambda x} \right] \right] dx \right).$$

Consider the integral

$$\int_0^\infty e^{-v(\lambda x + \alpha x^\beta)} \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{(n-1)v} \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta \frac{x^{\beta-1}}{1 + \lambda x} \right]^v dx.$$

Applying the series expansion in (2.17) and the binomial expansion

$$(a + b)^n = \sum_{i=0}^\infty \left(\begin{array}{c} n \\ i \end{array} \right) a^i b^{n-i},$$

we obtain

$$\sum_{i,j,k,l,m,n,s,p=0}^{\infty} \left(\begin{array}{c} v(n-1) \\ i \end{array} \right) \left(\begin{array}{c} j \\ i \end{array} \right) \left(\begin{array}{c} l \\ j \end{array} \right) \left(\begin{array}{c} v-l \\ m \end{array} \right) \left(\begin{array}{c} n \\ s \end{array} \right) (-1)^i (-i+v)^p \times \lambda^{i+n+2(v-1)} \alpha^{l+p} \beta^l \int_0^\infty x^{k+l(\beta-1)+m+s+\beta l} e^{-\lambda x(i+v)} dx.$$
We evaluate the integral \(\int_0^\infty x^{k+l(\beta-1)+m+s+\beta l} e^{-\lambda x(i+v)} \, dx \). Let \(u = \lambda x(i+v) \), then \(x = \frac{u}{\lambda(i+v)} \) and \(dx = \frac{du}{\lambda(i+v)} \). The integral reduces to

\[
\frac{1}{[\lambda(v+i)]^{k+l(\beta-1)+m+s+\beta l+1}} \int_0^\infty u^{k+l(\beta-1)+m+s+\beta l} e^{-u} \, du
\]

\[
= \frac{1}{[\lambda(v+i)]^{k+l(\beta-1)+m+s+\beta l+1}} \Gamma (k + l(\beta - 1) + m + s + \beta l + 1).
\]

Consequently, Rényi entropy of the LWPS class of distributions reduces to

\[
I_R(v) = \frac{1}{1-v} \log \left[\sum_{n=1}^{\infty} P(N = n) \frac{n}{1+\lambda} \right]^v \sum_{i,j,k,l,m,n,s,p=0}^\infty \left(\frac{v(n-1)}{i} \right)^j \frac{1}{k \choose l} \frac{1}{m \choose n} \frac{1}{s \choose p} v^{l(\beta-1)+m+s+\beta l+1} \frac{(-1)^i(-l+i+v)^p\lambda^{j+n+2(v-l)}\alpha^{l+p}\beta^l}{[\lambda(v+i)]^{k+l(\beta-1)+m+s+\beta l+1}} \times \Gamma (k + l(\beta - 1) + m + s + \beta l + 1).
\]

2.1.8 Maximum Likelihood Estimation

Let \(X \sim LWPS(\alpha, \beta, \lambda, \theta) \) and \(\Delta = (\alpha, \beta, \lambda, \theta)^T \) be the parameter vector. The log-likelihood \(\ell = \ell(\Delta) \) based on a random sample of size \(n \) is given by

\[
\ell(\Delta) = n \ln \theta - n \lambda x_i - n \alpha \sum_{i=1}^n x_i^\beta \sum_{i=1}^n \ln \left[\lambda^2 (1 + x_i) + (1 + \lambda + \lambda x_i) \alpha x_i^{\beta-1} \right] + \sum_{i=1}^n \ln \left[C'(\theta \left(1 + \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i - \alpha x_i^\beta} \right)) \right] - n \ln C(\theta) - n \ln(1 + \lambda).
\]

The elements of the score vector are given in the Appendix. The equations obtained by setting the elements of the score vector to zero are not in closed form and the values of the parameters \((\alpha, \beta, \lambda, \theta) \) must be found via iterative methods. The maximum likelihood estimates of the parameters, denoted \(\hat\Delta \) is obtained by solving the nonlinear equation \(\left(\frac{\partial \ell}{\partial \alpha}, \frac{\partial \ell}{\partial \beta}, \frac{\partial \ell}{\partial \lambda}, \frac{\partial \ell}{\partial \theta} \right)^T = 0 \), using a numerical method such as Newton-Raphson procedure. The Fisher information matrix (FIM) is the \(4 \times 4 \) symmetric matrix given by \(\mathbf{I}(\Delta) = \left[I_{ij} \right]_{4 \times 4} = E\left(-\frac{\partial^2 \ell}{\partial \alpha_i \partial \alpha_j}\right) \), \(i, j = 1, 2, 3, 4 \), can be numerically obtained by NLMIXED in SAS or mle2 package in R, MATLAB or MAPLE software. The total Fisher information matrix \(\mathbf{I}_n(\Delta) \) can be approximated by

\[
\mathbf{J}_n(\Delta) \approx \left[-\frac{\partial^2 \ell}{\partial \alpha_i \partial \alpha_j} \left| \Delta = \hat\Delta \right. \right]_{4 \times 4}.
\]
Note that the expectations in the Fisher Information matrix (FIM) can be obtained numerically. Let \(\hat{\Delta} = (\hat{\alpha}, \hat{\beta}, \hat{\lambda}, \hat{\theta}) \) be the maximum likelihood estimate of \(\Delta = (\lambda, \beta, \theta, \alpha) \). Under the usual regularity conditions and that the parameters are in the interior of the parameter space, but not on the boundary, we have:
\[
\sqrt{n}(\hat{\Delta} - \Delta) \xrightarrow{d} N_4(0, I^{-1}(\Delta)),
\]
where \(I(\Delta) \) is the expected Fisher information matrix.

The asymptotic behavior is still valid if \(I(\Delta) \) is replaced by the observed information matrix evaluated at \(\hat{\Delta} \), that is \(J(\hat{\Delta}) \). The multivariate normal distribution \(N_4(0, J(\hat{\Delta})^{-1}) \), where the mean vector \(\underline{0} = (0, 0, 0, 0)^T \), can be used to construct confidence intervals and confidence regions for the individual parameters and for the survival and hazard rate functions.

2.2 A Sub-Model of LWPS Distribution and Properties

In this section, we derive some properties of the LW-logarithmic (LWL) distribution including expansion of the density, hazard and reverse hazard functions, quantile function and sub-models, moments, conditional moments and maximum likelihood estimates of model parameters. The LWL distribution is obtained from the LWPS distribution given in Equation (2.5) with \(a_n = \frac{1}{n} \), and \(C(\theta) = -\log(1 - \theta) \), where \(0 < \theta < 1 \). The cdf and pdf of the LWL distribution are given by

\[
F_{LWL}(x; \alpha, \beta, \lambda, \theta) = \frac{\log \left(1 - \theta \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right) \right)}{\log(1 - \theta)}
\]

and

\[
f_{LWL}(x; \alpha, \beta, \lambda, \theta) = \frac{\theta e^{-\lambda x - \alpha x^\beta}}{1 + \lambda} \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1} \right]
\times \frac{1 - \theta \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x - \alpha x^\beta} \right)^{-1} - \log(1 - \theta)}{- \log(1 - \theta)},
\]

respectively. Figure 2.1 represent the plots for the pdf of LWL distribution for different values of parameters. The graph takes various shapes including decreasing, almost symmetric, left skewed and right skewed.
2.2.1 Hazard and Reverse Hazard Functions

The hazard and reverse hazard functions of the LWL distribution are respectively given as follows:

\[
h_{LWL}(x; \alpha, \beta, \lambda, \theta) = \frac{\theta e^{-\lambda x - \alpha x^\beta}}{1 + \lambda} \left[\frac{\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1}}{1 - \theta \left(1 - \frac{1+\lambda+\lambda x}{1+\lambda} e^{-\lambda x - \alpha x^\beta} \right)^{-1}} \right]
\times \log \left(1 - \theta \left(1 - \frac{1+\lambda+\lambda x}{1+\lambda} e^{-\lambda x - \alpha x^\beta} \right) \right) - \log(1 - \theta)
\]

and

\[
\tau_{LWL}(x; \alpha, \beta, \lambda, \theta) = \frac{\theta e^{-\lambda x - \alpha x^\beta}}{1 + \lambda} \left[\frac{\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta - 1}}{1 - \theta \left(1 - \frac{1+\lambda+\lambda x}{1+\lambda} e^{-\lambda x - \alpha x^\beta} \right)^{-1}} \right]
\times \log \left(1 - \theta \left(1 - \frac{1+\lambda+\lambda x}{1+\lambda} e^{-\lambda x - \alpha x^\beta} \right) \right).
\]

Figure 2.2 represent the plots for the hazard function of LWL distribution for different parameter values. The graph takes various shapes including decreasing, increasing, bathtub and bathtub followed by upsidedown bathtub.
2.2.2 Quantile Function

The LWL quantile function can be obtained by substituting $C(\theta) = -\log(1 - \theta)$ in (2.8). That is, we solve the non-linear equation

$$-\log \left(1 - \theta \left(1 - \frac{1 + \lambda + \lambda Q_{X(u)}(u)}{1 + \lambda} e^{-\lambda Q_{X(u)}(u) - \alpha Q_{X(u)}(u)} \right) \right) + u \ln(1 - \theta) = 0. \quad (2.30)$$
Table 2.1: Table of Quantile for LWL Distribution

<table>
<thead>
<tr>
<th>(u)</th>
<th>(0.1, 0.5, 2.5, 0.5)</th>
<th>(0.4, 1, 1.2, 0.2)</th>
<th>(1.5, 1, 2.5, 0.5)</th>
<th>(3, 2.5, 3.5, 0.8)</th>
<th>(1.6, 4.5, 6.5, 0.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5947</td>
<td>0.1478</td>
<td>0.2136</td>
<td>0.1126</td>
<td>0.04267</td>
</tr>
<tr>
<td>0.2</td>
<td>0.9743</td>
<td>0.2911</td>
<td>0.3515</td>
<td>0.2212</td>
<td>0.0882</td>
</tr>
<tr>
<td>0.3</td>
<td>1.2812</td>
<td>0.4406</td>
<td>0.4614</td>
<td>0.3206</td>
<td>0.1374</td>
</tr>
<tr>
<td>0.4</td>
<td>1.5560</td>
<td>0.6023</td>
<td>0.5586</td>
<td>0.4097</td>
<td>0.1915</td>
</tr>
<tr>
<td>0.5</td>
<td>1.8185</td>
<td>0.7826</td>
<td>0.6506</td>
<td>0.4906</td>
<td>0.2523</td>
</tr>
<tr>
<td>0.6</td>
<td>2.0835</td>
<td>0.9916</td>
<td>0.7430</td>
<td>0.5666</td>
<td>0.3230</td>
</tr>
<tr>
<td>0.7</td>
<td>2.3677</td>
<td>1.2471</td>
<td>0.8415</td>
<td>0.6419</td>
<td>0.4089</td>
</tr>
<tr>
<td>0.8</td>
<td>2.6998</td>
<td>1.5883</td>
<td>0.9560</td>
<td>0.7228</td>
<td>0.5202</td>
</tr>
<tr>
<td>0.9</td>
<td>3.1592</td>
<td>2.1369</td>
<td>1.1136</td>
<td>0.8252</td>
<td>0.6802</td>
</tr>
</tbody>
</table>

2.2.3 Some Sub-models of the LWL Distribution

- If \(\alpha = 0, \theta \to 0^+ \) and \(\beta = 0 \), we obtain Lindley (L) Distribution.
- When \(\theta \to 0^+ \), we obtain Lindley Weibull (LW) distribution.
- When \(\theta \to 0^+ \) and \(\lambda \to 0^+ \), we obtain Weibull (W) distribution.
- When \(\beta = 2 \), we obtain Lindley-Rayleigh Logarithmic (LRL) distribution.
- When \(\alpha \to 0^+ \), we obtain Lindley-logarithmic (LL) distribution.
- When \(\lambda \to 0^+ \), we obtain Weibull-logarithmic (WL) distribution.
- When \(\lambda \to 0^+ \) and \(\beta = 2 \), we obtain Rayleigh-Logarithmic (RL) distribution.
- When \(\lambda \to 0^+ \) and \(\beta = 1 \), we obtain Exponential-Logarithmic (EL) distribution.
- When \(\beta = 1 \), we obtain Lindley-Exponential Logarithmic (LEL) distribution.
- When \(\theta \to 0^+ \), \(\lambda \to 0^+ \) and \(\beta = 1 \) we obtain Exponential (E) distribution.
- When \(\theta \to 0^+ \), \(\lambda \to 0^+ \) and \(\beta = 2 \) we obtain Rayleigh (R) distribution.
• When $\theta \rightarrow 0^+$ and $\beta = 2$ we obtain lindley-Rayleigh (R) distribution.

• When $\theta \rightarrow 0^+$ and $\beta = 1$ we obtain Lindley-Exponential (LE) distribution.

2.2.4 Moments and Conditional Moments

Substituting $C(\theta) = -\log(1 - \theta)$ in (2.16), the r^{th} moment of a random variable X from the LWL distribution is given by

$$E(X^r) = \sum_{n=1}^{\infty} a_n \theta^n \frac{n}{-\log(1 - \theta) \left(1 + \lambda\right)} L_1(\lambda, \alpha, \beta, n, r). \tag{2.31}$$

Table 2.2 below present the first six moments, standard deviation (SD), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) of the LWL distribution for different parameter values.

<table>
<thead>
<tr>
<th>$(\alpha, \lambda, \theta)$</th>
<th>$(0.1, 0.2, 0.5)$</th>
<th>$(0.7, 1.0, 1.5, 0.5)$</th>
<th>$(0.2, 2.0, 2.0, 0.2)$</th>
<th>$(3.4, 4.0, 0.5, 0.9)$</th>
<th>$(0.2, 2.2, 1.5, 0.5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(X)$</td>
<td>0.0282</td>
<td>0.3244</td>
<td>0.3286</td>
<td>0.1607</td>
<td>0.3261</td>
</tr>
<tr>
<td>$E(X^2)$</td>
<td>0.0178</td>
<td>0.2111</td>
<td>0.1957</td>
<td>0.0563</td>
<td>0.1987</td>
</tr>
<tr>
<td>$E(X^3)$</td>
<td>0.0131</td>
<td>0.1547</td>
<td>0.1364</td>
<td>0.0274</td>
<td>0.1404</td>
</tr>
<tr>
<td>$E(X^4)$</td>
<td>0.0104</td>
<td>0.1215</td>
<td>0.1037</td>
<td>0.0162</td>
<td>0.1077</td>
</tr>
<tr>
<td>$E(X^5)$</td>
<td>0.0086</td>
<td>0.0998</td>
<td>0.0832</td>
<td>0.0108</td>
<td>0.0870</td>
</tr>
<tr>
<td>$E(X^6)$</td>
<td>0.0074</td>
<td>0.0845</td>
<td>0.0693</td>
<td>0.0079</td>
<td>0.0728</td>
</tr>
<tr>
<td>SD</td>
<td>0.0064</td>
<td>0.0732</td>
<td>0.0593</td>
<td>0.0061</td>
<td>0.0625</td>
</tr>
<tr>
<td>CV</td>
<td>0.0057</td>
<td>0.0645</td>
<td>0.0518</td>
<td>0.0049</td>
<td>0.0547</td>
</tr>
<tr>
<td>CS</td>
<td>0.0051</td>
<td>0.0577</td>
<td>0.0459</td>
<td>0.0041</td>
<td>0.0486</td>
</tr>
<tr>
<td>CK</td>
<td>0.0046</td>
<td>0.0521</td>
<td>0.0412</td>
<td>0.0035</td>
<td>0.0437</td>
</tr>
</tbody>
</table>

Substituting $C(\theta) = -\log(1 - \theta)$ in (2.18), the r^{th} conditional moment of the LWL distribution is given by

$$E(X^r | X > x) = \sum_{n=1}^{\infty} \frac{a_n \theta^n L_2(\lambda, \alpha, \beta, n, r, x)}{\log \left(1 - \theta \left(1 - \frac{1 + \lambda + \lambda x e^{-\lambda x - \alpha x^2}}{1 + \lambda} \right) \right) - \log(1 - \theta)}. \tag{2.32}$$
2.2.5 Maximum Likelihood Estimation

Let \(X \sim LWL(\alpha, \beta, \lambda, \theta) \) and \(\Delta = (\alpha, \beta, \lambda, \theta)^T \) be the parameter vector. The log-likelihood \(\ell = \ell(\Delta) \) based on a random sample of size \(n \) is given by

\[
\ell(\Delta) = n \ln \theta - n\lambda x_i - \alpha \sum_{i=1}^{n} x_i^{\beta} + \sum_{i=1}^{n} \ln \left[\lambda^2 (1 + x_i) + (1 + \lambda + \lambda x_i) \alpha \beta x_i^{\beta - 1} \right] \\
- \sum_{i=1}^{n} \ln \left[1 - \theta \left(1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i - \alpha x_i^{\beta}} \right) \right] \\
- \sum_{i=1}^{n} \ln \left(-\log(1 - \theta) \right) - n \ln(1 + \lambda).
\] (2.33)

The partial derivatives of the log-likelihood function with respect to \(\beta, \theta, \alpha \) and \(\lambda \) are given by

\[
\frac{\partial \ell}{\partial \beta} = -\alpha \sum_{i=1}^{n} x_i^{\beta} \ln x_i + \sum_{i=1}^{n} \frac{\alpha(1 + \lambda + \lambda x_i) [x_i^{\beta - 1}(1 + \beta \ln x_i)]}{\lambda^2 (1 + x_i) + (1 + \lambda + \lambda x_i) \alpha \beta x_i^{\beta - 1}} \\
+ \sum_{i=1}^{n} \theta \frac{(1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^{\beta}})}{(1 - \theta (1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i - \alpha x_i^{\beta}}))} x_i^{\beta} \ln x_i
\]

\[
\frac{\partial \ell}{\partial \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \left(\frac{1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i - \alpha x_i^{\beta}}}{1 - \theta \left(1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i - \alpha x_i^{\beta}} \right)} \right) - \sum_{i=1}^{n} \frac{(1 - \theta)^{-1}}{-\log(1 - \theta)},
\]

\[
\frac{\partial \ell}{\partial \alpha} = -\sum_{i=1}^{n} x_i^{\beta} + \sum_{i=1}^{n} \frac{(1 + \lambda + \lambda x_i)(\beta x_i^{\beta - 1})}{\lambda^2 (1 + x_i) + (1 + \lambda + \lambda x_i) \alpha \beta x_i^{\beta - 1}} \\
+ \sum_{i=1}^{n} \theta \frac{(1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^{\beta}})}{(1 - \theta (1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i - \alpha x_i^{\beta}}))} x_i^{\beta}
\]

and

\[
\frac{\partial \ell}{\partial \lambda} = -nx_i + \sum_{i=1}^{n} \frac{2\lambda (1 + x_i) + (1 + x_i) \alpha \beta x_i^{\beta - 1}}{\lambda^2 (1 + x_i) + (1 + \lambda + \lambda x_i) \alpha \beta x_i^{\beta - 1}} \\
+ \sum_{i=1}^{n} \theta e^{-\lambda x_i - \alpha x_i^{\beta}} \left[x_i \left(\frac{1 + \lambda + \lambda x_i}{1 + \lambda} - \frac{(1 + \theta)(1 + x_i) - (1 + \lambda + \lambda x_i)}{(1 + \lambda)^2} \right) \right] \left(1 - \theta \left(1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i - \alpha x_i^{\beta}} \right) \right).
\]

The maximum likelihood estimates (MLEs) can be obtained by equating the above partial derivatives to zero and solving. Since the partial derivatives are not in closed form, numerical methods such as Newton-Raphson procedure can be used to obtain the MLE of the model parameters.
2.3 Simulation Study

In this section, we examine the performance of the LWL distribution by conducting various simulations for different sizes \(n = 25, 50, 100, 200, 400, 800 \) via the R package. We simulate \(N = 1000 \) samples for the true parameters values given in the Table. The bias and RMSE are given by:

\[
\text{Bias}(\hat{\theta}) = \frac{\sum_{i=1}^{N} \hat{\theta}_i}{N} - \theta, \quad \text{and} \quad \text{RMSE}(\hat{\theta}) = \sqrt{\frac{\sum_{i=1}^{N} (\hat{\theta}_i - \theta)^2}{N}},
\]

respectively.

Table 2.3: Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample Size</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
<th>Sample Size</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
<th>Sample Size</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>25</td>
<td>1.2534</td>
<td>0.9861</td>
<td>-0.2466</td>
<td>25</td>
<td>1.2564</td>
<td>0.9766</td>
<td>0.2644</td>
<td>25</td>
<td>0.9346</td>
<td>0.5115</td>
<td>-0.1654</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.2590</td>
<td>0.8629</td>
<td>-0.2409</td>
<td>50</td>
<td>1.2345</td>
<td>0.7493</td>
<td>0.2344</td>
<td>50</td>
<td>0.8328</td>
<td>0.4880</td>
<td>-0.1672</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.2634</td>
<td>0.9255</td>
<td>-0.2586</td>
<td>100</td>
<td>2.6761</td>
<td>0.6222</td>
<td>0.1671</td>
<td>100</td>
<td>0.8499</td>
<td>0.4688</td>
<td>-0.1501</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.3099</td>
<td>0.7551</td>
<td>-0.1901</td>
<td>200</td>
<td>2.5057</td>
<td>0.5422</td>
<td>0.1507</td>
<td>200</td>
<td>0.9094</td>
<td>0.4500</td>
<td>-0.1306</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1.4262</td>
<td>0.7434</td>
<td>-0.0737</td>
<td>400</td>
<td>2.6233</td>
<td>0.4470</td>
<td>0.1123</td>
<td>400</td>
<td>0.8751</td>
<td>0.4139</td>
<td>-0.1248</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1.4068</td>
<td>0.7093</td>
<td>-0.0032</td>
<td>800</td>
<td>2.5464</td>
<td>0.3784</td>
<td>0.0464</td>
<td>800</td>
<td>0.9023</td>
<td>0.3694</td>
<td>-0.0976</td>
</tr>
<tr>
<td>(\beta)</td>
<td>25</td>
<td>0.7874</td>
<td>0.6660</td>
<td>-0.0125</td>
<td>25</td>
<td>1.5949</td>
<td>1.2565</td>
<td>0.1949</td>
<td>25</td>
<td>0.8649</td>
<td>0.3586</td>
<td>-0.1350</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.7553</td>
<td>0.5187</td>
<td>-0.0646</td>
<td>50</td>
<td>1.4882</td>
<td>0.8146</td>
<td>0.0882</td>
<td>50</td>
<td>0.8609</td>
<td>0.2920</td>
<td>-0.1300</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.7445</td>
<td>0.3177</td>
<td>-0.0554</td>
<td>100</td>
<td>1.4183</td>
<td>0.2656</td>
<td>0.0183</td>
<td>100</td>
<td>0.8808</td>
<td>0.2564</td>
<td>-0.1191</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.7486</td>
<td>0.1654</td>
<td>-0.0513</td>
<td>200</td>
<td>1.4129</td>
<td>0.3984</td>
<td>0.0129</td>
<td>200</td>
<td>0.8904</td>
<td>0.2249</td>
<td>-0.1095</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.7744</td>
<td>0.1285</td>
<td>-0.0255</td>
<td>400</td>
<td>1.3987</td>
<td>0.1201</td>
<td>-0.0012</td>
<td>400</td>
<td>0.9214</td>
<td>0.1782</td>
<td>-0.0785</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.7873</td>
<td>0.0962</td>
<td>-0.0126</td>
<td>800</td>
<td>1.4032</td>
<td>0.0999</td>
<td>0.0032</td>
<td>800</td>
<td>0.9504</td>
<td>0.1385</td>
<td>-0.0495</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>25</td>
<td>1.1371</td>
<td>0.9698</td>
<td>0.2371</td>
<td>25</td>
<td>0.3351</td>
<td>0.8156</td>
<td>0.1351</td>
<td>25</td>
<td>0.6159</td>
<td>0.7332</td>
<td>0.4159</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.0890</td>
<td>0.9565</td>
<td>0.1860</td>
<td>50</td>
<td>0.2437</td>
<td>0.6216</td>
<td>0.0437</td>
<td>50</td>
<td>0.5867</td>
<td>0.7038</td>
<td>0.3867</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0998</td>
<td>0.8747</td>
<td>0.1398</td>
<td>100</td>
<td>0.2305</td>
<td>0.5072</td>
<td>0.0305</td>
<td>100</td>
<td>0.5742</td>
<td>0.6481</td>
<td>0.3192</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.9939</td>
<td>0.8167</td>
<td>0.0939</td>
<td>200</td>
<td>0.1914</td>
<td>0.4923</td>
<td>-0.0085</td>
<td>200</td>
<td>0.4610</td>
<td>0.5887</td>
<td>0.2610</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.8444</td>
<td>0.7475</td>
<td>-0.0555</td>
<td>400</td>
<td>0.1874</td>
<td>0.4070</td>
<td>-0.0125</td>
<td>400</td>
<td>0.4071</td>
<td>0.5214</td>
<td>0.2071</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.6848</td>
<td>0.6870</td>
<td>-0.0451</td>
<td>800</td>
<td>0.1737</td>
<td>0.3361</td>
<td>-0.0262</td>
<td>800</td>
<td>0.3373</td>
<td>0.4464</td>
<td>0.1373</td>
</tr>
<tr>
<td>(\theta)</td>
<td>25</td>
<td>0.6064</td>
<td>0.6444</td>
<td>-0.0955</td>
<td>25</td>
<td>0.6075</td>
<td>0.2703</td>
<td>1.0765</td>
<td>25</td>
<td>0.5096</td>
<td>0.2647</td>
<td>0.0961</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.6120</td>
<td>0.2975</td>
<td>-0.0879</td>
<td>50</td>
<td>0.6133</td>
<td>0.2734</td>
<td>0.1133</td>
<td>50</td>
<td>0.5055</td>
<td>0.2678</td>
<td>0.0955</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.5902</td>
<td>0.2885</td>
<td>-0.1097</td>
<td>100</td>
<td>0.5926</td>
<td>0.2665</td>
<td>0.0926</td>
<td>100</td>
<td>0.5689</td>
<td>0.2562</td>
<td>0.0689</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.5928</td>
<td>0.2678</td>
<td>-0.1071</td>
<td>200</td>
<td>0.5704</td>
<td>0.2659</td>
<td>0.0704</td>
<td>200</td>
<td>0.5565</td>
<td>0.2456</td>
<td>0.0565</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.5962</td>
<td>0.2616</td>
<td>-0.1017</td>
<td>400</td>
<td>0.5532</td>
<td>0.2455</td>
<td>0.0532</td>
<td>400</td>
<td>0.5134</td>
<td>0.2405</td>
<td>0.0154</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.6176</td>
<td>0.2390</td>
<td>-0.0923</td>
<td>800</td>
<td>0.5662</td>
<td>0.2336</td>
<td>0.0962</td>
<td>800</td>
<td>0.4924</td>
<td>0.2267</td>
<td>-0.0075</td>
</tr>
</tbody>
</table>

From the results, we can verify that as the sample size \(n \) increases, the mean estimates of the parameters tend to be closer to the true parameter values, since RMSEs decay toward zero.

2.4 Applications

In this section, examples to illustrate the flexibility of the LWL distribution by fitting some special cases, and their sub-models for data modeling are...
presented. Estimates of the parameters of each distribution (standard error in parentheses), Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Cramer von Mises (W^*), Andersen-Darling (A^*), Kolmogorov Simirnov (KS) and sum of squares (SS) from the probability plots are presented for each data set. We also compare LWL distribution to the non-nested new modified Weibull (NMW) distribution introduced by (Doostmoradi et al. [22]) and a four parameter beta generalized exponential (BGE) introduced by (Barreto-Souza et al. [7]). The pdf of four parameter NMW and BGE distributions are given in equation (2.34) and equation (2.35), respectively, that is,

$$g_{NMW}(x) = \left(\alpha \gamma x^{\gamma-1} e^{\alpha x \gamma} + \lambda \beta x^{\lambda-1} e^{-\beta x \lambda} \right) e^{-e^{\alpha x \gamma} + e^{-\beta x \lambda}}, \quad x > 0,$$

and

$$g_{BGE}(x) = \frac{\alpha \lambda}{B(a, b)} e^{-\lambda x} \left(1 - e^{-\lambda x} \right)^{a-1} \left(1 - (1 - e^{-\lambda x})^{a} \right)^{b-1}, \quad x > 0.$$

The maximum likelihood estimates (MLEs) of the LWL parameters are computed by maximizing the objective function via the subroutine NLMIXED in SAS as well as the function nlm in R. The estimated values of the parameters (standard error in parenthesis), -2log-likelihood statistic, Akaike Information Criterion, $AIC = 2p - 2 \ln(L)$, and Bayesian Information Criterion, $BIC = p \ln(n) - 2 \ln(L)$, and Consistent Akaike Information Criterion, $AICC = AIC + \frac{2p(p+1)}{n-p-1}$ where $L = L(\hat{\Delta})$ is the value of the likelihood function evaluated at the parameter estimates, n is the number of observations, and p is the number of estimated parameters.

Plots of the fitted densities, the histogram of the data and probability plots (Chambers et al. [14]) are given in Figure 2.3 for the fracture toughness of alumina data and in Figure 2.4 for the exceedances of wheaton river flood data, respectively. For the probability plot, we plotted $F_{LWPS}(x(j); \hat{\alpha}, \hat{\beta}, \hat{\lambda}, \hat{\theta})$ against $j - 0.375 \over n + 0.25$, $j = 1, 2, \cdots, n$, where $x(j)$ are the ordered values of the observed data. The measures of closeness are given by the sum of squares

$$SS = \sum_{j=1}^{n} \left[F_{LWPS}(x(j)) - \left(\frac{j - 0.375}{n + 0.25} \right) \right]^2.$$

The goodness-of-fit statistics W^* and A^*, described by (Chen and Balakrishnan [16]) are also presented in the tables. These statistics can be used
to verify which distribution fits better to the data. In general, the smaller the
values of W^*, A^* and KS, the better the fit.

2.4.1 The Fracture Toughness of Alumina Data

This data consist of 119 observations of the fracture toughness of Alumina
(Al_2O_3) (in the units of MPa m$^{1/2}$), from (Nadarajah and Kotz [54]). These data
are: 5.50, 5.00, 4.90, 6.40, 5.10, 5.20, 5.00, 4.70, 4.00, 4.50, 4.20, 4.10, 4.56,
5.01, 4.70, 3.13, 3.12, 2.68, 2.77, 2.70, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66,
2.61, 1.68, 2.04, 2.08, 2.13, 3.80, 3.73, 3.71, 3.28, 3.90, 4.00, 3.80, 4.10, 3.90,
4.05, 4.00, 3.95, 4.00, 4.50, 4.50, 4.20, 4.55, 4.65, 4.10, 4.25, 4.30, 4.50, 4.70,
5.15, 4.30, 4.50, 4.90, 5.00, 5.35, 5.15, 5.25, 5.80, 5.85, 5.90, 5.75, 6.25, 6.05,
5.90, 3.60, 4.10, 4.50, 5.30, 4.85, 5.30, 5.45, 5.10, 5.30, 5.20, 5.30, 5.25, 4.75,
4.50, 4.20, 4.00, 4.15, 4.25, 4.30, 3.75, 3.95, 3.51, 4.13, 5.40, 5.00, 2.10, 4.60,
3.20, 2.50, 4.10, 3.50, 3.20, 3.30, 4.60, 4.30, 4.30, 4.50, 5.50, 4.60, 4.90, 4.30,
3.00, 3.40, 3.70, 4.40, 4.90, 4.90, 5.00.

Estimates of the parameters of LWL distribution (standard errors
in parenthesis), Akaike Information Criterion (AIC), Consistent Akaike
Information Criterion (CAIC), Bayesian Information Criterion (BIC) are
given in Table 5.1 for the Fracture Toughness of Alumina Data. The sum of
squares and the goodness-of-fit statistics W^* and A^* are also given. Plots
of histogram and fitted densities, and observed probability versus predicted
probability for the Fracture Toughness of Alumina Data are given in Figures 5.1.

Testing the hypothesis $H_0 : L$ against $H_a : LWL$, the LR statistic is
197.6622 (p-value < 0.00001). Since the p-value is small, we reject the null
hypothesis and conclude that there is a significant difference between L and
LWL distributions. There are no significant differences between LW and LWL
distributions and well as between WL and LWL distributions base on the LR
tests, however the values of the goodness-of-fit statistics: W^*, A^*, KS and
its p-value clearly show that the LWL distribution is by far the better fit
for the Fracture Toughness of Alumina data. The value of sum of squares
(SS=0.06617918) from the probability plots in Figure 5.1 is smaller for LWL distribution. Also, the goodness-of-fit statistics W^* and A^* are smaller for LWL distribution as compared to nested and non-nested distributions for the Fracture Toughness of Alumina Data, hence we can conclude that the LWL distribution is a better fit.

Table 2.4: MLEs of the parameters, SEs in parenthesis and the goodness–of–fit statistics for Fracture Toughness of Alumina Data

<table>
<thead>
<tr>
<th>Distribution</th>
<th>α</th>
<th>β</th>
<th>λ</th>
<th>θ</th>
<th>$-2\log L$</th>
<th>AIC</th>
<th>CAIC</th>
<th>BIC</th>
<th>SS</th>
<th>W^*</th>
<th>A^*</th>
<th>K-S</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWL</td>
<td>0.0019</td>
<td>2.5669</td>
<td>0.0012</td>
<td>0.0097</td>
<td>337.1237</td>
<td>345.1237</td>
<td>345.3988</td>
<td>358.2538</td>
<td>0.0082</td>
<td>0.0574</td>
<td>0.4197</td>
<td>0.0088</td>
<td>0.7922</td>
</tr>
<tr>
<td></td>
<td>(0.0018)</td>
<td>(0.0740)</td>
<td>(0.0013)</td>
<td>(0.0265)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LW</td>
<td>4.5803×10^{-4}</td>
<td>4.3660</td>
<td>0.0007×10^{-4}</td>
<td>0.8487</td>
<td>337.4137</td>
<td>343.4137</td>
<td>343.7952</td>
<td>351.7511</td>
<td>0.0421</td>
<td>0.0199</td>
<td>0.1439</td>
<td>0.0720</td>
<td>0.2677</td>
</tr>
<tr>
<td></td>
<td>(4.1482×10^{-4})</td>
<td>(2.3858×10^{-4})</td>
<td>(8.6000×10^{-4})</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
<td>0.0007</td>
<td>0.3987</td>
<td>536.7649</td>
<td>536.7649</td>
<td>536.9268</td>
<td>536.9516</td>
<td>4.8487</td>
<td>0.0142</td>
<td>2.1520</td>
<td>0.2353</td>
<td>4.795×10^{-10}</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.0243)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.0005</td>
<td>4.9849</td>
<td>0</td>
<td>0</td>
<td>337.4137</td>
<td>343.4137</td>
<td>343.7952</td>
<td>351.7511</td>
<td>18.2895</td>
<td>0.0199</td>
<td>0.1439</td>
<td>0.0720</td>
<td>0.2677</td>
</tr>
<tr>
<td></td>
<td>(4.1612×10^{-4})</td>
<td>(3.13×10^{-4})</td>
<td></td>
</tr>
<tr>
<td>WL</td>
<td>0.0017</td>
<td>4.5371</td>
<td>0</td>
<td>0.7411</td>
<td>336.5832</td>
<td>336.5832</td>
<td>336.7952</td>
<td>350.0254</td>
<td>38.5007</td>
<td>38.6708</td>
<td>2.175×10^{-16}</td>
<td>2.3×10^{-16}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0420)</td>
<td>-</td>
<td>(0.0582)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>β</td>
<td>λ</td>
<td>θ</td>
<td>$-2\log L$</td>
<td>AIC</td>
<td>CAIC</td>
<td>BIC</td>
<td>SS</td>
<td>W^*</td>
<td>A^*</td>
<td>K-S</td>
<td>P-value</td>
</tr>
<tr>
<td>NMW</td>
<td>0.0157</td>
<td>0.0001</td>
<td>5.7942</td>
<td>0.5186</td>
<td>447.8869</td>
<td>455.8869</td>
<td>455.7579</td>
<td>468.5254</td>
<td>6.4989</td>
<td>0.3063</td>
<td>2.1196</td>
<td>0.2554</td>
<td>2.95×10^{-15}</td>
</tr>
<tr>
<td></td>
<td>(0.0172)</td>
<td>(0.0006)</td>
<td>(0.0005)</td>
<td>(0.5186)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>$-2\log L$</td>
<td>AIC</td>
<td>CAIC</td>
<td>BIC</td>
<td>SS</td>
<td>W^*</td>
<td>A^*</td>
<td>K-S</td>
<td>P-value</td>
</tr>
<tr>
<td>BGE</td>
<td>8.5389</td>
<td>0.1009</td>
<td>0.6171</td>
<td>2136.5388</td>
<td>337.8869</td>
<td>345.8869</td>
<td>345.7579</td>
<td>358.5254</td>
<td>28.0244</td>
<td>0.0002</td>
<td>0.5197</td>
<td>0.0771</td>
<td>0.5825</td>
</tr>
<tr>
<td></td>
<td>(3.8587)</td>
<td>(0.5243)</td>
<td>(0.5243)</td>
<td>(0.0007)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.3: Fitted densities and Probability plots of The Fracture Toughness of Alumina Data
2.4.2 Carbon Fibre Data

The second data consist of uncensored data set from (Nichols and Padgett [59]) on the breaking stress of carbon fibers (in Gba). The data is given in Table 5.

3.70	2.74	2.73	2.50	3.60	3.11	3.27	2.87	1.47	3.11	3.56																				
4.42	2.41	3.19	3.22	1.69	3.28	3.09	1.87	3.15	4.90	1.57																				
2.67	2.93	3.22	3.39	2.81	4.20	3.33	2.55	3.31	3.31	2.85																				
1.25	4.38	1.84	0.39	3.68	2.48	0.85	1.61	2.79	4.70	2.03																				
1.89	2.88	2.82	2.05	3.65	3.75	2.43	2.95	2.97	3.39	2.96																				
2.35	2.55	2.59	2.03	1.61	2.12	3.15	1.08	2.56	1.80	2.53																				

Table 2.5: Carbon Fiber Data

Estimates of the parameters of LWL distribution (standard errors in parenthesis), Akaike Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information Criterion (BIC) are given in Table 5.3 for the Carbon fibre data. The sum of squares and the goodness–of–fit statistics W^* and A^* are also given. Plots of histogram and fitted densities, observed probability versus predicted probability for the Carbon fibre data are given in Figures 5.2.

Testing the hypothesis $H_0 : L$ against $H_1 : LWL$, the LR statistic is 73.7414 (p–value< 0.00001). Since the p–value is small, we reject the null hypothesis and conclude that there is a significant difference between L and LWL. The value of sum of squares (SS=0.0615221) from the probability plots in Figure 5.2 is smaller for LWL distribution. Also, we can conclude that the LWL distribution is the better fit from the goodness–of–fit statistics W^* and A^* as they are small for LWL distribution as compared to other distributions for the Carbon fibre data.
Table 2.6: MLEs of the parameters, SEs in parenthesis and the goodness–of–fit statistics for Carbon fibre data

<table>
<thead>
<tr>
<th>Distribution</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\lambda)</th>
<th>(\theta)</th>
<th>(-2\log L)</th>
<th>AIC</th>
<th>CAIC</th>
<th>BIC</th>
<th>RH</th>
<th>(H^*)</th>
<th>(A^*)</th>
<th>K-S</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWL</td>
<td>0.0130</td>
<td>3.7700</td>
<td>0.1212</td>
<td>0.0336</td>
<td>171.0267</td>
<td>179.0267</td>
<td>179.6824</td>
<td>187.7853</td>
<td>0.0513</td>
<td>0.0842</td>
<td>0.4013</td>
<td>0.0103</td>
<td>0.7963</td>
</tr>
<tr>
<td></td>
<td>(0.0342)</td>
<td>(1.4988)</td>
<td>(0.0927)</td>
<td>(2.8071)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LW</td>
<td>0.0127</td>
<td>3.7630</td>
<td>0.1206</td>
<td>0</td>
<td>171.0268</td>
<td>177.0268</td>
<td>177.4139</td>
<td>183.9084</td>
<td>0.0416</td>
<td>0.0362</td>
<td>0.4014</td>
<td>0.0105</td>
<td>0.7953</td>
</tr>
<tr>
<td></td>
<td>(0.0086)</td>
<td>(1.4800)</td>
<td>(0.0760)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
<td>0.5903</td>
<td>0</td>
<td>244.7681</td>
<td>246.7681</td>
<td>246.8379</td>
<td>249.8379</td>
<td>2.0889</td>
<td>2.1371</td>
<td>1.1451</td>
<td>2.9772</td>
<td>1.661 x 10^{-16}</td>
</tr>
<tr>
<td></td>
<td>(0.0532)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>0.0233</td>
<td>3.4412</td>
<td>0</td>
<td>0</td>
<td>172.1352</td>
<td>176.1352</td>
<td>176.2536</td>
<td>180.5145</td>
<td>0.0409</td>
<td>0.0529</td>
<td>0.2602</td>
<td>0.0823</td>
<td>0.7925</td>
</tr>
<tr>
<td></td>
<td>(0.0091)</td>
<td>(0.3109)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL</td>
<td>0.0154</td>
<td>3.6761</td>
<td>0</td>
<td>0.7750</td>
<td>171.4863</td>
<td>175.4863</td>
<td>175.8424</td>
<td>180.6253</td>
<td>20.8769</td>
<td>20.9841</td>
<td>131.3425</td>
<td>0.0063</td>
<td>2.2 x 10^{-17}</td>
</tr>
<tr>
<td></td>
<td>(0.0985)</td>
<td>(0.3760)</td>
<td>-</td>
<td>(0.4104)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(\beta)</td>
<td>(\lambda)</td>
<td>(\gamma)</td>
<td>LWL</td>
<td>LW</td>
<td>L</td>
<td>W</td>
<td>NMW</td>
<td>BGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0140</td>
<td>0.0111</td>
<td>3.9621</td>
<td>4.4787</td>
<td>197.1722</td>
<td>203.1722</td>
<td>203.2580</td>
<td>206.4380</td>
<td>0.4725</td>
<td>0.1063</td>
<td>1.041847</td>
<td>0.1860</td>
<td>0.0179</td>
</tr>
<tr>
<td></td>
<td>(0.0021)</td>
<td>(0.0077)</td>
<td>(0.1513)</td>
<td>(1.3527)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha)</td>
<td>(\lambda)</td>
<td>(\beta)</td>
<td>BGE</td>
<td>4.7766</td>
<td>0.5897</td>
<td>0.8750</td>
<td>131.4900</td>
<td>131.3907</td>
<td>179.4900</td>
<td>179.5400</td>
<td>180.5280</td>
<td>180.6253</td>
</tr>
<tr>
<td></td>
<td>(2.0371)</td>
<td>(0.0400)</td>
<td>(0.3820)</td>
<td>(0.0001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.4: Fitted densities and Probability plots of Carbon fibre data

2.5 Conclusions

Presented is a new class of distributions called the Lindley-Weibull power series class of distributions that are suitable for applications in various areas including reliability, survival analysis and actuarial sciences just to mention a few areas. This distribution and some of its structural properties including hazard and reverse hazard functions, quantile function, moments, conditional moments, mean deviations, Bonferroni and Lorenz curves, Rényi entropy, distribution of order statistics and maximum likelihood estimates are presented. Applications
of the special case of the LWL model to real data sets are given in order to illustrate the applicability and usefulness of the proposed class of distributions. These distributions were also compared to some non-nested models.
Chapter 3

A New Gamma Generalized Lindley-Log-logistic (GELLLoG) Distribution

This chapter employs exponentiation, competing risk transformation and ZB-G formulation to obtain a new distribution involving both the Lindley and log-logistic distributions. The new distribution called the gamma exponentiated Lindley log-logistic (GELLLoG) distribution is quite useful, generalizes the Lindley, generalized Lindley and log-logistic distributions, and is more flexible distribution for the description of reliability and lifetime data. The combined distribution of Lindley and log-logistic is obtained from the product of the reliability or survival functions of the Lindley and log-logistic distributions via competing risk model. A motivation for developing this model is the advantages presented by this extended distribution with respect to having a hazard function that exhibits increasing, decreasing and bathtub shapes, as well as the versatility and flexibility of exponentiated distributions in general, as well as the Lindley and log-logistic distributions in modeling lifetime data.
3.1 The Model, Series Expansion of Density Function, Sub-models, Hazard and Quantile Functions

In this section, some properties of the new gamma exponentiated Lindley log-Logistic (GELLLoG) distribution including expansion of the density, hazard function, quantile function, sub-models, moments, conditional moments and maximum likelihood estimation of model parameters are derived.

The cdf, survival function (sf) and pdf of the exponentiated Lindley log-logistic (ELLLoG) distribution (Oluyede et al. [62]) are given by

\[G(x; \lambda, c, \alpha) = \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda e^{-\frac{1}{1 + x^c}}} \right]^\alpha, \tag{3.1} \]

\[\overline{G}(x; \lambda, c, \alpha) = 1 - \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right]^\alpha, \tag{3.2} \]

and

\[g(x; \lambda, c, \alpha) = \alpha \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right]^{\alpha-1} \times \frac{(1 + x^c)^{-1}}{1 + \lambda} e^{-\lambda x} \left[\lambda^2 (1 + x) + \frac{(1 + \lambda + \lambda x)(\lambda x e^{c-1})}{1 + x^c} \right], \tag{3.3} \]

respectively, for \(\lambda, c, \alpha > 0 \). If a random variable \(X \) has the ELLLoG distribution, we write \(X \sim ELLLoG(\lambda, c, \alpha) \).

The cdf and pdf of the proposed gamma exponentiated Lindley log-logistic (GELLLoG) distribution are given by

\[F_{GELLLoG}(x; \lambda, c, \alpha, \delta) = \frac{1}{\Gamma(\delta)} \int_0^{\gamma} \left(-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right)^\alpha \right) \right)^{\delta-1} e^{-t} dt = \frac{\gamma^{\delta-1}}{\Gamma(\delta)} \left(-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right)^\alpha \right) \right), \tag{3.3} \]

and

\[f_{GELLLoG}(x; \lambda, c, \alpha, \delta) = \frac{1}{\Gamma(\delta)} \left[-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right)^\alpha \right) \right]^{\delta-1} \times \alpha \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right]^{\alpha-1} \times \frac{(1 + x^c)^{-1}}{1 + \lambda} e^{-\lambda x} \left[\lambda^2 (1 + x) + \frac{(1 + \lambda + \lambda x)(\lambda x e^{c-1})}{1 + x^c} \right], \tag{3.4} \]
respectively, for $\lambda, c, \alpha, \delta > 0$, where $\gamma(x, \delta) = \int_0^x t^{\delta-1}e^{-t}dt$ is the lower incomplete gamma function. If a random variable X has the GELLLoG distribution, we write $X \sim \text{GELLLoG}(\lambda, c, \alpha, \delta)$. Plots of the GELLLoG pdf below shows different shapes including increasing, right skewed, left skewed, almost symmetric and reverse J shapes.

![Figure 3.1: Plots of GELLLoG Density Function](image)

3.1.1 Series Expansion of Density Function

In this section, series expansion of the GELLLoG density function is presented. The results allows for the mathematical and statistical properties of the model to be readily obtained.

Let $y = \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right)^\alpha$, $0 < y < 1$, $\alpha, \lambda, c > 0$, then using the series representation $-\log(1 - y) = \sum_{i=0}^{\infty} \frac{y^{i+1}}{i+1}$, we have

$$\left[-\log(1 - y)\right]^{\delta-1} = y^{\delta-1} \left[\sum_{m=0}^{\infty} \binom{\delta - 1}{m} y^m \left(\sum_{s=0}^{\infty} \frac{y^s}{s + 2} \right)^m \right],$$

and applying the result on power series raised to a positive integer, with $a_s = (s + 2)^{-1}$, that is,

$$\left(\sum_{s=0}^{\infty} a_s y^s \right)^m = \sum_{s=0}^{\infty} b_{s,m} y^s,$$ \hspace{1cm} (3.5)
where \(b_{s,m} = (sa_0)^{-1} \sum_{l=1}^{s} [m(l + 1) - s]a_l b_{s-l,m} \), and \(b_{0,m} = a_0^m \), (Gradshteyn and Ryzhik [30]), the GELLLoG pdf can be written as

\[
f_{GELLLoG}(x) = \frac{\alpha}{\Gamma(\delta)} \sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \left(\begin{array}{c} \delta - 1 \\ m \end{array} \right) b_{s,m} y^{m+s+\delta-1} \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right]^{\alpha-1} \times \frac{(1 + x^c)^{-1}}{1 + \lambda} e^{-\lambda x} \left[\lambda^2(1 + x) + \frac{(1 + \lambda + \lambda x)cx^{c-1}}{1 + x^c} \right] \\
= \frac{\alpha}{\Gamma(\delta)} \sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \left(\begin{array}{c} \delta - 1 \\ m \end{array} \right) b_{s,m} \left(\frac{m + s + \delta}{m + s + \delta} \right) \frac{\lambda^2(1 + x) + \frac{(1 + \lambda + \lambda x)cx^{c-1}}{1 + x^c}}{1 + \lambda} \\
\times \frac{1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x}}{1 + \lambda} \left[\lambda^2(1 + x) + \frac{(1 + \lambda + \lambda x)cx^{c-1}}{1 + x^c} \right] \\
= \sum_{m=0}^{\infty} \sum_{s=0}^{\infty} \left(\begin{array}{c} \delta - 1 \\ m \end{array} \right) \frac{\alpha b_{s,m}}{(m + s + \delta)\Gamma(\delta)} g_{GELLLoG}(x; c, \lambda, \alpha^*),
\]

(3.6)

where \(g_{ELLLoG}(x; c, \lambda, \alpha^*) \) is the exponentiated Lindley-log-logistic (ELLLoG) pdf with parameters \(c, \lambda, \) and \(\alpha^* = \alpha(m + s + \delta) > 0 \). Let \(D = \{(m, s) \in \mathbb{Z}^2_+ \} \), then the weights in the GELLLoG pdf are

\[
\omega_{\nu} = \left(\begin{array}{c} \delta - 1 \\ m \end{array} \right) \frac{\alpha b_{m,s}}{(m + s + \delta)\Gamma(\delta)},
\]

(3.7)

and

\[
f_{GELLLoG}(x) = \sum_{\nu \in D} \omega_{\nu} g_{ELLLoG}(x; c, \lambda, \alpha(m + s + \delta)).
\]

(3.8)

It follows therefore that the GELLLoG density is an infinite linear combination of the ELLLoG pdfs. The statistical and mathematical properties of the GELLLoG distribution can be readily obtained from those of the ELLLoG distribution.

3.1.2 Sub-models of GELLLoG Distribution

In this subsection, some useful and important sub-models are presented.

- When \(\lambda \to 0^+ \), the resulting distribution is the gamma exponentiated log-logistic (GELLoG) distribution.

- When \(\lambda \to 0^+ \), and \(\alpha = 1 \), we obtain the gamma log-logistic (GLLoG) distribution.
We obtain gamma Lindley log-logistic (GLLLoG) distribution with $\alpha = 1$.

When $\delta = 1$, we obtain the baseline exponentiated Lindley log-logistic (ELLLoG) distribution.

When $\delta = \alpha = 1$, we obtain the Lindley log-logistic (LLLoG) distribution.

When $\lambda \to 0^+$, and $\delta = 1$, we obtain the exponentiated log-logistic (ELLoG) distribution.

If $\lambda \to 0^+$ and $\alpha = \delta = 1$, we obtain log-logistic (LLoG) distribution.

If $\delta = c = 1$, and $\lambda \to 0^+$, we obtain one parameter distribution denoted by $GELLLoG(1, 1, \alpha, 1)$, with the cdf

$$F(x; \alpha) = \left[1 - \frac{1}{1 + x} \right]^\alpha, \quad \alpha > 0. \quad (3.9)$$

If $\delta = c = 1$, we obtain the two parameter distribution denoted by $GELLLoG(\lambda, 1, \alpha, 1)$, with the cdf

$$F(x; \lambda, \alpha) = \left[1 - \frac{1 + \lambda + \lambda x e^{-\lambda x}}{1 + \lambda} \right]^\alpha, \quad \lambda, \alpha > 0. \quad (3.10)$$

If $\delta = c = \alpha = 1$, we obtain the one parameter distribution denoted by $GELLLoG(\lambda, 1, 1, 1)$, with the cdf

$$F(x; \lambda) = 1 - \frac{1 + \lambda + \lambda x e^{-\lambda x}}{1 + \lambda} \frac{1}{1 + x}, \quad \lambda > 0. \quad (3.11)$$

If $\alpha = c = 1$, we obtain the two parameter distribution denoted by $GELLLoG(\lambda, 1, 1, \delta)$, with the cdf

$$F(x; \lambda, \delta) = \frac{1}{\Gamma(\delta)} \gamma \left(-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x e^{-\lambda x}}{1 + \lambda} \right)^\alpha \right), \delta \right), \quad \lambda, \delta > 0. \quad (3.12)$$

If $c = 1$, we obtain the three parameter distribution denoted by $GELLLoG(\lambda, 1, \alpha, \delta)$, with the cdf

$$F(x; \lambda, \alpha, \delta) = \frac{1}{\Gamma(\delta)} \gamma \left(-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x e^{-\lambda x}}{1 + \lambda} \right)^\alpha \right), \delta \right), \quad \lambda, \delta > 0. \quad (3.13)$$
3.1.3 Hazard and Quantile Functions

In this section, the hazard and quantile functions of the GELLLoG distribution are presented. Plots of the hazard function for selected values of the model parameters are presented in Figure 3.2. The hazard rate function of the GELLLoG distribution is given by

\[
\begin{align*}
 h_{F_{\text{GELLLoG}}}(x) &= \frac{f_{\text{GELLLoG}}(x)}{F_{\text{GELLLoG}}(x)} \\
 &= \left[- \log \left(1 - \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} \right]^\alpha \right) \right]^{\delta^{-1}} \\
 &\quad \times \alpha \left[1 + \lambda + \lambda x \frac{e^{-\lambda x}}{(1 + x^c)} \right]^{-\alpha^{-1}} \\
 &\quad \times \left(\frac{1 + x^c}{1 + \lambda} e^{-\lambda x} \left[\lambda^2 (1 + x) + \frac{(1 + \lambda + \lambda x) c x^{c-1}}{1 + x^c} \right] \right) \\
 &\quad \times \left[\Gamma(\delta) - \gamma \left(- \log \left(1 - \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} \right]^\alpha \right), \delta \right) \right]^{-1}.
\end{align*}
\]

Plots of the GELLLoG hazard below shows different shapes including decreasing, increasing, bathtub followed by upside down, upside down bathtub, and bathtub shapes.

![Figure 3.2: Plots of GELLLoG Hazard Function](image)

The quantile function of the GELLLoG distribution is obtained by solving the non-linear equation:

\[
\gamma \left(- \log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} \right)^\alpha \right), \delta \right) / \Gamma(\delta) = u, \quad (3.14)
\]
\[0 \leq u \leq 1, \text{ that is,} \]
\[\left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} \right)^{\alpha} = 1 - e^{-\gamma^{-1}(u \Gamma(\delta), \delta)}, \]
(3.15)
so that
\[\frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} = 1 - \left(1 - e^{-\gamma^{-1}(u \Gamma(\delta), \delta)} \right)^{1/\alpha}. \]
(3.16)
Consequently, random numbers can be generated for the GELLLoG distribution by numerically solving the nonlinear equation
\[\lambda x + \log(1 + x^c) - \log \left(1 + \frac{\lambda x}{1 + \lambda} \right) + \log \left(1 - \left(1 - e^{-\gamma^{-1}(u \Gamma(\delta), \delta)} \right)^{1/\alpha} \right) = 0. \]
(3.17)
Table 3.1 presents quantiles of the GELLLoG distribution for selected values of the model parameters \(\lambda, c, \alpha \) and \(\delta \).

<table>
<thead>
<tr>
<th>(u)</th>
<th>(1.2, 1.2, 1.1, 1.8)</th>
<th>(0.8, 1.2, 2.1)</th>
<th>(2, 1, 2.2)</th>
<th>(1, 1.8, 2.6, 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2943</td>
<td>1.4788</td>
<td>0.3456</td>
<td>0.2970</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4582</td>
<td>2.0185</td>
<td>0.5276</td>
<td>0.4557</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6130</td>
<td>2.5516</td>
<td>0.7021</td>
<td>0.6062</td>
</tr>
<tr>
<td>0.4</td>
<td>0.7726</td>
<td>3.1391</td>
<td>0.8868</td>
<td>0.7636</td>
</tr>
<tr>
<td>0.5</td>
<td>0.9460</td>
<td>3.8300</td>
<td>1.0944</td>
<td>0.9395</td>
</tr>
<tr>
<td>0.6</td>
<td>1.1430</td>
<td>4.6905</td>
<td>1.3409</td>
<td>1.1496</td>
</tr>
<tr>
<td>0.7</td>
<td>1.3780</td>
<td>5.8378</td>
<td>1.6538</td>
<td>1.4253</td>
</tr>
<tr>
<td>0.8</td>
<td>1.6776</td>
<td>7.5312</td>
<td>2.0931</td>
<td>1.8588</td>
</tr>
<tr>
<td>0.9</td>
<td>2.1043</td>
<td>10.6012</td>
<td>2.8509</td>
<td>3.4573</td>
</tr>
</tbody>
</table>

3.2 Moments, Conditional Moments, Mean and Median Deviations

In this section, we present the moments, moment generating function, mean and median deviations for the GELLLoG distribution. Moments are very important and necessary in any statistical analysis, especially in applications. Moments can be used to study the most important features and characteristics of a distribution (e.g., central tendency, dispersion, skewness and kurtosis). These measures (moments, moment generating function, mean and median deviations) can be readily obtained for the sub-models given in section 3.1.
3.2.1 Moments and Moment Generating Function

Let \(\alpha^* = \alpha(m + s + \delta) \), and \(Y \sim ELLLoG(c, \lambda, \alpha^*) \). Note that the \(k^{th} \) moment of the ELLLoG random variable \(Y \) is obtained as follows. The \(k^{th} \) raw moment, \(\mu'_k \), of the ELLLoG distribution is given by:

\[
E(Y^k) = \int_0^\infty y^k ELLLoG(y; \lambda, c, \alpha(m + s + \delta)) dy \\
= \int_0^\infty y^k \alpha(m + s + \delta) \left[1 - \frac{1 + \lambda + \lambda y}{1 + \lambda} e^{-\lambda y} \right]^\alpha(m+s+\delta)-1 \\
\times \frac{(1 + y^c)^{-1}}{1 + \lambda} e^{-\lambda y} \left[\lambda^2(1 + y) + \frac{(1 + \lambda + \lambda y) cy^{-1}}{1 + y^c} \right] dy \\
= \sum_{t=0}^\infty \frac{\alpha(m + s + \delta)(-1)^t \alpha(m + s + \delta)}{(1 + \lambda)^{t+1} p!} \left[(1 + \lambda + \lambda y)^{-1} \right]^t \\
\times \left[\lambda^2 \sum_{q=0}^\infty \left(\begin{array}{c} t \\ q \end{array} \right) \lambda^q (1 + \lambda)^{t-q} \int_0^\infty y^{k+p+q}(1 + y)(1 + y^c)^{-t-1} dy \\
+ c \sum_{q=0}^\infty \left(\begin{array}{c} t + 1 \\ q \end{array} \right) \lambda^q (1 + \lambda)^{t+1-q} \int_0^\infty y^{k+p+c+q-1}(1 + y^c)^{-t-2} dy \right].
\]

We note that by applying \((1 + \lambda + \lambda y)^{t+1} = \sum_{q=0}^\infty \left(\begin{array}{c} t+1 \\ q \end{array} \right) (\lambda y)^q (1 + \lambda)^{t+1-q},\) \((1 + \lambda + \lambda y)^t = \sum_{q=0}^\infty \left(\begin{array}{c} t \\ q \end{array} \right) (\lambda y)^q (1 + \lambda)^{t-q},\) and the substitution \(w = (1 + y^c)^{-1}, \) we have

\[
E(Y^k) = \sum_{t,p=0}^\infty \frac{\alpha(m + s + \delta)(-1)^t \alpha(m + s + \delta)}{(1 + \lambda)^{t+1} p!} \left[(1 + \lambda + \lambda y)^{-1} \right]^t \\
\times \left[\sum_{q=0}^\infty \left(\begin{array}{c} t \\ q \end{array} \right) \lambda^{q+2} \frac{(1 + \lambda)^{t-q} c}{e^{1}} \int_0^1 w^{t+1-k+p+q+1} (1 - w) \frac{k+p+q+1}{c} e^{-1} dw \\
+ \int_0^1 w^{t+1-k+p+q+2} (1 - w) \frac{k+p+q+2}{c} e^{-1} dw \\
+ c \sum_{q=0}^\infty \left(\begin{array}{c} t + 1 \\ q \end{array} \right) \lambda^{q} (1 + \lambda)^{t+1-q} \int_0^1 w^{t+2-k+p+q} (1 - w) \frac{k+p+q}{c} e^{-1} dt \right].
\]

(3.19)
Consequently,

\[
E(Y^k) = \sum_{t,p=0}^{\infty} \frac{\alpha(m + s + \delta)(-1)^{t+p}[\lambda(t + 1)]^p}{(1 + \lambda)^{t+1}p!} \left(\frac{\alpha(m + s + \delta) - 1}{t} \right) \\
\times \left[\sum_{q=0}^{\infty} \binom{t}{q} \lambda^{q+2} \frac{(1 + \lambda)^{t+1-q}}{c} \left(B \left(t + 1 - \frac{k + p + q + 1}{c}, \frac{k + p + q + 1}{c} \right) \\
+ B \left(t + 1 - \frac{k + p + q + 2}{c}, \frac{k + p + q + 2}{c} \right) \right) \right] \right]
\]

Thus, the \(k \text{th} \) moments of the GELLLoG distribution is given by

\[
E(X^k) = \sum_{\nu \in D} \omega_\nu \Delta(t, p, q, c, \lambda, k),
\]

where \(\Delta(t, p, q, c, \lambda, k) \) is given by equation (3.20). The moment generating function of the GELLLoG class of distribution is given by \(E(e^X) = \sum_{k=0}^{\infty} \frac{t^k}{k!} E(X^k) \), where \(E(X^k) \) is given by the equation (3.21). The coefficients of variation (CV), Skewness (CS) and Kurtosis (CK) can be readily obtained.

The variance \((\sigma^2) \), Standard deviation \((SD=\sigma) \), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) are given by

\[
\sigma^2 = \mu'_2 - \mu^2, \quad CV = \frac{\sigma}{\mu} = \frac{\sqrt{\mu'_2 - \mu^2}}{\mu} = \sqrt{\frac{\mu'_2}{\mu^2} - 1},
\]

\[
CS = \frac{E[(X - \mu)^3]}{[E(X - \mu)^2]^{3/2}} = \frac{\mu'_3 - 3\mu\mu'_2 + 2\mu^3}{(\mu'_2 - \mu^2)^{3/2}},
\]

and

\[
CK = \frac{E[(X - \mu)^4]}{[E(X - \mu)^2]^2} = \frac{\mu'_4 - 4\mu\mu'_3 + 6\mu^2\mu'_2 - 3\mu^4}{(\mu'_2 - \mu^2)^2},
\]

respectively. Some moments for selected parameters values are given in Table 3.2 and plots of CS and CK versus the shape parameters, \(\alpha, c \) and \(\delta \) are presented in Figure 3.3, Figure 3.4 and Figure 3.5. Plots of skewness and kurtosis for choices of the model parameters reveal that skewness and kurtosis depend on the parameters \(\alpha, c, \) and \(\delta \).
Table 3.2: Moments for Selected Parameters Values of GELLLoG Distribution

<table>
<thead>
<tr>
<th>(λ, c, α, δ)</th>
<th>(0.1, 0.2, 0.2, 0.5)</th>
<th>(1.8, 1.5, 2.2, 0.5)</th>
<th>(0.8, 1.0, 2.2, 1.0)</th>
<th>(2.0, 2.2, 0.2, 1.8)</th>
<th>(0.1, 1.0, 2.0, 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(X)</td>
<td>0.0080</td>
<td>0.2415</td>
<td>0.2861</td>
<td>0.1690</td>
<td>0.3272</td>
</tr>
<tr>
<td>E(X²)</td>
<td>0.0039</td>
<td>0.1321</td>
<td>0.1611</td>
<td>0.0727</td>
<td>0.2062</td>
</tr>
<tr>
<td>E(X³)</td>
<td>0.0025</td>
<td>0.0889</td>
<td>0.1088</td>
<td>0.0422</td>
<td>0.1474</td>
</tr>
<tr>
<td>E(X⁴)</td>
<td>0.0019</td>
<td>0.0665</td>
<td>0.0811</td>
<td>0.0285</td>
<td>0.1135</td>
</tr>
<tr>
<td>E(X⁵)</td>
<td>0.0015</td>
<td>0.0530</td>
<td>0.0642</td>
<td>0.0210</td>
<td>0.0918</td>
</tr>
<tr>
<td>E(X⁶)</td>
<td>0.0012</td>
<td>0.0439</td>
<td>0.0529</td>
<td>0.0164</td>
<td>0.0769</td>
</tr>
<tr>
<td>SD</td>
<td>0.0011</td>
<td>0.0375</td>
<td>0.0450</td>
<td>0.0133</td>
<td>0.0660</td>
</tr>
<tr>
<td>CV</td>
<td>0.0009</td>
<td>0.0327</td>
<td>0.0390</td>
<td>0.0112</td>
<td>0.0577</td>
</tr>
<tr>
<td>CS</td>
<td>0.0008</td>
<td>0.0290</td>
<td>0.0344</td>
<td>0.0096</td>
<td>0.0513</td>
</tr>
<tr>
<td>CK</td>
<td>0.0007</td>
<td>0.02607</td>
<td>0.0308</td>
<td>0.0084</td>
<td>0.0461</td>
</tr>
</tbody>
</table>

Figure 3.3: Plots of Skewness and Kurtosis for parameter alpha

Figure 3.4: Plots of Skewness and Kurtosis for parameter c
3.2.2 Conditional Moments

The mean residual life function, vitality function and related reliability measures can be readily obtained from the conditional moments of a distribution. The k^{th} conditional moments for the GELLLoG distribution is given by

$$E(X^k | X > a) = \frac{1}{F_{GELLLoG}(a)} \int_a^\infty x^k f_{GELLLoG}(x; c, \lambda, \alpha, \delta) dx$$

$$= \frac{1}{F_{GELLLoG}(a)} \sum_{n \in D} \sum_{p=0}^\infty \omega_n \alpha^{(m + s + \delta)} (-1)^{t+p} \lambda^{(t+1)p} (1 + \lambda)^{(t+1)p} \times \left[\binom{t}{q} \lambda^{q+2} \frac{(1 + \lambda)^{t-q}}{c} \right]$$

$$\times \left((t+1-q) \sum_{q=0}^{\infty} \binom{t+1-q}{q} \lambda^{q+2} \frac{(1 + \lambda)^{t-q}}{c} \right)$$

$$\times \left(B_{(1+a^c)^{-1}} \left(t + 1 - \frac{k + p + q + 1}{c}, \frac{k + p + q + 1}{c} \right) \right.$$

$$\left. + \frac{c}{B_{(1+a^c)^{-1}} \left(t + 1 - \frac{k + p + q + 2}{c}, \frac{k + p + q + 2}{c} \right) } \right)$$

$$+ c \sum_{q=0}^{\infty} \binom{t+1-q}{q} \lambda^{q} (1 + \lambda)^{t+1-q}$$

$$\times \left(B_{(1+a^c)^{-1}} \left(t + 2 - \frac{k + p + c + q}{c}, \frac{k + q + p + c + q}{c} \right) \right),$$

where $B_{(1+a^c)^{-1}}(a, b)$ is the incomplete beta function.
3.2.3 Mean Deviation, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as Lorenz and Bonferroni curves for the GELLLoG distribution are presented in this subsection.

Mean Deviations

The mean deviation about the mean and the mean deviation about the median are defined by

$$\delta_1(x) = \int_0^\infty |x - \mu| f_{GELLloG}(x) dx \quad \text{and} \quad \delta_2(x) = \int_0^\infty |x - M| f_{GELLloG}(x) dx,$$

respectively, where $\mu = E[X]$ and $M = \text{Median}(X)$ denotes the median. We note that $\delta_1(x)$ and $\delta_2(x)$ can be expressed as

$$\delta_1(x) = 2\mu F_{GELLloG}(\mu) - 2\mu + 2\int_\mu^\infty f_{GELLloG}(x) dx \quad \text{and} \quad \delta_2(x) = -\mu + 2\int_M^\infty x f_{GELLloG}(x) dx,$$

respectively, that is,

$$\delta_1(x) = 2\mu F_{GELLloG}(\mu) - 2\mu + 2T(\mu) \quad \text{and} \quad \delta_2(x) = 2T(M) - \mu,$$

where

$$T(\mu) = \int_\mu^\infty x f_{GELLloG}(x) dx$$

$$= \sum_{\nu \in D, t, p = 0} \omega_{\nu} \frac{\alpha(m + s + \delta)(-1)^{t+p}[\lambda(t+1)]^p}{(1+\lambda)^{t+1}p!}$$

$$\times \left(\alpha(m + s + \delta) - 1\right) \left[\sum_{q=0}^\infty \frac{(t)^q}{q!} \lambda^{q+2} \frac{(1+\lambda)^{t-q}}{c}\right]$$

$$\times \left(B_{(1+\mu^c)^{-1}}(t+1 - \frac{1+p+q+1}{c}, \frac{1+p+q+1}{c}) + B_{(1+\mu^c)^{-1}}(t+1 - \frac{1+p+q+2}{c}, \frac{1+p+q+2}{c})\right)$$

$$+ c \sum_{q=0}^\infty \frac{(t+1)^q}{q!} \lambda^q(1+\lambda)^{t+1-q}$$

$$\times \left[(1+\mu^c)^{-1}(t+2 - \frac{1+p+c+q}{c}, \frac{1+q+p+c+q}{c})\right].$$

Lorenz and Bonferroni Curves

Lorenz and Bonferroni curves are applicable to economics for the study of income and poverty, and are also useful in other areas such as reliability,
demography, insurance and medicine. Bonferroni and Lorenz curves for the GELLLoG distribution are given as

\[B(p) = \frac{1}{p\mu} \int_0^q xf_{GELLLoG}(x)dx = \frac{1}{p\mu}[\mu - T(q)], \]

and

\[L(p) = \frac{1}{\mu} \int_0^q xf_{GELLLoG}(x)dx = \frac{1}{\mu}[\mu - T(q)], \]

respectively, where \(T(q) = \int_q^\infty xf_{GELLLoG}(x)dx \) is given by equation (3.24), \(q = F_{GELLLoG}^{-1}(p), 0 \leq p \leq 1. \)

3.3 Order Statistics and Rényi Entropy

Order statistics play an important role in probability and statistics, particularly in reliability and lifetime data analysis. The concept of entropy plays a vital role in information theory. In this section, we present the distribution of the \(i^{th} \) order statistics and Rényi entropy for the GELLLoG distribution.

3.3.1 Order Statistics

In this subsection, the pdf of the \(i^{th} \) order statistic and the corresponding moments are presented. Let \(X_1, X_2, ..., X_n \) be independent and identically distributed GELLLoG random variables. Using the binomial expansion

\[(1 - G_{GELLLoG}(x))^{n-i} = \sum_{j=0}^{n-i} \binom{n-i}{j} (-1)^j [G_{GELLLoG}(x)]^j, \]

the pdf of the \(i^{th} \) order statistic from the GELLLoG pdf \(f_{GELLLoG}(x) \) can be written as

\[
f_{i,n}(x) = \frac{n!f_{GELLLoG}(x)}{(i-1)!(n-i)!}[F_{GELLLoG}(x)]^{i-1}[1 - F_{GELLLoG}(x)]^{n-i} \]

\[= \frac{n!f_{GELLLoG}(x)}{(i-1)!(n-i)!} \sum_{j=0}^{n-i} (-1)^j \binom{n-i}{j} \gamma\left(-\log\left(1 - \left(1 - \frac{1+\lambda x \ e^{-\lambda c}}{1+\lambda x}\right)\right), \delta \right)^{i+j-1}. \]

(3.25)

Now, let \(0 < y = \left(1 - \frac{1+\lambda x \ e^{-\lambda c}}{1+\lambda x}\right)^{\alpha} < 1, x > 0, c, \lambda, \alpha > 0. \) Using the fact that \(\gamma(x, \delta) = \sum_{m=0}^{\infty} \frac{(-1)^m \ x^m}{(m+\delta)m!}, \) and setting \(c_m = (-1)^m/((m+\delta)m!), \) we can write the
pdf of the i^{th} order statistic from the GELLLoG distribution as follows:

$$f_{i:n}(x) = \frac{n! f_{GELLLoG}(x)}{(i-1)!(n-i)!} \sum_{j=0}^{n-i} \binom{n-i}{j} \frac{(-1)^j}{[\Gamma(\delta)]^{i+j-1}}$$

$$\times \left[-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} \right)^{\alpha} \right) \right]^{\delta(i+j-1)}$$

$$\times \left[\sum_{m=0}^{\infty} \left(\frac{(-1)^m (\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} \right)^{\alpha} \right))}{(m + \delta)m!} \right)^i \right]^{j-1}$$

$$= \frac{n! f_{GELLLoG}(x)}{(i-1)!(n-i)!} \sum_{j=0}^{n-i} \binom{n-i}{j} \frac{(-1)^j}{[\Gamma(\delta)]^{i+j-1}}$$

$$\times \left[-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} \right)^{\alpha} \right) \right]^{\delta(i+j-1)}$$

$$\times \sum_{m=0}^{\infty} d_{m,i+j-1} \left[-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \frac{e^{-\lambda x}}{(1 + x^c)} \right)^{\alpha} \right) \right]^m, (3.26)$$

where $d_0 = c_0^{(i+j-1)}$, $d_{m,i+j-1} = (mc_0)^{-1} \sum_{l=1}^{m} [(i + j - 1)l - m + l]_0 d_{m-l,i+j-1}$. We note that the pdf of the i^{th} order statistic from the GELLLOG distribution can be written as
\[f_{i:n}(x) = \frac{n! f_{\text{GELLLoG}}(x)}{(i-1)!(n-i)!} \sum_{j=0}^{n-i} \sum_{m=0}^{\infty} \binom{n-i}{j} \left(\frac{(-1)^j d_{m,i+j-1}}{\Gamma(\delta)} \right)^{i+j-1} \times \left[-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \right)^{\alpha} \right) \right]^{\delta(i+j-1)+m} \]

\[= \frac{n!}{(i-1)!(n-i)!} \sum_{j=0}^{n-i} \sum_{m=0}^{\infty} \binom{n-i}{j} \left(\frac{(-1)^j d_{m,i+j-1}}{\Gamma(\delta)} \right)^{i+j-1} \times \left[-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \right)^{\alpha} \right) \right]^{\delta(i+j-1)+m} \]

\[\times \frac{\Gamma(\delta(i+j-1) + m + \delta)}{\Gamma(\delta(i+j-1) + m + \delta)} \times \alpha \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \right]^{\alpha-1} \times (1 + x^c)^{-1} \left(\lambda^2(1 + x) + \frac{1 + \lambda + \lambda x}{1 + x^c} \right) \]

\[= \frac{n!}{(i-1)!(n-i)!} \sum_{j=0}^{n-i} \sum_{m=0}^{\infty} \binom{n-i}{j} \times (1 + x^c)^{-1} \left(\lambda^2(1 + x) + \frac{1 + \lambda + \lambda x}{1 + x^c} \right) f_{\text{GELLLoG}}(x), \]

where

\[f_{\text{GELLLoG}}(x) = \frac{\left[-\log \left(1 - \left(1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \right)^{\alpha} \right) \right]^{\delta(i+j-1)+m+\delta-1}}{\Gamma(\delta(i+j-1) + m + \delta)} \times \alpha \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} \right]^{\alpha-1} \times (1 + x^c)^{-1} \left(\lambda^2(1 + x) + \frac{1 + \lambda + \lambda x}{1 + x^c} \right) \]

(3.27)

is the GELLLoG pdf with parameters \(c, \lambda, \alpha > 0 \), and shape parameter \(\delta^* = \delta(i+j) + m > 0 \). It follows therefore that the \(i^{th} \) moment of the \(i^{th} \) order statistic from the GELLLoG density is given by

\[E(X^i_{i:n}) = \sum_{\nu \in D} \sum_{j=0}^{n-i} \sum_{m=0}^{\infty} \omega_{\nu} \ell_{i,j,m} E(X^i_{\nu}), \quad (3.28) \]
where $E(X^t)$ is the t^{th} moment of the GELLLoG distribution given by (3.21) with the parameters c, α, λ and $\delta(i + j) + m > 0$,

$$
\ell_{i,j,m} = \frac{n!}{(i - 1)!(n - i)!} \frac{(-1)^j d_{m,i+j-1} \Gamma(\delta(i + j) + m)}{[\Gamma(\delta)]^{i+j}}.
$$

We note that these moments are often used in several areas including reliability, survival analysis, biometry, engineering, insurance and quality control for the prediction of future failures times from a set of past or previous failures.

3.3.2 Rényi Entropy

Rényi entropy (Rényi [70]) is an extension of Shannon entropy. Rényi entropy is defined to be

$$
I_R(v) = \frac{1}{1 - v} \log \left(\int_0^{\infty} [f_{\text{GELLLoG}}(x; c, \alpha, \lambda, \delta)]^v dx \right), \quad v \neq 1, \quad v > 0. \quad (3.29)
$$

Rényi entropy tends to Shannon entropy as $v \to 1$. Note that

$$
\int_0^{\infty} f_{\text{GELLLoG}}^v(x) dx = \left(\frac{1}{\Gamma(\delta)} \right)^v \int_0^{\infty} \left[- \log \left(1 - \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right]^{\alpha} \right) \right]^{v(\delta - 1)} \times \alpha^v \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right]^{v(\alpha - 1)}
\times \frac{(1 + x^c)^{-v}}{(1 + \lambda)^v} e^{-\lambda x} \left[\lambda^2 (1 + x) + \frac{(1 + \lambda + \lambda x)cx^{c-1}}{1 + x^c} \right]^v dx. \quad (3.30)
$$

Let $0 < y = \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right]^{\alpha} < 1$. Note that

$$
\left(\lambda^2 (1 + x) + (1 + \lambda + \lambda x)(1 + x^c)^{-1} cx^{c-1} \right)^v = \sum_{p=0}^{\infty} \binom{v}{p} \lambda^{2(v-p)} (1 + x)^{v-p} (1 + x^c)^{p-v-p}
\times \frac{(1 + \lambda + \lambda x)^p}{(1 + x^c)^p},
$$

and

$$
\left[- \log \left(1 - \left[1 - \frac{1 + \lambda + \lambda x}{1 + \lambda} e^{-\lambda x} \right]^{\alpha} \right) \right]^{v(\delta - 1)} = \sum_{m,s=0}^{\infty} \binom{v \delta - v}{m} (1 + x)^{m+s+\delta-1},
$$

by applying the result on power series raised to a positive integer, with $c_s = (s + 2)^{-1}$, that is,

$$
\left(\sum_{s=0}^{\infty} c_s y^s \right)^m = \sum_{s=0}^{\infty} d_{s,m} y^s, \quad (3.31)
$$
where \(d_{s,m} = (sc_0)^{-1} \sum_{i=1}^{n} [m(l+1) - s] c_i d_{s-l,m} \), and \(d_{0,m} = c_0^m \), (Gradshteyn and Ryzhik [30]), so that

\[
\int_0^\infty f_{GELLLoG}^v(x)dx = \left(\frac{1}{\Gamma(\delta)} \right)^v \sum_{m,s,p,k,q,t,w=0}^{\infty} d_{s,m} \left(\frac{v^\delta - v}{m} \right) \left(\frac{v}{p} \right) \left(\frac{v - p}{t} \right) \left(\frac{k + p}{w} \right) \\
\times \frac{\Gamma(\alpha(m + s + \delta + v - 1) - v + 1)}{\Gamma(\alpha(m + s + \delta + v - 1) - v + 1 - k)!} \\
\times \frac{e^p \lambda^{2(v-p)+w}(-1)^q[\lambda(k+v)]^q}{q!(1 + \lambda)^{v-p+w}} \\
\times \int_0^\infty x^{cp+q+w+t-1}(1 + x^c)^{-v-k-p}dx.
\]

Now, with \(y = (1 + x^c)^{-1} \), Rényi entropy for the GELLLoG distribution reduces to

\[
I_R(v) = \frac{1}{1 - v} \log \left[\frac{1}{c \Gamma(\delta)} \right] \sum_{m,s,p,k,q,t,w=0}^{\infty} d_{s,m} \left(\frac{v^\delta - v}{m} \right) \left(\frac{v}{p} \right) \left(\frac{v - p}{t} \right) \left(\frac{k + p}{w} \right) \\
\times \frac{\Gamma(\alpha(m + s + \delta + v - 1) - v + 1)}{\Gamma(\alpha(m + s + \delta + v - 1) - v + 1 - k)!} \\
\times \frac{e^p \lambda^{2(v-p)+w}(-1)^q[\lambda(k+v)]^q}{q!(1 + \lambda)^{v-p+w}} \\
\times \mathcal{B}\left(v + k + p - \frac{cp + q + w + t - p + 1}{c}, \frac{cp + q + w + t - p + 1}{c} \right),
\]

for \(v > 0, v \neq 1 \), where \(\mathcal{B}(a, b) = \int_0^1 t^{a-1}(1 - t)^{b-1} \) is the beta function.

3.4 Maximum Likelihood Estimation

Let \(X \sim GELLLoG(c, \alpha, \lambda, \delta) \) and \(\Delta = (c, \alpha, \lambda, \delta)^T \) be the parameter vector. The log-likelihood \(\ell_n = \ell_n(\Delta) \) based on a random sample of size \(n \) from the GLLoGW distribution is given by

\[
\ell_n(\Delta) = -n \ln \Gamma(\delta) + (\delta - 1) \sum_{i=1}^{n} \ln \left[- \ln \left(1 - \left[1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} \right] e^{-\lambda x_i} \right] \right) \\
+ n \ln(x) + (\alpha - 1) \sum_{i=1}^{n} \ln \left[1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right] - \sum_{i=1}^{n} \ln(1 + x_i^\delta) \\
- n \ln(1 + \lambda) - \sum_{i=1}^{n} \lambda x_i + \sum_{i=1}^{n} \ln \left[\lambda^2(1 + x_i) + \frac{(1 + \lambda + \lambda x_i)cx_i^\delta}{(1 + x_i^\delta)} \right].
\]

(3.32)

The first derivative of the log-likelihood function with respect to each component of the parameter vector \(\Delta = (c, \alpha, \lambda, \delta)^T \) can be readily obtained. The equations obtained by setting the partial derivatives to zero are not in closed form and the
values of the parameters $c, \alpha, \lambda,$ and δ must be found by using iterative methods.

The maximum likelihood estimates of the parameters, denoted by $\hat{\Delta}$, is obtained by solving the nonlinear equation $(\frac{\partial \ell_n}{\partial c}, \frac{\partial \ell_n}{\partial \alpha}, \frac{\partial \ell_n}{\partial \lambda}, \frac{\partial \ell_n}{\partial \delta})^T = 0$, using a numerical method such as Newton-Raphson procedure. The Fisher information matrix is given by $I(\Delta) = [I_{\theta_i \theta_j}]_{4 \times 4} = E\left(-\frac{\partial^2 \ell_n}{\partial \theta_i \partial \theta_j}\right)$, $i, j = 1, 2, 3, 4$ can be numerically obtained by MATLAB, SAS or R software. The total Fisher information matrix $nI(\Delta)$ can be approximated by

$$J_n(\hat{\Delta}) \approx \left[-\frac{\partial^2 \ell_n}{\partial \theta_i \partial \theta_j}\right]_{4 \times 4} \bigg|_{\Delta = \hat{\Delta}} = \left[I_{\Delta i \Delta j}\right]_{4 \times 4}, \quad i, j = 1, 2, 3, 4. \quad (3.33)$$

For a given set of observations, the matrix given in equation (3.33) is obtained after the convergence of the Newton-Raphson procedure. The expectations in the Fisher Information Matrix (FIM) can be obtained numerically. Let $\hat{\Delta} = (\hat{c}, \hat{\alpha}, \hat{\lambda}, \hat{\delta})$ be the maximum likelihood estimate of $\Delta = (c, \alpha, \lambda, \delta)$. Under the usual regularity conditions and that the parameters are in the interior of the parameter space, but not on the boundary, we have: $\sqrt{n}(\hat{\Delta} - \Delta) \xrightarrow{d} N_4(0, I^{-1}(\Delta))$, where $I(\Delta)$ is the expected Fisher information matrix. The asymptotic behavior is still valid if $I(\Delta)$ is replaced by the observed information matrix evaluated at $\hat{\Delta}$, that is $J(\hat{\Delta})$. The multivariate normal distribution $N_4(0, J(\hat{\Delta})^{-1})$, where the mean vector $0 = (0, 0, 0, 0)^T$, can be used to construct confidence intervals and confidence regions for the individual model parameters and for the survival and hazard rate functions. That is, the approximate $100(1 - \eta)%$ two-sided confidence intervals for c, α, λ and δ are given by:

$$\hat{c} \pm Z \frac{\sqrt{I_{cc}^{-1}(\hat{\Delta})}}{n}, \quad \hat{\alpha} \pm Z \frac{\sqrt{I_{\alpha\alpha}^{-1}(\hat{\Delta})}}{n}, \quad \hat{\lambda} \pm Z \frac{\sqrt{I_{\lambda\lambda}^{-1}(\hat{\Delta})}}{n}, \quad \hat{\delta} \pm Z \frac{\sqrt{I_{\delta\delta}^{-1}(\hat{\Delta})}}{n},$$

respectively, where $I_{cc}^{-1}(\hat{\Delta}), I_{\alpha\alpha}^{-1}(\hat{\Delta}), I_{\lambda\lambda}^{-1}(\hat{\Delta}),$ and $I_{\delta\delta}^{-1}(\hat{\Delta})$ are the diagonal elements of $I_n^{-1}(\Delta) = (nI(\Delta))^{-1}$, and Z is the upper η^{th} percentile of a standard normal distribution.

We maximize the likelihood function using NLmixed in SAS as well as the function nlm in R (R Development Core Team [69]). These functions were applied and executed for wide range of initial values. This process often results or lead to more than one maximum, however, in these cases, we take the MLEs corresponding to the largest value of the maxima. In a few cases, no maximum was identified for the selected initial values. In these cases, a new initial value
was tried in order to obtain a maximum. The issues of existence and uniqueness of the MLEs are theoretical interest and has been studied by several authors for different distributions including (Seregin [73]), (Santos Silva and Tenreyro [72]), (Zhou [89]), and (Xia et al. [85]). At this point we are not able to address the theoretical aspects (existence, uniqueness) of the MLE of the parameters of the GELLLoG distribution.

The maximum likelihood estimates (MLEs) of the GELLLoG parameters c, α, λ, and δ are computed by maximizing the objective function via the subroutine NLmixed in SAS and the function nlm in R. The estimated values of the parameters (standard error in parenthesis), $-2\log$-likelihood statistic ($\hat{-2\ln(L)}$), Akaike Information Criterion ($AIC = 2p - 2\ln(L)$), Bayesian Information Criterion ($BIC = p\ln(n) - 2\ln(L)$), and Consistent Akaike Information Criterion ($AICC = AIC + 2\frac{p(p+1)}{n-p-1}$), where $L = L(\hat{\Delta})$ is the value of the likelihood function evaluated at the parameter estimates, n is the number of observations, and p is the number of estimated parameters are presented. In order to compare the models, we use the criteria stated above. Note that for the value of the log-likelihood function at its maximum (ℓ_n), larger value is good and preferred, and for AIC, AICC and BIC, smaller values are preferred. The GELLLoG distribution is fitted to the data sets and these fits are compared to the fits of the nested gamma exponentiated log-logistic (GELLoG), Lindley-log-logistic (LllLoG), and log-logistic distributions (LLoG), and several non-nested distributions given in section 7.

The likelihood ratio (LR) test is applied to compare the fit of the GELLLoG distribution with its sub-models for a given data set. For example, to test $\delta = 1$, the LR statistic is $\omega = 2[\ln(L(c, \hat{\alpha}, \hat{\lambda}, \hat{\delta})) - \ln(L(c, \hat{\alpha}, \hat{\lambda}, 1))]$, where \hat{c}, $\hat{\alpha}$, $\hat{\lambda}$, and $\hat{\delta}$ are the unrestricted estimates, and c, α, and λ are the restricted estimates. The LR test rejects the null hypothesis if $\omega > \chi^2_{\epsilon}$, where χ^2_{ϵ} denote the upper $100\epsilon\%$ point of the χ^2 distribution with 1 degree of freedom.
3.5 Simulation Study

In this section, we examine the performance of the GELLoG distribution by conducting various simulations for different sizes (n=25, 50, 100, 200, 400, 800) via the R package. We simulate \(N = 2000 \) samples for the true parameters values given in the Table 3.3. The table lists the mean MLEs of the four model parameters along with the respective root mean squared errors (RMSEs). From the results, we can verify that as the sample size \(n \) increases, the mean estimates of the parameters tend to be closer to the true parameter values, since RMSEs decay toward zero. The bias and RMSE for the estimated parameter \(\hat{\theta} \), say, are given by:

\[
\text{Bias}(\hat{\theta}) = \frac{\sum_{i=1}^{n} \hat{\theta}_i}{n} - \theta, \quad \text{and} \quad \text{RMSE}(\hat{\theta}) = \sqrt{\frac{\sum_{i=1}^{n} (\hat{\theta}_i - \theta)^2}{n}},
\]

respectively.

Table 3.3: Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>parameter</th>
<th>Sample Size</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>35</td>
<td>1.6155</td>
<td>1.3790</td>
<td>0.6155</td>
<td>2.0458</td>
<td>1.3208</td>
<td>0.5458</td>
</tr>
<tr>
<td>50</td>
<td>1.4916</td>
<td>1.1719</td>
<td>0.4916</td>
<td>1.9560</td>
<td>1.2516</td>
<td>0.4560</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.3178</td>
<td>0.9065</td>
<td>0.3178</td>
<td>1.8338</td>
<td>1.0126</td>
<td>0.3397</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1.1820</td>
<td>0.6118</td>
<td>0.1820</td>
<td>1.7164</td>
<td>0.7932</td>
<td>0.2164</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1.1122</td>
<td>0.4292</td>
<td>0.1122</td>
<td>1.6470</td>
<td>0.6960</td>
<td>0.1470</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>1.0550</td>
<td>0.2932</td>
<td>0.0550</td>
<td>1.5893</td>
<td>0.4428</td>
<td>0.0893</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>35</td>
<td>2.0212</td>
<td>1.2877</td>
<td>-0.4787</td>
<td>1.8428</td>
<td>1.1469</td>
<td>-0.3573</td>
</tr>
<tr>
<td>50</td>
<td>1.9901</td>
<td>1.2225</td>
<td>-0.4098</td>
<td>1.6338</td>
<td>1.0348</td>
<td>-0.3661</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.8401</td>
<td>1.1116</td>
<td>-0.3351</td>
<td>1.6559</td>
<td>0.9061</td>
<td>-0.3440</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1.7044</td>
<td>0.7613</td>
<td>-0.2355</td>
<td>1.6734</td>
<td>0.7395</td>
<td>-0.3205</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1.5343</td>
<td>0.5544</td>
<td>-0.1566</td>
<td>1.7849</td>
<td>0.6140</td>
<td>-0.2159</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>1.4305</td>
<td>0.3781</td>
<td>-0.0694</td>
<td>1.8432</td>
<td>0.4621</td>
<td>-0.1567</td>
<td></td>
</tr>
<tr>
<td>(\alpha)</td>
<td>35</td>
<td>2.0618</td>
<td>2.4833</td>
<td>0.6118</td>
<td>1.8239</td>
<td>2.0295</td>
<td>0.8239</td>
</tr>
<tr>
<td>50</td>
<td>1.9296</td>
<td>2.3119</td>
<td>0.6296</td>
<td>1.7459</td>
<td>1.7429</td>
<td>0.7450</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.8209</td>
<td>1.2875</td>
<td>0.6306</td>
<td>1.6569</td>
<td>1.6916</td>
<td>0.6569</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>1.6500</td>
<td>1.2757</td>
<td>0.6500</td>
<td>1.6296</td>
<td>1.5404</td>
<td>0.6298</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1.4112</td>
<td>1.4848</td>
<td>0.4112</td>
<td>1.3464</td>
<td>1.0195</td>
<td>0.3464</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>1.1481</td>
<td>0.7029</td>
<td>0.1481</td>
<td>1.2392</td>
<td>0.9252</td>
<td>0.2392</td>
<td></td>
</tr>
<tr>
<td>(\delta)</td>
<td>35</td>
<td>2.6765</td>
<td>2.5402</td>
<td>0.6765</td>
<td>2.5967</td>
<td>2.0466</td>
<td>0.5967</td>
</tr>
<tr>
<td>50</td>
<td>2.5350</td>
<td>1.7651</td>
<td>0.5350</td>
<td>2.4733</td>
<td>1.9415</td>
<td>0.4733</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2.2934</td>
<td>1.4306</td>
<td>0.2934</td>
<td>2.3002</td>
<td>1.5411</td>
<td>0.3002</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>2.1168</td>
<td>1.0218</td>
<td>0.1168</td>
<td>2.0839</td>
<td>1.1625</td>
<td>0.0839</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>2.0405</td>
<td>0.7137</td>
<td>0.0405</td>
<td>2.0586</td>
<td>0.8639</td>
<td>0.0586</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>2.0349</td>
<td>0.4869</td>
<td>0.0349</td>
<td>2.0282</td>
<td>0.6477</td>
<td>0.0282</td>
<td></td>
</tr>
</tbody>
</table>
3.6 Applications

In this section, examples to illustrate the flexibility and usefulness of the GELLLoG distribution and its sub-models for data modeling are presented. We also compare GELLLoG distribution to the non-nested new modified Weibull (NMW) distribution introduced by (Doostmoradi et al. [22]), a four parameter beta generalized exponential (BGE) distribution introduced by (Barreto-Souza et al. [7]), beta generalized Lindley (BGL) distribution by (Oluyede and Yang [64]) and exponentiated modified Weibull distribution by (Elbatal [23]). The pdf of four parameter NMW, BGE, BGL and EMW distributions are given in equation (3.34), (3.35), (3.36) and (3.37), respectively, that is,

\[g_{NMW}(x) = \left(\alpha \gamma x^{\gamma-1}e^{\alpha x\gamma} + \lambda \beta x^\lambda e^{-\beta x^\lambda} \right) e^{-e^{\alpha x\gamma}+e^{-\beta x^\lambda}}, \quad x > 0, \]
\[(3.34) \]

\[g_{BGE}(x) = \frac{\alpha \lambda}{B(a, b)} e^{-\lambda x} \left(1 - e^{-\lambda x} \right)^{a-1} \left(1 - \left(1 - e^{-\lambda x} \right)^a \right)^{b-1}, \quad x > 0. \]
\[(3.35) \]

\[g_{BGL}(x) = \frac{\alpha \lambda^2}{B(a, b)(1 + \lambda)} (1 + x) e^{-\lambda x} \left[1 - \frac{1 + \lambda + \lambda x e^{-\lambda x}}{1 + \lambda} \right]^{a-1} \times \left[1 - \left(1 - \frac{1 + \lambda + \lambda x e^{-\lambda x}}{1 + \lambda} \right)^a \right]^{b-1}, \quad x > 0, \]
\[(3.36) \]

and

\[g_{EMW}(x) = \gamma \left[\delta + \lambda \delta^a x^{\lambda-1} \right] e^{-(\delta x + (\theta x)^\lambda)} \left[1 - e^{-(\delta x + (\theta x)^\lambda)} \right]^{\delta-1}, \quad x > 0. \]
\[(3.37) \]

Plots of the fitted densities, the histogram of the data and probability plots (Chambers et al. [14]) are given in Figure 3.6 and Figure 3.7 for the two datasets considered in this section. For the probability plot, we plotted

\[F_{GELLLoG}(x(j); \hat{c}, \hat{\alpha}, \hat{\lambda}, \hat{\delta}) \] against \(\frac{j - 0.375}{n + 0.25}, j = 1, 2, \cdots, n, \) where \(x(j) \) are the ordered values of the observed data. The measures of closeness are given by

the sum of squares (SS)

\[SS = \sum_{j=1}^{n} \left[F_{GELLLoG}(x(j)) - \left(\frac{j - 0.375}{n + 0.25} \right) \right]^2. \]

The goodness-of-fit statistics \(W^* \) and \(A^* \), described by (Chen and Balakrishnan [16]) as well as Kolmogorov-Smirnov (KS) statistic, its P-value

59
and SS are also presented in the tables. These statistics can be used to verify which distribution fits better to the data. In general, the smaller the values of W^* and A^*, the better the fit.

3.6.1 Lifetime data

(Gross and Clark [31]) presented the following data for lifetime data. The data are:

1.1, 1.4, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.

Estimates of the parameters of GELLLoG distribution and its related sub-models (standard error in parentheses), AIC, BIC, and the goodness-of-fit statistics W^*, A^*, KS and its P-value as well as SS are given in Table 3.4. Plots of the fitted densities and the histogram, observed probability vs predicted probability are given in Figure 3.6.

<table>
<thead>
<tr>
<th>Model</th>
<th>λ</th>
<th>c</th>
<th>α</th>
<th>δ</th>
<th>$-2\log L$</th>
<th>AIC</th>
<th>AICC</th>
<th>BIC</th>
<th>W^*</th>
<th>A^*</th>
<th>KS</th>
<th>P-value</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GELLLoG</td>
<td>0.1243</td>
<td>5.1200</td>
<td>3.4885</td>
<td>2.0262</td>
<td>30.8287</td>
<td>38.8287</td>
<td>41.4954</td>
<td>42.8117</td>
<td>0.0262</td>
<td>0.1512</td>
<td>0.0960</td>
<td>0.9928</td>
<td>0.0216</td>
</tr>
<tr>
<td>GELLoG</td>
<td>0</td>
<td>1.1287</td>
<td>1.2996</td>
<td>10^{-4}</td>
<td>1.0504</td>
<td>109.5000</td>
<td>115.4986</td>
<td>116.9986</td>
<td>118.4858</td>
<td>0.0623</td>
<td>0.3667</td>
<td>1.0000</td>
<td>2.2 10^{-16}</td>
</tr>
<tr>
<td>ELLLoG</td>
<td>2.3230×10^{-9}</td>
<td>2.3964</td>
<td>0.5000</td>
<td>1</td>
<td>63.0817</td>
<td>69.0818</td>
<td>70.5818</td>
<td>72.0690</td>
<td>0.0548</td>
<td>0.3218</td>
<td>0.7462</td>
<td>4.241 10^{-10}</td>
<td></td>
</tr>
<tr>
<td>LLLoG</td>
<td>4.7922×10^{-9}</td>
<td>2.4917</td>
<td>1</td>
<td>1</td>
<td>65.6049</td>
<td>67.6049</td>
<td>67.8271</td>
<td>68.6007</td>
<td>0.0492</td>
<td>0.2878</td>
<td>0.5616</td>
<td>6.621 10^{-6}</td>
<td></td>
</tr>
</tbody>
</table>

The Likelihood ratio (LR) test statistic for testing H_0: GELLoG against H_a: GELLLoG, H_0: LLLoG against H_a: GELLLoG and H_0: ELLLoG against H_a: GELLLoG are 78.6712 (p-value < 0.0001), 34.7761 (p-value < 0.0001) and 32.2529 (p-value < 0.0001). We can conclude that there are significant differences between GELLoG and GELLLoG distributions, LLLoG and GELLLoG distributions as well between GELLLoG and ELLLoG distributions, respectively based on the LR tests at 5% level. The values of AIC and BIC are smallest for the GELLLoG distribution, when compared
to the corresponding values for the non-nested BGE, NMW, BGL and EMW distributions. The values of the goodness-of-fit-statistics W^*, A^*, KS and its p-value show that the GELLoG distribution is the “best” fit for the lifetime data.

Figure 3.6: Fitted Densities and Probability Plots of the Lifetime Data

3.6.2 Repair lifetimes of an airborne transceiver

These data correspond to maintenance on active repair times (in hours) for an airborne communication transceiver with size $n=46$ from (Leiva et al. [38]) and (Chhikara and Folks [15]). These data are:

0.2, 0.3, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.3, 1.5, 1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.0, 3.3, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3, 22.0, 24.5.

Estimates of the parameters of GELLoG distribution and its related sub-models (standard error in parentheses), AIC, BIC, W^*, A^*, KS and its P-value as well as SS are given in Table 3.5. Plots of the fitted densities and the histogram, observed probability vs predicted probability are given in Figure 3.7.
Table 3.5: Estimates of Models for repair lifetimes of an airborne transceiver Data

<table>
<thead>
<tr>
<th>Model</th>
<th>λ</th>
<th>c</th>
<th>α</th>
<th>δ</th>
<th>−2log L</th>
<th>AIC</th>
<th>AICC</th>
<th>BIC</th>
<th>W∗</th>
<th>A∗</th>
<th>P-value</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GELLoG</td>
<td>0.0909</td>
<td>1.2382</td>
<td>1.7333</td>
<td>1.0864</td>
<td>209.7542</td>
<td>207.7542</td>
<td>208.7298</td>
<td>215.0688</td>
<td>0.0489</td>
<td>0.3168</td>
<td>0.0929</td>
<td>0.8216</td>
</tr>
<tr>
<td>(0.0754)</td>
<td>(0.1661)</td>
<td>(3.2566)</td>
<td>(1.1788)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GELLoG</td>
<td>0</td>
<td>1.1267</td>
<td>1.4823×10^-04</td>
<td>1.054×10^2</td>
<td>266.6504</td>
<td>272.6513</td>
<td>273.2227</td>
<td>278.1372</td>
<td>0.0676</td>
<td>0.4027</td>
<td>1.0000</td>
<td>2.2×10^-16</td>
</tr>
<tr>
<td>(1.5154×10^-05)</td>
<td>(6.2240×10^-05)</td>
<td>(3.144×10^-03)</td>
<td></td>
</tr>
<tr>
<td>ELLLoG</td>
<td>0.0454</td>
<td>1.3410</td>
<td>0.5000</td>
<td>1</td>
<td>202.0737</td>
<td>208.0737</td>
<td>209.3084</td>
<td>214.2229</td>
<td>0.0593</td>
<td>0.3655</td>
<td>0.4893</td>
<td>5.419×10^-10</td>
</tr>
<tr>
<td>(0.0576)</td>
<td>(0.1813)</td>
<td>(0.1417)</td>
<td></td>
</tr>
<tr>
<td>LLLoG</td>
<td>0.0525</td>
<td>1.3205</td>
<td>1</td>
<td>1</td>
<td>214.9587</td>
<td>216.9587</td>
<td>217.0496</td>
<td>218.7873</td>
<td>0.0624</td>
<td>0.3725</td>
<td>0.2362</td>
<td>5.419×10^-10</td>
</tr>
<tr>
<td>(0.0518)</td>
<td>(0.1670)</td>
<td></td>
</tr>
<tr>
<td>BGE</td>
<td>19.0759</td>
<td>1.2739</td>
<td>0.3448</td>
<td>0.1655</td>
<td>201.8082</td>
<td>209.8083</td>
<td>210.7839</td>
<td>217.1229</td>
<td>0.0563</td>
<td>0.4558</td>
<td>0.1109</td>
<td>0.4228</td>
</tr>
<tr>
<td>(20.0329)</td>
<td>(0.7340)</td>
<td>(0.3193)</td>
<td>(0.0620)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMW</td>
<td>0.1280</td>
<td>0.3543</td>
<td>1.2657</td>
<td>0.1810</td>
<td>257.2661</td>
<td>265.2661</td>
<td>264.2417</td>
<td>262.5607</td>
<td>0.1341</td>
<td>0.8504</td>
<td>0.2140</td>
<td>0.0129</td>
</tr>
<tr>
<td>(0.0080)</td>
<td>(0.2015)</td>
<td>(0.0906)</td>
<td>(0.0019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BGL</td>
<td>1.7190×10^-05</td>
<td>1.7623×10^-06</td>
<td>3.041×10^-04</td>
<td>1.010×10^3</td>
<td>396.7372</td>
<td>394.7331</td>
<td>395.7087</td>
<td>402.0476</td>
<td>0.0769</td>
<td>0.4980</td>
<td>0.5073</td>
<td>1.070×10^-05</td>
</tr>
<tr>
<td>(7.310×10^-05)</td>
<td>(2.651×10^-05)</td>
<td>(4.637×10^-05)</td>
<td>(2.509×10^-05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMW</td>
<td>9.5628×10^-05</td>
<td>2.6937×10^-05</td>
<td>1.7061×10^-07</td>
<td>1.000×10^-05</td>
<td>209.9658</td>
<td>217.9658</td>
<td>218.9414</td>
<td>225.2604</td>
<td>0.1441</td>
<td>1.0004</td>
<td>0.1519</td>
<td>0.2585</td>
</tr>
<tr>
<td>(1.4975×10^-05)</td>
<td>(5.456×10^-06)</td>
<td>(5.046×10^-07)</td>
<td>(8.610×10^-08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The LR test statistic for testing H_0: GELLoG against H_a: GELLLoG, H_0: LLLoG against H_a: GELLLoG and H_0: ELLLoG against H_a: GELLLoG are 66.8962 (p-value < 0.00001), 14.2598 (p-value < 0.000801) and 2.3195 (p-value=0.1277). We can conclude that there are significant differences between GELLoG and GELLLoG distributions, as well as between LLLoG and GELLLoG distributions, respectively based on the LR tests. There is no significant difference between GELLLoG and ELLLoG distributions based on the LR test. The GELLLoG distribution is significantly better than the sub-models considered above. The values of the statistics: AIC, AICC, and BIC are smallest for the GELLLoG distribution. Also, the goodness-of-fit statistics W^* and A^* are the smallest and definitely points to the GELLLoG distribution as the “best” fit for the Repair lifetimes of an airborne transceiver data when compared to the corresponding values for the sub-models. The goodness-of-fit statistics W^* and A^* are also better for the GELLLoG distribution when compared to the values for the non-nested BGE, MMW, BGL and EMW distributions. Thus, there is indeed convincing evidence that the GELLLoG distribution is the “best” fit for the repair lifetimes of an airborne transceiver data.

62
3.7 Concluding Remarks

A new generalized distribution called the gamma exponentiated Lindley log-logistic (GELLLoG) distribution is presented. The GELLLoG distribution has several new and known distributions as special cases or sub-models. The density of this new distribution can be expressed as a linear combination of ELLLoG density functions. The GELLLoG distribution possesses hazard function with flexible behavior. We also obtain closed form expressions for the moments, mean and median deviations, distribution of order statistics and entropy. Maximum likelihood estimation technique is used to estimate the model parameters. The performance of the GELLLoG distribution was examined by conducting Monte Carlo simulations for different sizes. Finally, the GELLLoG distribution is fitted to real data sets to illustrate the applicability and usefulness of the new generalized distribution.
Chapter 4

Marshall-Olkin
Lindley-Log-logistic Distribution
(MOLLLoG)

In this chapter, the Marshall-Olkin transformation is employed to obtain a new distribution involving both the Lindley and log-logistic distributions that is more flexible distribution for describing and modeling reliability and lifetime data. This transformation generalizes the Lindley and log-logistic distributions.

A motivation for developing this model is the advantages presented by this extended distribution with respect to having a hazard function that exhibits increasing, decreasing and bathtub shapes, as well as the versatility and flexibility of the Lindley and log-logistic distributions in modeling lifetime data.

4.1 MOLLLoG Distribution, Expansion of Density Function, Sub-models, Hazard and Quantile Functions

In this section, the MOLLLoG distribution, series expansion of its pdf, some sub-models, quantile function, hazard function as well some graphs are presented. The Marshall-Olkin (Marshall and Olkin [47]) class of distributions
is given by
\[F(x; \delta) = 1 - \frac{\delta G(x)}{1 - \delta G(x)}, \quad (4.1) \]
for \(\delta > 0 \) (tilt parameter), \(\delta = 1 - \delta \) and \(G(x) = 1 - G(x) \), where \(G(x) \) is the baseline cdf. Note that when \(\delta = 1 \), we have \(F(x) = G(x) \), the baseline distribution function. The corresponding pdf is given by
\[f(x; \delta) = \frac{\delta g(x)}{(1 - \delta G(x))^2}. \quad (4.2) \]

(Marshall and Olkin [47]) referred to the shape parameter \(\delta \) as the tilt parameter due to the fact that for all \(x > 0 \), the hazard functions are ordered based on the values of \(\delta \), that is, \(h_F(x; \delta) \leq h_G(x) \) when \(\delta \geq 1 \), and \(h_F(x; \delta) \geq h_G(x) \) when \(0 < \delta \leq 1 \).

The motivation for Marshall-Olkin class of distribution is given in several papers listed above (see references therein), that is, let \(X_i, i = 1, 2, \ldots \) be independently and identically distributed as \(G(x) \) and \(N \) a random variable with probability mass function \(P(N = n) = \delta (1 - \delta^{n-1}) \), \(n = 1, 2, \ldots \), then the distribution of \(X = \min(X_1, \ldots, X_N) \) is equivalent to (5.1). That is, the cdf of \(X \) is given by
\[P(X \leq x) = 1 - \sum_{n=1}^{\infty} P(X \geq x | N = n) P(N = n) = \frac{G(x)}{G(x) + \delta G(x)}. \quad (4.3) \]

Consider the following motivation for the MOLLLLoG distribution. Suppose we have a parallel system with \(N \) independent components and the random variable \(N \) has the geometric distribution with the probability mass function \(P(N = n) = \delta^{-1}(1 - \delta^{-1})^{n-1}, \delta > 1, \) and \(n = 1, 2, \ldots \). Let \(X_1, X_2, \ldots, X_N \) represent the lifetimes of each component with each \(X_i \) having the Lindley log-logistic (LLLoG) distribution with the cdf given by
\[G(x; \lambda, c) = 1 - \frac{1 + \lambda + \lambda x}{(1 + \lambda)(1 + x^c)} \exp(-\lambda x), \quad (4.4) \]
for \(\lambda, c > 0 \) and \(x > 0 \). Then a random variable \(X = \min(X_1, \ldots, X_N) \) is the lifetime of the system and the distribution of \(X \) is given by equation (4.1), where \(G(x) \) is the cdf of the Lindley log-logistic (LLLoG) distribution (Oluyede et al. [63]).

The cdf and pdf the MOLLLLoG distribution are given by
\[F(x; \lambda, c, \delta) = 1 - \frac{\delta \left(\frac{1 + \lambda + \lambda x}{(1 + \lambda)(1 + x^c)} \right) \exp(-\lambda x)}{1 - \delta \left(\frac{1 + \lambda + \lambda x}{(1 + \lambda)(1 + x^c)} \right) \exp(-\lambda x)}, \quad (4.5) \]
and

\[
f(x; \lambda, c, \delta) = \frac{\delta e^{-\lambda x}}{(1 + \lambda)(1 + x^c)} \left[\lambda^2 (1 + x) + \frac{(1 + \lambda + \lambda x) c e^{-1}}{1 + x^c} \right] \left(1 - \frac{\delta}{(1 + \lambda)(1 + x^c)} e^{-\lambda x} \right)^2,
\]

respectively, for \(\lambda, c, \delta > 0 \). If a random variable \(X \) has the Marshall-Olkin Log-logistic (MOLLLoG) density, we write \(X \sim MOLLLoG(\lambda, c, \delta) \). Plots of the MOLLLoG pdf shows different shapes including right skewed, left skewed, almost symmetric, increasing and reverse J shape.

![Figure 4.1: Plots of MOLLLoG Density Function](image)

4.1.1 Expansion of Density Function

Presented below is an expansion of the MOLLLoG density function. Note that

\[
f(x; \lambda, c, \delta) = \frac{\delta g(x)}{(1 - \delta G(x))^2}
= \sum_{j,k=0}^{\infty} \frac{\Gamma(2 + j)}{\Gamma(2) j!} \binom{j}{k} (-1)^k \frac{\delta^j}{k + 1} (k + 1) [G(x)]^{k+1-1} g(x)
= \sum_{j,k=0}^{\infty} \frac{\Gamma(2 + j)}{\Gamma(2) j!} \binom{j}{k} (-1)^k \frac{\delta^j}{k + 1} g_{ELLLoG}(x; \lambda, c, k + 1),
\]

where

\[
g_{ELLLoG}(x; \lambda, c, k + 1) = \left(1 - \frac{1 + \lambda + \lambda x}{(1 + \lambda)(1 + x^c)} e^{-\lambda x} \right)^{k+1-1} \times \frac{(k + 1) e^{-\lambda x}}{(1 + \lambda)(1 + x^c)} \left[\lambda^2 (1 + x) + \frac{(1 + \lambda + \lambda x) c e^{-1}}{1 + x^c} \right]
\]
is the exponentiated Lindley-Log-logistic (ELLLoG) density function with parameters $\lambda, c, k + 1 > 0$. Thus, the MOLLLoG density function can be written as an infinite linear combination of the ELLLoG density functions. Consequently, the mathematical and statistical properties of the MOLLLoG distribution follows directly from those of the ELLLoG distribution.

4.1.2 Sub-models of MOLLLoG Distribution

In this subsection, some Sub-models of the MOLLLoG distributions are discussed.

- We obtain the parent Lindley-Log-logistic (LLLoG) distribution when $\delta = 1$.
- When $\lambda \to 0$, we obtain the Marshall-Olkin Log-logistic (MOLLoG) distribution.
- When $\lambda \to 0$, and $\delta = 1$, we obtain Log-logistic (LLoG) distribution.
- When $c = 1$, the Marshall-Olkin Lindley Log-logistic distribution reduces to the 2 parameter distribution with survival function

$$
\bar{F}(x; \lambda, \delta) = \frac{\delta(1 + \lambda + \lambda x)e^{-\lambda x}}{(1 + \lambda)(1 + x) - (1 - \delta)(1 + \lambda + \lambda x)e^{-\lambda x}}, \quad (4.8)
$$

for $\lambda, \delta > 0$.

- When $\lambda \to 0$, and $c=1$, the MOLLLoG distribution reduces to a one parameter distribution with the pdf

$$
f(x; \delta) = \frac{\delta}{(1+x)^2}\left(1 - \frac{\delta}{(1+x)}\right)^2, \quad (4.9)
$$

for $\delta > 0$.

- When $c = \delta = 1$, the MOLLLoG distribution reduces to a one parameter distribution with the pdf

$$
f(x; \lambda) = \frac{e^{-\lambda x}}{(1 + \lambda)(1 + x)} \left(\lambda^2(1 + x) + \frac{(1 + \lambda + \lambda x)}{1 + x}\right), \quad (4.10)
$$
for $\lambda > 0$.

4.1.3 Hazard and Quantile Functions

In this section, we present the hazard and quantile functions of the MOLLLoG distribution. The hazard function is given by

$$h_F(x) = \frac{f(x)}{F(x)} = \frac{\lambda^2 (1+x) + (1 + x^c)^{-1}cx^{c-1}}{1 - \delta \left(\frac{1+x+\lambda x}{(1+\lambda)(1+x^c)} \right) e^{-\lambda x}},$$ \hspace{1cm} (4.11)

for $\lambda, c, \delta > 0$, and $\bar{\delta} = 1 - \delta$. Plots of the hazard function of the MOLLLoG distribution show different shapes including decreasing, increasing, bathtub and upside down bathtub.

![Figure 4.2: Plots of MOLLLoG Hazard Function](image)

The quantile function of the MOLLLoG distribution is obtained by solving the non-linear equation:

$$F(x; \lambda, c, \delta) = 1 - \frac{\delta \left(\frac{1+x+\lambda x}{(1+\lambda)(1+x^c)} \right) \exp(-\lambda x)}{1 - \bar{\delta} \left(\frac{1+x+\lambda x}{(1+\lambda)(1+x^c)} \right) \exp(-\lambda x)} = u,$$ \hspace{1cm} (4.12)

$0 \leq u \leq 1$, that is,

$$\lambda x + \ln(1 + x^c) - \ln \left(1 + \frac{\lambda x}{1 + \lambda} \right) + \ln \left(\frac{1 - u}{\delta + (1 - u)\bar{\delta}} \right) = 0.$$ \hspace{1cm} (4.13)

Therefore, random number can be generated from the MOLLLoG distribution by numerically solving the non-linear equation (4.13). Quantiles of the MOLLLoG distribution for selected parameter values are given in Table 4.1.
4.2 Moments, Conditional Moments and Mean Deviations

In this section, the \(r \)-th moment, conditional moments, mean deviations, Lorenz and Bonferroni curves of the MOLLLoG distribution are presented. Let \(Y \sim ELLLoG(\lambda, c, k + 1) \). Note that the \(r \)-th moment of the ELLLoG distribution is given by

\[
E(Y^r) = \int_0^\infty y^r g_{ELLLoG}(y; \lambda, c, k+1) dy
\]

\[
= \int_0^\infty y^r(k + 1) \left[1 - \frac{1 + \lambda + \lambda y}{1 + \lambda} \frac{e^{-\lambda y}}{(1 + y^c)} \right]^{(k+1)-1} \\
\times (1 + y^c)^{-1} e^{-\lambda y} \left[\lambda^2(1 + y) + \frac{(1 + \lambda + \lambda y)cy^{c-1}}{1 + y^c} \right] dy
\]

\[
= \sum_{s=0}^{\infty} \binom{(k+1) - 1}{s} (-1)^s (k + 1) \int_0^\infty y^r \left[\frac{1 + \lambda + \lambda y}{1 + \lambda} \frac{e^{-\lambda y}}{(1 + y^c)} \right]^s \\
\times (1 + y^c)^{-1} e^{-\lambda y} \left[\lambda^2(1 + y) + \frac{(1 + \lambda + \lambda y)cy^{c-1}}{1 + y^c} \right] dy
\]

\[
= \sum_{s,p=0}^{\infty} \frac{(k + 1)(-1)^{s+p}[\lambda(s + 1)]^p}{(1 + \lambda)^{s+1}p!} \binom{(k + 1) - 1}{s} \\
\times \left[\lambda^2 \sum_{m=0}^{\infty} \binom{s}{m} \lambda^m(1 + \lambda)^{s-m} \int_0^\infty y^{r+p+m}(1 + y)(1 + y^c)^{-s-1} dy \\
+ c \sum_{m=0}^{\infty} \binom{s + 1}{m} \lambda^m(1 + \lambda)^{s+1-m} \int_0^\infty y^{r+p+c+m-1}(1 + y^c)^{-s-2} dy \right].
\]
We note that by applying \((1 + \lambda + \lambda y)^{s+1} = \sum_{m=0}^{\infty} \left(\frac{s+1}{m} \right) (\lambda y)^m (1 + \lambda)^{s+1-m}, (1 + \lambda + \lambda y)^s = \sum_{m=0}^{\infty} \left(\frac{s}{m} \right) (\lambda y)^m (1 + \lambda)^{s-m}\), and the substitution \(t = (1 + y^c)^{-1}\), we have

\[
E(Y^r) = \sum_{s,p=0}^{\infty} \frac{(k+1)(-1)^{s+p}[\lambda(s+1)]^p}{(1 + \lambda)^{s+p+1}p!} \left((k+1) - 1 \right)_s \times \left[\sum_{m=0}^{\infty} \left(\frac{s}{m} \right) \lambda^m (1 + \lambda)^{s-m} \int_0^1 t^{s+1-\frac{r+p+m+1}{c}} -1(1 - t)^{\frac{r+p+m+1}{c}} -1 dt \right] + c \sum_{m=0}^{\infty} \left(\frac{s+1}{m} \right) \lambda^m (1 + \lambda)^{s+1-m} \int_0^1 t^{s+2-\frac{r+p+c+m}{c}} -1(1 - t)^{\frac{r+p+c+m}{c}} -1 dt \right].
\]

Thus, the \(r\)th moment of the ELLLLoG distribution reduces to

\[
E(Y^r) = \sum_{s,p=0}^{\infty} \frac{(k+1)(-1)^{s+p}[\lambda(s+1)]^p}{(1 + \lambda)^{s+p+1}p!} \left((k+1) - 1 \right)_s \times \left[\sum_{m=0}^{\infty} \left(\frac{s}{m} \right) \lambda^m (1 + \lambda)^{s-m} \left(B \left(s+1 - \frac{r+p+m+1}{c}, \frac{r+p+m+1}{c} \right) + B \left(s+1 - \frac{r+p+m+2}{c}, \frac{r+p+m+2}{c} \right) \right) + c \sum_{m=0}^{\infty} \left(\frac{s+1}{m} \right) \lambda^m (1 + \lambda)^{s+1-m} \times B \left(s+2 - \frac{r+p+c+m}{c}, \frac{r+p+c+m}{c} \right) \right] .
\]

Consequently, the \(r\)th moment of the MOLLLoG distribution is given by

\[
E(X^r) = \sum_{j,k=0}^{\infty} \frac{\Gamma(2+j)}{\Gamma(2)j!} \left(\frac{j}{k} \right) (-1)^k \frac{\delta^j}{k+1} E(Y^r),
\]

where \(E(Y^r)\) is given by equation (4.14). The moment generating function of the MOLLLoG distribution is given by \(E(e^{tX}) = \sum_{k=0}^{\infty} \frac{t^k}{k!} E(X^k)\), where \(E(X^k)\) is given by the equation (4.15). The variance \((\sigma^2)\), standard deviation \((\text{SD}=\sigma)\), coefficient of variation \((\text{CV})\), coefficient of skewness \((\text{CS})\) and coefficient of kurtosis \((\text{CK})\) are given by

\[
\sigma^2 = \mu'_2 - \mu^2, \quad CV = \frac{\sigma}{\mu} = \sqrt{\frac{\mu'_2 - \mu^2}{\mu^2}} = \sqrt{\frac{\mu'_2}{\mu^2} - 1},
\]

\[
CS = \frac{E[(X - \mu)^3]}{[E(X - \mu)^2]^{3/2}} = \frac{\mu'_3 - 3\mu\mu'_2 + 2\mu^3}{(\mu'_2 - \mu^2)^{3/2}},
\]

70
and

\[CK = \frac{E[(X - \mu)^4]}{[E(X - \mu)^2]^2} = \frac{\mu'_4 - 4\mu\mu'_3 + 6\mu^2\mu'_2 - 3\mu^4}{(\mu'_2 - \mu^2)^2}, \]

respectively. Some moments for selected parameters values are given in Table 4.2 and plots of CS and CK versus shape parameter c and δ are presented in Figure 4.3. Plots of skewness and kurtosis for choices of the model parameters reveal that skewness and kurtosis depend on the shape parameters c and δ.

Table 4.2: Table of Moments for Selected Parameters for MOLLLoG Distribution

<table>
<thead>
<tr>
<th></th>
<th>(0.4,0.8,0.2)</th>
<th>(0.1,0.7,1.2)</th>
<th>(1.0,0.5,1.2)</th>
<th>(0.3,1.0,0.9)</th>
<th>(0.4,1.0,0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(X)</td>
<td>0.1579</td>
<td>0.2718</td>
<td>0.1831</td>
<td>0.2327</td>
<td>0.2222</td>
</tr>
<tr>
<td>E(X^2)</td>
<td>0.0721</td>
<td>0.1629</td>
<td>0.1048</td>
<td>0.1260</td>
<td>0.1208</td>
</tr>
<tr>
<td>E(X^3)</td>
<td>0.0453</td>
<td>0.1143</td>
<td>0.0731</td>
<td>0.0842</td>
<td>0.0810</td>
</tr>
<tr>
<td>E(X^4)</td>
<td>0.0327</td>
<td>0.0874</td>
<td>0.0559</td>
<td>0.0628</td>
<td>0.0604</td>
</tr>
<tr>
<td>E(X^5)</td>
<td>0.0256</td>
<td>0.0705</td>
<td>0.0452</td>
<td>0.0499</td>
<td>0.0481</td>
</tr>
<tr>
<td>E(X^6)</td>
<td>0.0210</td>
<td>0.0590</td>
<td>0.0379</td>
<td>0.0413</td>
<td>0.0398</td>
</tr>
<tr>
<td>SD</td>
<td>0.0178</td>
<td>0.0507</td>
<td>0.0326</td>
<td>0.0352</td>
<td>0.0340</td>
</tr>
<tr>
<td>CV</td>
<td>0.0154</td>
<td>0.0444</td>
<td>0.0286</td>
<td>0.0307</td>
<td>0.0296</td>
</tr>
<tr>
<td>CS</td>
<td>0.0136</td>
<td>0.0395</td>
<td>0.0255</td>
<td>0.0272</td>
<td>0.0262</td>
</tr>
<tr>
<td>CK</td>
<td>0.0122</td>
<td>0.0355</td>
<td>0.0230</td>
<td>0.0244</td>
<td>0.0236</td>
</tr>
</tbody>
</table>
4.2.1 Conditional Moments

For lifetime models, it is also of interest to obtain the r^{th} conditional moments and the mean residual lifetime function. The r^{th} conditional moment for the MOLLLoG distribution can be readily obtained from those of the ELLLoG distribution. The conditional r^{th} moment for the ELLLoG distribution is given...
by

\[E(Y^r | Y > t) = \frac{1}{G_{\text{ELLLog}}(t)} \int_t^{\infty} x^r g_{\text{ELLLog}}(y; \lambda, c, (k + 1)) dy \]

\[= \frac{1}{G_{\text{ELLLog}}(t)} \sum_{s,p=0}^{\infty} \frac{(k + 1)(-1)^{s+p}[\lambda(s + 1)]^p}{(1 + \lambda)^{s+1}p!} \left(\frac{(k + 1) - 1}{s} \right) \]

\[\times \left[\sum_{m=0}^{\infty} \binom{s}{m} \lambda^{m+2} \frac{(1 + \lambda)^{s-m}}{c} \right] \]

\[\times \left(B_{(1+t^c)^{-1}} \left(s + 1 - \frac{r + p + m + 1}{c}, \frac{r + p + m + 1}{c} \right) + B_{(1+t^c)^{-1}} \left(s + 1 - \frac{r + p + m + 2}{c}, \frac{r + p + m + 2}{c} \right) \right) \]

\[+ c \sum_{m=0}^{\infty} \binom{s + 1}{m} \lambda^{m} (1 + \lambda)^{s+1-m} \]

\[(1+t^c)^{-1} \left(s + 2 - \frac{r + p + c + m}{c}, \frac{r + p + c + m}{c} \right) \right]. \tag{4.16} \]

where \(B_{(1+t^c)^{-1}}(a, b) \) is the incomplete beta function. Consequently, the \(r \)th conditional moment of the MOLLLoG distribution is given by

\[E(X^r | X > t) = \sum_{j,k=0}^{\infty} \frac{\Gamma(2 + j)}{\Gamma(2)j!} \binom{j}{k} (-1)^k \frac{\delta^j}{k + 1} E(Y^r | Y > t) \]

\[= \frac{1}{G_{\text{ELLLog}}(t)} \sum_{j,k=0}^{\infty} \frac{\Gamma(2 + j)}{\Gamma(2)j!} \binom{j}{k} (-1)^k \frac{\delta^j}{k + 1} \]

\[\times \left[\sum_{m=0}^{\infty} \binom{s}{m} \lambda^{m+2} \frac{(1 + \lambda)^{s-m}}{c} \right] \]

\[\times \left(B_{(1+t^c)^{-1}} \left(s + 1 - \frac{r + p + m + 1}{c}, \frac{r + p + m + 1}{c} \right) + B_{(1+t^c)^{-1}} \left(s + 1 - \frac{r + p + m + 2}{c}, \frac{r + p + m + 2}{c} \right) \right) \]

\[+ c \sum_{m=0}^{\infty} \binom{s + 1}{m} \lambda^{m} (1 + \lambda)^{s+1-m} \]

\[(1+t^c)^{-1} \left(s + 2 - \frac{r + p + c + m}{c}, \frac{r + p + c + m}{c} \right) \right]. \tag{4.17} \]

4.2.2 Mean Deviation, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as Lorenz and Bonferroni curves for the MOLLLoG distribution are presented
in this subsection. The application of Lorenz and Bonferroni curves is not limited to economics for the study of income and poverty, but they can also be used to other fields such as reliability, demography, insurance and medicine. These measures can be readily obtained from those of the ELLLoG distribution. Bonferroni and Lorenz curves can be readily obtained from the incomplete moments.

4.2.3 Mean Deviations

The amount of scatter in a population can be measured to some extent by the totality of deviations from the mean and median. These are known as the mean deviation about the mean and the mean deviation about the median. If \(Y \) has the ELLLoG distribution, we can derive the mean deviation about the mean \(\mu \) by

\[
\delta_1 = \int_0^\infty |y - \mu|g_{\text{ELLLoG}}(y)dy = 2\mu G_{\text{ELLLoG}}(\mu) - 2\mu + 2T(\mu),
\]

and the median deviation about the median \(M \) by

\[
\delta_2 = \int_0^\infty |y - M|g_{\text{ELLLoG}}(y)dy = 2T(M) - \mu,
\]

where \(\mu = E(Y) \) is given in equation (4.15) with \(r = 1 \), \(M \) the median of \(G_{\text{ELLLoG}}(x) \) and \(T(a) = \int_a^\infty x \cdot g_{\text{ELLLoG}}(y)dy \). Note that

\[
T(a) = \sum_{s,p=0}^{\infty} \frac{\alpha(-1)^{s+p}[\lambda(s+1)]^p}{(1+\lambda)^{s+1}p!} \binom{\alpha-1}{s}
\]

\[
\times \left[\sum_{m=0}^{\infty} \binom{s}{m} \lambda^{m+2} \frac{(1+\lambda)^{s-m}}{c} \right]
\]

\[
\times \left(\frac{B(1+\alpha^{-1})}{c} \right) \binom{s+1}{c} - \frac{p+m+2}{c}
\]

\[
+ \frac{B(1+\alpha^{-1})}{c} \binom{s+1}{c} - \frac{p+m+3}{c}
\]

\[
+ c \sum_{m=0}^{\infty} \binom{s+1}{m} \lambda^{m}(1+\lambda)^{s+1-m}
\]

\[
(1+\alpha^{-1}) \binom{s+2}{c} - \frac{1+p+c+m}{c} - \frac{1+p+c+m}{c}.
\]

Consequently, the mean deviations for MOLLLoG can be readily obtained from those of the ELLLoG distribution.
4.2.4 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves for the ELLLoG are given as

\[B(p) = \frac{1}{p\mu} \int_0^q yg_{\text{ELLLoG}}(y) dy = \frac{1}{p\mu} [\mu - T(q)], \]

and

\[L(p) = \frac{1}{\mu} \int_0^q yg_{\text{ELLLoG}}(y) dy = \frac{1}{\mu} [\mu - T(q)], \]

respectively, where \(T(q) = \int_q^\infty yg_{\text{ELLLoG}}(y) dy, \quad q = G_{\text{ELLLoG}}^{-1}(p), \quad 0 \leq p \leq 1. \) It follows therefore that Bonferroni and Lorenz curves for the MOLLLoG distribution can be readily obtained from those of the ELLLoG distribution.

4.3 Order Statistics and Rényi Entropy

The concept of entropy plays a very important role in information theory. In this section, we present the distribution of the order statistic and Rényi entropy for the MOLLLoG distribution.

4.3.1 Order Statistics

Order statistics play an important role in probability and statistics. The pdf of the \(i^{th} \) order statistic from the MOLLLoG pdf \(f_{\text{MOLLLoG}}(x) \) is given by

\[f_{i:n}(x) = \frac{n!f_{\text{MOLLLoG}}(x)}{(i-1)!(n-i)!} [F_{\text{MOLLLoG}}(x)]^{i-1} [1 - F_{\text{MOLLLoG}}(x)]^{n-i} \]

\[= \frac{n!f_{\text{MOLLLoG}}(x)}{(i-1)!(n-i)!} \sum_{j=0}^{n-i} (-1)^j \binom{n-i}{j} [F_{\text{MOLLLoG}}(x)]^{j+i-1} \]

by using the binomial expansion

\[[1 - F_{\text{MOLLLoG}}(x)]^{n-i} = \sum_{m=0}^{n-i} \binom{n-i}{m} (-1)^m [F_{\text{MOLLLoG}}(x)]^m, \]

so that

\[f_{i:n}(x) = \frac{f_{\text{MOLLLoG}}(x)}{B(i, n-i + 1)} \sum_{m=0}^{n-i} \binom{n-i}{m} (-1)^m \frac{(m+i)(m+1)}{m+i} [F_{\text{MOLLLoG}}(x)]^{m+i-1} \]

\[= \sum_{m=0}^{n-i} w_{i,m} g_{m+i}(x), \]
where \(f_{m+i}(x) \) is the pdf of the exponentiated MOLLLoG distribution with parameters \(c, \lambda, \delta \) and \((m+i), B(.,.)\) is the beta function and the weights \(w_{i,m} \) are given by

\[
w_{i,m} = \frac{1}{B(i, n-i+1)} \binom{n-i}{m} (-1)^m \binom{m+i-1}{m} \binom{n}{m+i}.
\]

4.3.2 Rényi Entropy

In this section, we present Rényi entropy for the MOLLLoG distribution. Rényi entropy (Rényi [70]) is an extension of Shannon entropy. Rényi entropy is defined to be

\[
I_R(v) = \frac{1}{1-v} \log \left(\int_0^\infty [f_{\text{MOLLLoG}}(x; \lambda, c, \delta)]^v dx \right), \quad v \neq 1, \; v > 0. \tag{4.19}
\]

Rényi entropy tends to Shannon entropy as \(v \to 1 \). Note that

\[
f_{\text{MOLLLoG}}^v(x) = \frac{\delta^v e^{-\lambda vx}}{(1+\lambda)^v (1+x^c)^v} \left(\frac{\lambda^2(1+x) + (1+\lambda+\lambda x) c e^{-1}}{1+x^c} \right)^v \\
\times \left(1 - \frac{\lambda}{(1+\lambda)(1+x^c)} e^{-\lambda x} \right)^{-2v} \\
= \frac{\delta^v e^{-\lambda vx}}{(1+\lambda)^v (1+x^c)^v} \sum_{p=0}^{\infty} \binom{v}{p} \lambda^{2v-p}(1+x)^{v-p} \left(\frac{1+\lambda+\lambda x}{1+x^c} \right)^p e^{p(x^c-1)}
\]

\[
\times \sum_{q=0}^{\infty} \frac{\Gamma(2v+q)}{\Gamma(2v)q!} \frac{\delta^q (1+\lambda+\lambda x)^q}{(1+\lambda)^q (1+x^c)^q} e^{-\lambda qx} \\
= \sum_{s,p,q,t=0}^{\infty} \frac{\delta^s \lambda^q (1+\lambda)^s}{(1+x^c)^{v+q+s!}} \binom{v}{p} \lambda^{2v-p} \frac{\Gamma(2v+q)}{\Gamma(2v)q!} e^{p(x^c-1)}
\]

\[
\times (1+x^c)^{-v-p-q} (1+x)^{v-p} (1+\lambda+\lambda x)^{p+q} \\
= \sum_{s,p,q,t,=0}^{\infty} \frac{\delta^s \lambda^q (1+\lambda)^s}{(1+x^c)^{v+q+s!}} \binom{v}{p} \lambda^{2v-p} \frac{\Gamma(2v+q)}{\Gamma(2v)q!} (v-p)\left(\begin{array}{c} p+q \\ w \end{array}\right)
\]

\[
\times \lambda^w (1+\lambda)^{p+q-w} x^{s+cp-p+t+w} (1+x^c)^{-v-p-q}.
\]

Note that, by applying the substitution \(y = (1+y^c)^{-1} \), we have the following

\[
\int_0^\infty \frac{x^{s+cp-p+t+w}}{(1+x^c)^{v+q+s!}} dx = \frac{1}{c} B(v+p+q-k^*, k^*),
\]

where \(k^* = \frac{s+cp-p+t+w+1}{c} \), so that Rényi entropy for the MOLLLoG distribution reduces to

\[
I_R(v) = \frac{1}{1-v} \log \left(\sum_{s,p,q,t,=0}^{\infty} \frac{\delta^s \lambda^q (1+\lambda)^s}{(1+x^c)^{v+q+s!}} \binom{v}{p} \lambda^{2v-p} \frac{\Gamma(2v+q)}{\Gamma(2v)q!} (v-p)\left(\begin{array}{c} p+q \\ w \end{array}\right)
\]

\[
\times \lambda^w (1+\lambda)^{p+q-w} \frac{1}{c} B(v+p+q-k^*, k^*) \right).
\]
4.4 Estimation

Let \(X_i \sim MOLLLoG(\lambda, c, \delta) \) and \(\Delta = (\lambda, c, \delta)^T \) be the parameter vector. The log-likelihood \(\ell = \ell(\Delta) \) based on a random sample of size \(n \) is given by

\[
\ell = \ell(\Delta) = n \ln(\delta) - \lambda \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} \ln \left[\lambda^2 (1 + x_i) + \frac{(1 + \lambda + \lambda x_i) c x_i^{c-1}}{1 + x_i^c} \right] - n \ln(1 + \lambda) - \sum_{i=1}^{n} \ln(1 + x_i^c) - 2 \sum_{i=1}^{n} \ln \left[1 - \delta \frac{1 + \lambda + \lambda x_i}{(1 + \lambda)(1 + x_i^c)} e^{-\lambda x_i} \right]
\]

(4.20)

Elements of the score vector \(U = \left(\frac{\partial \ell}{\partial \lambda}, \frac{\partial \ell}{\partial c}, \frac{\partial \ell}{\partial \delta} \right) \) can be readily obtained.

The equations obtained by setting the above partial derivatives to zero are not in closed form and the values of the parameters \(\lambda, c, \delta \) must be found via iterative methods. The maximum likelihood estimates of the parameters, denoted by \(\hat{\Delta} \) is obtained by solving the nonlinear equation \(\left(\frac{\partial \ell}{\partial \lambda}, \frac{\partial \ell}{\partial c}, \frac{\partial \ell}{\partial \delta} \right) = 0 \), using a numerical method such as Newton-Raphson procedure. The Fisher information matrix is given by \(I(\Delta) = \left[I_{\theta_i \theta_j} \right]_{3 \times 3} = E \left(-\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j} \right), i, j = 1, 2, 3, \) can be numerically obtained by MATLAB or NLMIXED in SAS or R software. The total Fisher information matrix \(nI(\Delta) \) can be approximated by

\[
J_n(\hat{\Delta}) \approx -\left[\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j} \right]_{3 \times 3} , \quad i, j = 1, 2, 3.
\]

(4.21)

For a given set of observations, the matrix given in equation (4.21) is obtained after the convergence of the Newton-Raphson procedure via NLMIXED in SAS or R software.

The multivariate normal distribution \(N_3(0, J^{-1}(\hat{\Delta})) \), where the mean vector \(0 = (0, 0, 0)^T \) and \(J^{-1}(\hat{\Delta}) \) is the observed Fisher information matrix evaluated at \(\hat{\Delta} \), can be used to construct confidence intervals and confidence regions for the individual model parameters and for the survival and hazard rate functions. That is, the approximate \(100(1 - \eta) \% \) two-sided confidence intervals for the parameters \(\lambda, c, \) and \(\delta \) are given by:

\[
\hat{\lambda} \pm Z_{\frac{\eta}{2}} \sqrt{I^{-1}_{\lambda \lambda}(\hat{\Delta})}, \quad \hat{c} \pm Z_{\frac{\eta}{2}} \sqrt{I^{-1}_{cc}(\hat{\Delta})}, \quad \text{and} \quad \hat{\delta} \pm Z_{\frac{\eta}{2}} \sqrt{I^{-1}_{\delta \delta}(\hat{\Delta})},
\]

respectively, where \(I^{-1}_{\lambda \lambda}(\hat{\Delta}), I^{-1}_{cc}(\hat{\Delta}), \) and \(I^{-1}_{\delta \delta}(\hat{\Delta}) \), are the diagonal elements of \(I^{-1}(\hat{\Delta}) = (nI(\Delta))^{-1} \), and \(Z_{\frac{\eta}{2}} \) is the upper \(\frac{\eta}{2} \)th percentile of a standard normal distribution.
4.5 Monte Carlo Simulations

In this section, the performance of the maximum likelihood estimates is examined by conducting various simulation studies for different sample sizes. We examine the performance of the MOLLOg distribution by conducting various simulations for different sizes \((n=25, 50, 100, 200, 400, 800, 1200)\) via the R package. We simulate \(N = 1000\) samples for the true parameters values given in the Table 4.3 and Table 4.4. The Average Bias and Root Mean Square Error (RMSE) were computed. The average bias and RMSE for the estimated parameter \(\hat{\theta}\), say, are given by:

\[
ABias(\hat{\theta}) = \frac{\sum_{i=1}^{N} \hat{\theta}_i}{N} - \theta, \quad \text{and} \quad RMSE(\hat{\theta}) = \sqrt{\frac{\sum_{i=1}^{N} (\hat{\theta}_i - \theta)^2}{N}},
\]

respectively. The table lists the mean MLEs of the parameters along with the respective average bias and root mean squared errors (RMSEs).

Table 4.3: Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>parameter</th>
<th>Sample Size</th>
<th>Mean</th>
<th>RMSE</th>
<th>ABias</th>
<th>Mean</th>
<th>RMSE</th>
<th>ABias</th>
<th>Mean</th>
<th>RMSE</th>
<th>ABias</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>25</td>
<td>1.0766</td>
<td>0.6101</td>
<td>0.0766</td>
<td>1.0348</td>
<td>0.5757</td>
<td>0.0348</td>
<td>2.5266</td>
<td>1.3586</td>
<td>0.5266</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.0414</td>
<td>0.4337</td>
<td>0.0414</td>
<td>1.0228</td>
<td>0.4498</td>
<td>0.0228</td>
<td>2.3756</td>
<td>1.0222</td>
<td>0.3756</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0376</td>
<td>0.3278</td>
<td>0.0376</td>
<td>1.0157</td>
<td>0.3239</td>
<td>0.0157</td>
<td>2.1156</td>
<td>0.7910</td>
<td>0.1156</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.0140</td>
<td>0.2228</td>
<td>0.0140</td>
<td>1.0101</td>
<td>0.2358</td>
<td>0.0101</td>
<td>2.0678</td>
<td>0.6616</td>
<td>0.0678</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1.0031</td>
<td>0.1021</td>
<td>0.0031</td>
<td>1.0020</td>
<td>0.1690</td>
<td>0.0020</td>
<td>2.0291</td>
<td>0.5215</td>
<td>0.0291</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1.0028</td>
<td>0.0707</td>
<td>0.0028</td>
<td>1.0006</td>
<td>0.1228</td>
<td>0.0006</td>
<td>1.9699</td>
<td>0.4179</td>
<td>-0.0300</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>0.9984</td>
<td>0.0905</td>
<td>-0.0015</td>
<td>1.0005</td>
<td>0.0994</td>
<td>0.0005</td>
<td>1.9801</td>
<td>0.3387</td>
<td>-0.0199</td>
</tr>
<tr>
<td>(c)</td>
<td>25</td>
<td>1.1680</td>
<td>0.7669</td>
<td>0.1680</td>
<td>1.2445</td>
<td>0.6674</td>
<td>0.2445</td>
<td>5.3011</td>
<td>18.5945</td>
<td>2.1011</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.0502</td>
<td>0.3219</td>
<td>0.0502</td>
<td>1.2474</td>
<td>0.4178</td>
<td>0.0478</td>
<td>3.5220</td>
<td>2.4227</td>
<td>0.3227</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0150</td>
<td>0.2254</td>
<td>0.0150</td>
<td>1.2316</td>
<td>0.2017</td>
<td>0.0217</td>
<td>2.6462</td>
<td>1.3816</td>
<td>0.0662</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.0106</td>
<td>0.1644</td>
<td>0.0106</td>
<td>1.2154</td>
<td>0.2277</td>
<td>0.0177</td>
<td>3.1533</td>
<td>1.0200</td>
<td>0.0466</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1.0074</td>
<td>0.1113</td>
<td>0.0074</td>
<td>1.2122</td>
<td>0.1636</td>
<td>0.0136</td>
<td>3.1621</td>
<td>0.7508</td>
<td>-0.0378</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1.0034</td>
<td>0.0759</td>
<td>0.0034</td>
<td>1.2044</td>
<td>0.1171</td>
<td>0.0071</td>
<td>3.2287</td>
<td>0.5298</td>
<td>0.0287</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1.0024</td>
<td>0.0635</td>
<td>0.0024</td>
<td>1.2023</td>
<td>0.0939</td>
<td>0.0039</td>
<td>3.2191</td>
<td>0.4272</td>
<td>0.0191</td>
</tr>
<tr>
<td>(\delta)</td>
<td>25</td>
<td>1.2609</td>
<td>0.9275</td>
<td>0.2690</td>
<td>2.0117</td>
<td>1.7843</td>
<td>0.5117</td>
<td>3.7002</td>
<td>5.0555</td>
<td>2.2002</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.1799</td>
<td>0.7225</td>
<td>0.1799</td>
<td>1.8110</td>
<td>1.1942</td>
<td>0.3111</td>
<td>2.2878</td>
<td>3.8315</td>
<td>1.3878</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0102</td>
<td>0.4908</td>
<td>0.1012</td>
<td>1.6641</td>
<td>0.7608</td>
<td>0.1641</td>
<td>2.0179</td>
<td>1.7208</td>
<td>0.6079</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.0485</td>
<td>0.3142</td>
<td>0.0485</td>
<td>1.5854</td>
<td>0.5255</td>
<td>0.0554</td>
<td>1.9004</td>
<td>1.2687</td>
<td>0.4004</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>1.0174</td>
<td>0.2037</td>
<td>0.0174</td>
<td>1.5377</td>
<td>0.3601</td>
<td>0.0377</td>
<td>1.7204</td>
<td>0.9424</td>
<td>0.2204</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1.0134</td>
<td>0.1420</td>
<td>0.0134</td>
<td>1.5163</td>
<td>0.2497</td>
<td>0.0163</td>
<td>1.5506</td>
<td>0.6103</td>
<td>0.5056</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1.0045</td>
<td>0.1218</td>
<td>0.0045</td>
<td>1.5107</td>
<td>0.2047</td>
<td>0.0107</td>
<td>1.5296</td>
<td>0.4664</td>
<td>0.0296</td>
</tr>
</tbody>
</table>
Table 4.4: Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample Size</th>
<th>Mean 1.5,1.5,3.0</th>
<th>RMSE 1.5,1.5,3.0</th>
<th>ABias 1.5,1.5,3.0</th>
<th>Mean 2.0,1.9,2.0</th>
<th>RMSE 2.0,1.9,2.0</th>
<th>ABias 2.0,1.9,2.0</th>
<th>Mean 3.0,3.8,2.5</th>
<th>RMSE 3.0,3.8,2.5</th>
<th>ABias 3.0,3.8,2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ</td>
<td>25</td>
<td>1.4469 0.8265 -0.0530</td>
<td>2.1867 1.1901 0.1867</td>
<td>3.3764 1.5179 0.3764</td>
<td>50</td>
<td>1.4604 0.6533 -0.0395</td>
<td>2.0558 0.8827 0.0558</td>
<td>3.1933 1.0682 0.1933</td>
<td>100</td>
<td>1.4633 0.5259 -0.0366</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.4765 0.4208 -0.0234</td>
<td>1.9486 0.6539 -0.0519</td>
<td>3.0772 0.5331 0.0772</td>
<td>200</td>
<td>1.4823 0.3331 -0.0176</td>
<td>1.9496 0.5600 -0.0503</td>
<td>3.0284 0.3461 0.0284</td>
<td>400</td>
<td>1.4971 0.2467 -0.0028</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>1.4976 0.2394 -0.0023</td>
<td>1.9651 0.4244 -0.0148</td>
<td>2.9992 0.1850 -0.0007</td>
<td>1200</td>
<td>1.4971 1.0795 0.2866</td>
<td>2.7623 5.1120 0.8623</td>
<td>10.2803 29.9856 6.4802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>25</td>
<td>1.7866 1.0795 0.2866</td>
<td>2.1810 1.3695 0.2810</td>
<td>5.1854 4.7053 1.3854</td>
<td>50</td>
<td>1.6102 0.7275 0.1102</td>
<td>2.0568 0.9766 0.1568</td>
<td>4.2017 2.3329 0.4017</td>
<td>100</td>
<td>1.5499 0.6086 0.0499</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.5274 0.4872 0.0274</td>
<td>1.9449 0.6701 0.0449</td>
<td>3.9040 0.8758 0.1040</td>
<td>400</td>
<td>1.5153 0.2598 0.0054</td>
<td>1.9218 0.5846 0.0068</td>
<td>3.8627 0.6144 0.0027</td>
<td>800</td>
<td>1.4965 0.2923 0.0029</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1.5029 0.2923 0.0029</td>
<td>1.8974 0.5423 -0.0025</td>
<td>3.8339 0.4871 0.0039</td>
<td>1200</td>
<td>1.5029 0.2923 0.0029</td>
<td>1.8974 0.5423 -0.0025</td>
<td>3.8339 0.4871 0.0039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>25</td>
<td>4.0802 4.2275 1.0852</td>
<td>3.6278 5.3864 1.6278</td>
<td>5.2600 7.6445 2.7600</td>
<td>50</td>
<td>3.6778 2.0505 0.6778</td>
<td>2.7205 2.3209 0.7205</td>
<td>3.7666 3.4053 1.2366</td>
<td>100</td>
<td>3.3948 2.1313 0.3948</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>3.2788 1.6519 0.2788</td>
<td>2.2429 1.3451 0.2429</td>
<td>2.6340 0.7107 0.1340</td>
<td>400</td>
<td>3.1512 1.2450 0.1512</td>
<td>2.1743 1.1072 0.1743</td>
<td>1.7204 0.9424 0.2204</td>
<td>800</td>
<td>3.1128 0.9293 0.1128</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>3.1087 0.8986 0.1087</td>
<td>2.1494 0.9005 0.1494</td>
<td>2.5231 0.3546 0.0231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The result in Tables 4.3 and 4.4 show that the mean MLEs converges to the true values. Also, the average bias decreases as the sample size n increases, and the RMSEs decay with increasing sample size n for all the parametric values that were considered.

4.6 Applications

The flexibility and usefulness of the MOLLLoG distribution and its sub-models for data modeling is illustrated in this section. The new MOLLLoG distribution is compared with the generalized Lindley (GL) distribution (Zakerzadeh and Dolati [87]), the Lindley-Weibull (LW) distribution (Asgharzadeh et al. [5]), and a three parameter Lindley (ATPLD) distribution (Shanker et al. [80]).

The pdf of the generalized Lindley (GL) distribution (Zakerzadeh and Dolati [87]) is given by

\[
g_{GL}(x; \alpha, \beta, \theta) = \frac{\theta^{\alpha+1}}{(\beta + \theta)\Gamma(\alpha + 1)}(\alpha + \beta x)e^{-\theta x},
\]

for \(\alpha, \beta, \theta > 0\) and \(x > 0\). The LW distribution (see Asgharzadeh et al. [5] for
details) has the pdf given by
\[
g_{LW}(x; \lambda, \alpha, \beta) = e^{-\lambda x - \alpha x^\beta} \frac{[\lambda^2(1 + x) + (1 + \lambda + \lambda x)\alpha x^{\beta - 1}]}{1 + \lambda}, \tag{4.23}
\]
for \(\lambda, \alpha, \beta > 0\) and \(x > 0\). The pdf of a three parameter Lindley (ATPLD) distribution is given by
\[
g_{ATPLD}(x; \theta, \alpha, \beta) = \frac{\theta^2}{(\theta x + \beta)(\alpha + \beta x)} e^{-\theta x}, \tag{4.24}
\]
for \(\theta, \beta, \alpha > 0\), and \(x > 0\). The maximum likelihood estimates (MLEs) of the MOLLLoG parameters and its sub-models are computed by maximizing the objective function via the subroutine NLMIXED in SAS as well as the function nlm in R. The estimated values of the parameters (standard error in parenthesis), -2log-likelihood statistic \((-2\ln(L))\), Akaike Information Criterion \((AIC = 2p - 2\ln(L))\), Bayesian Information Criterion \((BIC = p\ln(n) - 2\ln(L))\), and Consistent Akaike Information Criterion \((CAIC = AIC + 2\frac{p(p+1)}{n-p-1})\), where \(L = L(\hat{\Delta})\) is the value of the likelihood function evaluated at the parameter estimates, \(n\) is the number of observations, and \(p\) is the number of estimated parameters. Tables 4.5 and 4.6 shows results for the data set for MOLLLoG distribution, its sub-models and several non-nested models.

We can use the likelihood ratio (LR) test to compare the fit of the MOLLLoG distribution with its sub-models for a given data set. For example, to test \(\delta = 1\), the LR statistic is \(\omega = 2[\ln(L(\hat{\lambda}, \hat{c}, \hat{\delta})) - \ln(L(\tilde{\lambda}, \tilde{c}, 1))]\), where \(\hat{\lambda}, \hat{c}, \text{and } \hat{\delta}\) are the unrestricted estimates, and \(\tilde{\lambda}, \text{and } \tilde{c}\) are the restricted estimates. The LR test rejects the null hypothesis if \(\omega > \chi^2_{\epsilon}\), where \(\chi^2_{\epsilon}\) denote the upper 100\(\epsilon\)% point of the \(\chi^2\) distribution with 1 degrees of freedom.

Plots of the fitted densities, the histogram of the data and probability plots (Chambers et al. [14]) are given in Figure 4.4 and Figure 4.5. For the probability plot, we plotted \(F_{\text{MOLLLoG}}(x(j); \hat{\lambda}, \hat{c}, \hat{\delta})\) against \(\frac{j - 0.375}{n + 0.25}\), \(j = 1, 2, \cdots, n\), where \(x(j)\) are the ordered values of the observed data. The measures of closeness are given by the sum of squares
\[
SS = \sum_{j=1}^{n} \left[F_{\text{MOLLLoG}}(x(j)) - \left(\frac{j - 0.375}{n + 0.25}\right) \right]^2.
\]

The goodness-of-fit statistics \(W^*\) and \(A^*\), described by (Chen and Balakrishnan [16]) are also presented in the tables. Also presented is the
Kolmogorov-Smirnov (KS) statistics and its P-value. These statistics can be used to verify which distribution fits better to the data. In general, the smaller the values of W^* and A^*, the better the fit.
4.6.1 Data on halfway house (Failure times in days (49 Cases))

The data for halfway-house parolees failures obtained from (Stollmack and Harris [81]) are given as

Estimates of the parameters of MOLLoG distribution and its related sub-models (standard error in parentheses), AIC, BIC, and the goodness-of-fit statistics \(W^*, A^*, KS \) and its P-value as well as SS are given in Table 4.5. Plots of the fitted densities and the histogram, observed probability vs predicted probability are given in Figure 4.4.

Table 4.5: Estimates of Models for Data on Halfway House

<table>
<thead>
<tr>
<th>Model</th>
<th>(\lambda) \times 10^{-2}</th>
<th>c</th>
<th>(\delta)</th>
<th>(-2\log L)</th>
<th>AIC</th>
<th>CAIC</th>
<th>BIC</th>
<th>(W^*)</th>
<th>(A^*)</th>
<th>KS</th>
<th>P-value</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLLLoG</td>
<td>1.0515</td>
<td>8.3765</td>
<td>1.4434</td>
<td>957.5378</td>
<td>603.5378</td>
<td>604.0713</td>
<td>660.2133</td>
<td>0.0880</td>
<td>0.6551</td>
<td>0.0820</td>
<td>0.8964</td>
<td>0.0760</td>
</tr>
<tr>
<td></td>
<td>(2.0166 \times 10^{-1})</td>
<td>(7.5631 \times 10^{-1})</td>
<td>(1.1636 \times 10^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLLoG</td>
<td>0.0101</td>
<td>1.6231</td>
<td>2.8599</td>
<td>614.5057</td>
<td>618.5057</td>
<td>618.7665</td>
<td>622.2893</td>
<td>0.3039</td>
<td>1.8808</td>
<td>0.1359</td>
<td>0.3254</td>
<td>0.2128</td>
</tr>
<tr>
<td></td>
<td>(4.7660 \times 10^{-2})</td>
<td>(3.0921 \times 10^{-1})</td>
<td></td>
</tr>
<tr>
<td>LLLoG</td>
<td>0</td>
<td>0.3199</td>
<td>1</td>
<td>769.1772</td>
<td>770.1772</td>
<td>770.2623</td>
<td>772.0690</td>
<td>0.3592</td>
<td>2.1621</td>
<td>0.6604</td>
<td>2.2 \times 10^{-14}</td>
<td>7.4245</td>
</tr>
<tr>
<td></td>
<td>(0.0354)</td>
<td></td>
</tr>
<tr>
<td>LLoG</td>
<td>0</td>
<td>0.3199</td>
<td>1</td>
<td>769.1772</td>
<td>770.1772</td>
<td>770.2623</td>
<td>772.0690</td>
<td>0.3592</td>
<td>2.1621</td>
<td>0.6604</td>
<td>2.2 \times 10^{-14}</td>
<td>7.4245</td>
</tr>
<tr>
<td></td>
<td>(0.0354)</td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>3.6022 \times 10^{-1}</td>
<td>6.6143</td>
<td>7.1106</td>
<td>602.3196</td>
<td>608.3196</td>
<td>608.853</td>
<td>613.9561</td>
<td>0.2534</td>
<td>1.8066</td>
<td>0.3880</td>
<td>7.775e-07</td>
<td>1.2668</td>
</tr>
<tr>
<td></td>
<td>(2.4830 \times 10^{-1})</td>
<td>(2.2713 \times 10^{-1})</td>
<td>(1.6950 \times 10^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LW</td>
<td>0.0012</td>
<td>1.3649</td>
<td>0.0020</td>
<td>605.4114</td>
<td>606.4114</td>
<td>606.9447</td>
<td>612.0968</td>
<td>0.1445</td>
<td>0.9432</td>
<td>0.1162</td>
<td>0.5217</td>
<td>0.1633</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.2209)</td>
<td>(0.0046)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATPLD</td>
<td>0.0023</td>
<td>1.5043</td>
<td>0.0255</td>
<td>601.0656</td>
<td>607.0656</td>
<td>607.599</td>
<td>612.7411</td>
<td>0.1476</td>
<td>0.9643</td>
<td>0.1166</td>
<td>0.5175</td>
<td>0.1518</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.0239)</td>
<td></td>
</tr>
</tbody>
</table>

The Likelihood ratio (LR) test statistic for testing \(H_0: \) MOLLLoG against \(H_a: \) MOLLLoG, \(H_0: \) LLLoG against \(H_a: \) MOLLLoG and \(H_0: \) LLoG against \(H_a: \) MOLLLoG are 16.9679 (p-value = 0.000038), 74.0139 (p-value < 0.00001) and 170.6394 (p-value < 0.00001). We can conclude that there are significant differences between MOLLLoG and MOLLLoG distributions, LLLoG and MOLLLoG distributions as well between LLoG and MOLLLoG distributions, respectively based on the LR tests at 5% level. The values of AIC, CAIC and BIC are smallest for the MOLLLoG distribution, when compared to the
corresponding values for the non-nested GL, LW and ATPLD distributions. The values of the goodness-of-fit-statistics W^*, A^*, KS and its p-value show that the MOLLLoG distribution is the “best” fit for the data on halfway house.

![Fitted Densities and Probability Plots](image)

Figure 4.4: Fitted Densities and Probability Plots of the Data on Halfway House

4.6.2 Survival data set

Survival data set that was analyzed by (Feigl and Zelen [25]). The data represent the survival times, in weeks, of 33 patients suffering from acute myelogeneous Leukaemia. The data, that can also be found at library SMIR of the R program (http://cran.r-project.org),

65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3, 8, 4, 3, 30, 4, 43.

Estimates of the parameters of MOLLLoG distribution and its related sub-models (standard error in parentheses), AIC, BIC, and the goodness-of-fit statistics W^*, A^*, KS and its P-value as well as SS are given in Table 4.6. Plots of the fitted densities and the histogram, observed probability vs predicted probability are given in Figure 4.5.
Table 4.6: Estimates of Models for Survival Data

<table>
<thead>
<tr>
<th>Model</th>
<th>λ</th>
<th>c</th>
<th>δ</th>
<th>AIC</th>
<th>CAIC</th>
<th>BIC</th>
<th>W*</th>
<th>A*</th>
<th>KS</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0LLoG</td>
<td>0.0184</td>
<td>0.8540</td>
<td>14.3933</td>
<td>305.2288</td>
<td>311.2562</td>
<td>312.0564</td>
<td>315.7183</td>
<td>0.0813</td>
<td>0.5622</td>
<td>0.1172</td>
</tr>
<tr>
<td>(0.0070)</td>
<td>(0.1343)</td>
<td>(7.7612)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0LLoG</td>
<td>0.1084</td>
<td>22.6957</td>
<td>310.7448</td>
<td>314.7448</td>
<td>315.1448</td>
<td>317.7574</td>
<td>0.1305</td>
<td>0.8310</td>
<td>0.1375</td>
<td>0.5631</td>
</tr>
<tr>
<td>(0.1517)</td>
<td>(12.3774)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLLoG</td>
<td>0.0232</td>
<td>0.3192</td>
<td>1</td>
<td>342.7644</td>
<td>346.7644</td>
<td>347.2644</td>
<td>349.8754</td>
<td>0.1327</td>
<td>0.8840</td>
<td>0.5493</td>
</tr>
<tr>
<td>(0.0556)</td>
<td>(0.0776)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLoG</td>
<td>0.0232</td>
<td>0.3192</td>
<td>1</td>
<td>369.7063</td>
<td>362.7063</td>
<td>362.8343</td>
<td>364.2018</td>
<td>0.1255</td>
<td>0.7769</td>
<td>0.5449</td>
</tr>
<tr>
<td>(0.0556)</td>
<td>(0.0776)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>0.6783</td>
<td>0.0026</td>
<td>0.0195</td>
<td>307.3194</td>
<td>313.3194</td>
<td>314.1470</td>
<td>317.8090</td>
<td>0.4883</td>
<td>2.8500</td>
<td>0.3836</td>
</tr>
<tr>
<td>(0.1576)</td>
<td>(0.0101)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LW</td>
<td>0.0698</td>
<td>0.7270</td>
<td>0.0085</td>
<td>306.8979</td>
<td>312.8979</td>
<td>313.7254</td>
<td>317.3874</td>
<td>0.0932</td>
<td>0.6447</td>
<td>0.1300</td>
</tr>
<tr>
<td>(0.0363)</td>
<td>(0.1523)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATPLD</td>
<td>2.4463 × 10−02</td>
<td>1.9344 × 10−02</td>
<td>9.4785 × 10−06</td>
<td>310.9003</td>
<td>316.9003</td>
<td>317.7279</td>
<td>321.3899</td>
<td>0.0972</td>
<td>0.6720</td>
<td>0.3162</td>
</tr>
<tr>
<td>(9.2906 × 10−03)</td>
<td>(6.5274 × 10−07)</td>
<td>(1.5973)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Likelihood ratio (LR) test statistic for testing H_0: MOLLoG against H_a: MOLLLoG, H_0: LLLoG against H_a: MOLLLoG and H_0: LLoG against H_a: MOLLLoG are 5.5160 (p-value = 0.018843), 37.5356 (p-value < 0.00001) and 55.4765 (p-value < 0.00001). We can conclude that there are significant differences between MOLLoG and MOLLLoG distributions, LLLoG and MOLLLoG distributions as well between LLoG and MOLLLoG distributions, respectively based on the LR tests at 5% level. The MOLLLoG distribution is significantly better than the sub-models considered above. The values of the statistics: AIC, CAIC, and BIC are smallest for the MOLLLoG distribution. Also, the goodness-of-fit statistics W^* and A^* are the smallest and definitely points to the MOLLLoG distribution as the “best” fit for the Survival data when compared to the corresponding values for the sub-models. The goodness-of-fit statistics W^* and A^* are also better for the MOLLLoG distribution when compared to the values for the non-nested GL, LW and ATPLD distributions. Thus, there is indeed convincing evidence that the MOLLLoG distribution is the “best” fit for the Survival times data.
4.7 Concluding Remarks

In this chapter, a new generalized distribution called the Marshall-Olkin Lindley-Log-logistic (MOLLLoG) distribution is studied. Several structural properties of the distribution such as hazard function, quantile function, moments, conditional moments, mean and median deviations, Bonferroni and Lorenz curves, distribution of the order statistics and Rényi entropy are investigated. Maximum likelihood estimation technique is used to estimate the model parameters. Monte Carlo simulation study was conducted to examine the performance of MOLLLoG distribution. Examples of two real life datasets proves the importance and potentiality of the MOLLLoG distribution.
Chapter 5

The Half Logistic Log-logistic Weibull Distribution (HLLLoGW)

In this chapter, we study a new three parameter model by combining the half logistic and the log-logistic Weibull distributions called Half-Logistic Log-Logistic Weibull (HLLLoGW) distribution. Half-Logistic transformation was applied to several well known distributions. (Anwar and Zahoor [4]) introduced the half-logistic Lomax distribution for lifetime modeling, (Anwar and Bibi [3]) developed the half-logistic generalized Weibull distribution. (Muhammad and Yahaya [50]) established the half logistic-Poisson distribution.

(Cordeiro et al. [18]) define the cumulative distribution function (cdf) of the new type I half-logistic-G(TIHL-G) family of distributions by

\[
F(x; \lambda, \psi) = \int_0^{-\ln(1-G(x;\psi))} \frac{2\lambda e^{-\lambda t}}{(1+e^{-\lambda t})^2} dt = 1 - \left[1 - G(x;\psi)\right]^\lambda \\
= \frac{1 - [1 - G(x;\psi)]^\lambda}{1 + [1 - G(x;\psi)]^\lambda}, \tag{5.1}
\]

where \(G(x;\psi)\) is the baseline cdf depending on a parameter vector \(\psi\) and \(\lambda > 0\) is an additional shape parameter. If we take \(\lambda = 1\), then the TIHL-G reduces to the half logistic-G (HL-G) distribution with cdf

\[
F(x; \psi) = \frac{G(x;\psi)}{1 + G(x;\psi)}, \tag{5.2}
\]

where \(\bar{G}(x;\psi) = 1 - G(x;\psi)\).
The corresponding probability density function (pdf) to (5.2) is given by

$$f(x; \psi) = \frac{2g(x; \psi)}{[1 + G(x; \psi)]^2},$$

(5.3)

where $g(x; \psi) = \frac{dG(x; \psi)}{dx}$ is the baseline pdf.

The three parameter cdf of the log-logistic Weibull (LLoGW) distribution (Oluyede et al. [66]) is given by

$$G_{LLoGW}(x; \alpha, \beta, c) = 1 - (1 + x^c)^{-1}e^{-\alpha x^\beta}, \quad \text{for } x > 0, \text{ and } \alpha, \beta, c > 0.$$

(5.4)

The corresponding pdf is given by

$$g_{LLoGW}(x; \alpha, \beta, c) = e^{-\alpha x^\beta}(1 + x^c)^{-1}\left[(1 + x^c)^{-1}cx^{c-1} + \alpha \beta x^{\beta-1}\right],$$

for $x > 0$, and $\alpha, \beta, c > 0$.

The primary motivation of Half-Logistic Log-Logistic Weibull (HLLLoGW) distribution is the applications of log-logistic and Weibull distributions in different areas of sciences and the ability to depict more complex hazard rates and act as a good alternate to both the log-logistic and Weibull distributions.

5.1 HLLLoGW Distribution, Expansion of Density Function, Sub-models, Hazard and Quantile Functions

In this section, the HLLLoGW distribution, series expansion of its pdf, some sub-models, quantile function, hazard function as well some graphs are presented.

Substituting equation (5.4) into equation (5.2) we obtain the cdf of the half logistic log-logistic Weibull (HLLLoGW) distribution as

$$F(x; \alpha, \beta, c) = \frac{1 - (1 + x^c)^{-1}e^{-\alpha x^\beta}}{1 + (1 + x^c)^{-1}e^{-\alpha x^\beta}}.$$

(5.5)
The corresponding pdf follows from inserting (5.4) and (5.5) into (5.3) and is given by

\[f(x; \alpha, \beta, c) = 2e^{-\alpha x^\beta} (1 + x^c)^{-1} \left[(1 + x^c)^{-1} c x^{c-1} + \alpha \beta x^{\beta - 1} \right] \]

\[\times \left[1 + (1 + x^c)^{-1} e^{-\alpha x^\beta} \right]^{-2} \]

(5.6)

for \(\alpha, \beta, c > 0 \). If a random variable \(X \) has the half logistic log-logistic Weibull (HLLLoGW) density, we write \(X \sim HLLLoGW(\alpha, \beta, c) \). Plots of the HLLLoGW pdf shows different shapes including right skewed, left skewed, almost symmetric and reverse J-shapes.

Figure 5.1: Plots of HLWLLLoG Density Function
5.1.1 Expansion of Density Function

In this subsection, an expansion of the HLLLoGW density function is presented. Note that

\[f(x; \alpha, \beta, c) = \frac{2g_{LLoGW}(x)}{[1 + G_{LLoGW}(x)]^2} \]

\[= 2 \sum_{p=0}^{\infty} \frac{\Gamma(2 + p)}{\Gamma(2)p!} (-1)^p [1 - G_{LLoGW}(x)]^p g_{LLoGW}(x) \]

\[= 2 \sum_{p,k=0}^{\infty} \frac{\Gamma(2 + p)}{\Gamma(2)p!} \binom{p}{k} (-1)^{p+k+1} \frac{k+1}{k+1} [G_{LLoGW}(x)]^{k+1-1} g_{LLoGW}(x) \]

\[= \sum_{p,k=0}^{\infty} \frac{\Gamma(2 + p)}{\Gamma(2)p!} \binom{p}{k} (-1)^{p+k} \frac{2}{k+1} g_{ELLoGW}(x; \alpha, \beta, c, k+1), \quad (5.7) \]

where

\[g_{ELLoGW}(x; \alpha, \beta, c, k+1) = \left(1 - (1 + x c)^{-1} e^{-\alpha x} \right)^{k+1-1} \times (k+1) e^{-\alpha x} (1 + x)^{-1} \left[(1 + x c)^{-1} c x^{c-1} + \alpha x^{\beta-1} \right] \]

is the exponentiated log-logistic Weibull (ELLoGW) density function with parameters \(\alpha, \beta, c, k+1 > 0 \). Thus, the HLLLoGW density function can be written as an infinite linear combination of the ELLoGW density functions. Consequently, the mathematical and statistical properties of the HLLLoGW distribution follows directly from those of the ELLoGW distribution.

5.1.2 Sub-models of HLLLoGW Distribution

In this subsection, some special models of the HLLLoGW distributions are discussed.

- If \(\alpha \to 0 \), the HLLLoGW model reduces to the Half logistic log-logistic model (HLLLoG) with pdf

 \[f(x; c) = \frac{2(1 + x c)^{-2} e^{-\alpha x}}{[1 + (1 + x c)^{-1}]^2}, \quad (5.8) \]

 for \(c > 0 \).

- If \(\beta = 1 \) we obtain the Half logistic log-logistic Exponential (HLLLoGE) with the pdf

 \[f(x; \alpha, c) = \frac{2 e^{-\alpha x}(1 + x c)^{-1}[(1 + x c)^{-1} c x^{c-1} + \alpha]}{[1 + (1 + x c)^{-1} e^{-\alpha x}]^2} \]

 (5.9)
for $\alpha, c > 0$.

- If $\beta = 2$, we obtain the Half logistic log-logistic Rayleigh (HLLLoGR) with the pdf

$$f(x; \alpha, c) = 2e^{-\alpha x^2}(1 + x^c)^{-1}(1 + x^c)^{-1}c^c + 2\alpha x$$

$$\times [1 + (1 + x^c)^{-1}e^{-\alpha x^2}]^{-2}$$

(5.10)

for $\alpha, c > 0$.

- If $c = 1$, the HLLLoGW model reduces to a two parameter distribution with the pdf

$$f(x; \alpha, \beta) = 2e^{-\alpha x^\beta}(1 + x)^{-1}(1 + x)^{-1} + \alpha \beta x^{\beta - 1}$$

$$\times [1 + (1 + x)^{-1}e^{-\alpha x^\beta}]^{-2}$$

(5.11)

for $\alpha, \beta > 0$.

- If $c = \beta = 1$, the HLLLoGW model reduces to a one parameter distribution with the pdf,

$$f(x; \alpha) = 2e^{-\alpha x}(1 + x)^{-1}(1 + x)^{-1} + \alpha$$

$$\times [1 + (1 + x)^{-1}e^{-\alpha x}]^{-2}$$

(5.12)

for $\alpha > 0$.

- If $\alpha = 1$, the HLLLoGW model reduces to a two parameter distribution with the pdf,

$$f(x; \beta, c) = 2e^{-x^\beta}(1 + x^c)^{-1}(1 + x^c)^{-1}c^c + \beta x^{\beta - 1}$$

$$\times [1 + (1 + x^c)^{-1}e^{-x^\beta}]^{-2}$$

(5.13)

for $\beta, c > 0$.

- If $\alpha = c = 1$, the HLLLoGW model reduces to a one parameter distribution with the pdf,
\[f(x; \beta) = 2e^{-x\beta}(1 + x)^{-1}[(1 + x)^{-1} + \beta x^{\beta-1}] \times [1 + (1 + x)^{-1}e^{-x\beta}]^{-2} \] (5.14)

for \(\beta > 0 \).

5.1.3 Hazard and Quantile Functions

In this section, the hazard and quantile functions of the HLLLLoGW distribution are presented. The hazard function is given by

\[
h_F(x; \alpha, \beta, c) = \frac{f_{HLLLLoGW}(x; \alpha, \beta, c)}{F_{HLLLLoGW}(x; \alpha, \beta, c)} = \frac{2e^{-\alpha x\beta}(1 + x^c)^{-1}[(1 + x^c)^{-1}cx^{-1} + \alpha \beta x^{\beta-1}]}{\left[1 - \frac{1 - (1 + x^c)^{-1}e^{-\alpha x\beta}}{1 + (1 + x^c)^{-1}e^{-\alpha x\beta}}\right]^2}, \tag{5.15}
\]

for \(\alpha, \beta, c > 0 \). Plots of the hazard function of the HLLLLoGW distribution show different shapes including decreasing, increasing, bathtub followed by upside down, as well as bathtub shapes.

![Plots of HLLLLoGW Hazard Function](image)

The quantile function of the HLLLLoGW distribution is obtained by solving the non-linear equation:

\[
F(x; \alpha, \beta, c) = \frac{1 - (1 + x^c)^{-1}e^{-\alpha x\beta}}{1 + (1 + x^c)^{-1}e^{-\alpha x\beta}} = u, \tag{5.16}
\]
that is,
\[\alpha x^\beta + \ln(1 + x^c) + \ln \left(\frac{1 - u}{1 + u} \right) = 0. \] \ \ (5.17)

Therefore, random numbers can be generated from the HLLLoGW distribution by numerically solving the non-linear equation (5.17).

<table>
<thead>
<tr>
<th>(\alpha, \beta, c)</th>
<th>(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 1, 0.5, 4.02)</td>
<td>0.1</td>
<td>(0.7024)</td>
<td>(0.1)</td>
<td>(0.7091)</td>
<td>(0.2)</td>
<td>(0.8641)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>(0.2, 0.3, 3.8)</td>
<td>0.2</td>
<td>(0.7091)</td>
<td>(0.2)</td>
<td>(0.8641)</td>
<td>(0.3)</td>
<td>(0.9950)</td>
<td>(0.4)</td>
</tr>
<tr>
<td>(0.02, 0.004, 2.1)</td>
<td>0.3</td>
<td>(0.4949)</td>
<td>(0.4)</td>
<td>(0.9413)</td>
<td>(0.5)</td>
<td>(1.4131)</td>
<td>(0.6)</td>
</tr>
<tr>
<td>(0.3, 0.2, 1.4)</td>
<td>0.4</td>
<td>(0.4154)</td>
<td>(0.5)</td>
<td>(1.2242)</td>
<td>(0.6)</td>
<td>(2.6226)</td>
<td>(0.7)</td>
</tr>
<tr>
<td>(0.2, 0.1, 0.9)</td>
<td>0.5</td>
<td>(0.2328)</td>
<td>(0.6)</td>
<td>(1.1523)</td>
<td>(0.7)</td>
<td>(3.3435)</td>
<td>(0.8)</td>
</tr>
</tbody>
</table>

5.2 Moments, Conditional Moments and Mean Deviations

In this section, the \(r^{th} \) moment, conditional moments, mean deviations, Lorenz and Bonferroni curves of the HLLLoGW distribution are presented. Let \(Y \sim \)
ELLoGW($\alpha, \beta, c, k + 1$). Note that

\[E(Y^r) = \int_0^\infty y^r g_{ELLoGW}(y; \alpha, \beta, c, k + 1) dy \]

\[= \int_0^\infty y^r (k + 1) \left(1 - (1 + y^c)^{-1} e^{-\alpha y^\beta} \right)^{(k+1)-1} e^{-\alpha y^\beta} (1 + y^c)^{-1} \]

\[\times \left[(1 + y^c)^{-1} c y^{c-1} + \alpha \beta y^{\beta-1} \right] dy \]

\[= \sum_{i=0}^\infty \left((k + 1) - 1 \right)^i (k + 1) \int_0^\infty y^r (1 + y^c)^{-i-1} e^{-\alpha y^\beta(i+1)} \]

\[\times \left[(1 + y^c)^{-i} c y^{c-1} + \alpha \beta y^{\beta-1} \right] \]

\[= \sum_{i,j=0}^\infty \frac{(k + 1)(-1)^{i+j}[\alpha(i + 1)]^j}{j!} \binom{(k + 1) - 1}{i} \int_0^\infty y^r + \beta(j+1)-1 (1 + y^c)^{-i-1} dy \]

We note that by applying the substitution $t = (1 + y^c)^{-1}$, we have

\[E(Y^r) = \sum_{i,j=0}^\infty \frac{(k + 1)(-1)^{i+j}[\alpha(i + 1)]^j}{j!} \binom{(k + 1) - 1}{i} \]

\[\times \left[\int_0^1 t^{i-r+\beta(j+1)} (1 - t)^{r+\beta(j+1)-1} dt \right. \]

\[+ \alpha \beta \int_0^1 t^{i-1-r+\beta(j+1)} (1 - t)^{r+\beta(j+1)-1} dt \right]. \]

Consequently,

\[E(Y^r) = \sum_{i,j=0}^\infty \frac{(k + 1)(-1)^{i+j}[\alpha(i + 1)]^j}{j!} \binom{(k + 1) - 1}{i} \]

\[\times \left[B \left(i - \frac{r + \beta(j + 1)}{c}, \frac{r + \beta(j + 1)}{c} \right) \right. \]

\[+ B \left(i - 1 - \frac{r + \beta(j + 1)}{c}, \frac{r + \beta(j + 1)}{c} \right) \right]. \] (5.18)

Consequently, the r^{th} moment of the HLLLoGW distribution is given by

\[E(X^r) = \sum_{p,k=0}^\infty \frac{\Gamma(2 + p)}{\Gamma(2)p!} \binom{p}{k} (-1)^{p+k} \frac{2}{k+1} E(Y^r), \] (5.19)

where $E(Y^r)$ is given by equation (5.18). The moment generating function of the ELLoGW distribution is given by $E(e^{Y^r}) = \sum_{r=0}^\infty \frac{r^r}{r!} E(Y^r)$, where $E(Y^r)$ is given by the equation (5.18). The coefficients of variation (CV), Skewness (CS) and Kurtosis (CK) can be readily obtained. The variance (σ^2), Standard deviation (SD=\sigma), CV, CS and CK are given by

\[\sigma^2 = \mu_2' - \mu^2, \quad CV = \frac{\sigma}{\mu} = \sqrt{\frac{\mu_2'}{\mu^2} - 1}, \]
\[CS = \frac{E[(X - \mu)^3]}{[E(X - \mu)^2]^{3/2}} = \frac{\mu_3' - 3\mu\mu_2' + 2\mu^3}{(\mu_2' - \mu^2)^{3/2}}, \]

and

\[CK = \frac{E[(X - \mu)^4]}{[E(X - \mu)^2]^2} = \frac{\mu_4' - 4\mu\mu_3' + 6\mu^2\mu_2' - 3\mu^4}{(\mu_2' - \mu^2)^2}, \]

respectively. Some moments for selected parameters values are given in Table 5.2 and plots are presented in Figure 5.3. Plots of skewness and kurtosis for choices of the model parameters reveal that skewness and kurtosis depend on the shape parameters \(\beta \) and \(c \).

Table 5.2: Table of Moments for Selected Parameters for HLLLLoGW Distribution

<table>
<thead>
<tr>
<th>((\alpha, \beta, c))</th>
<th>(0.04,0.8,0.2)</th>
<th>(0.2,1.5,0.7)</th>
<th>(0.9,0.2,0.5)</th>
<th>(0.6,0.9,1.0)</th>
<th>(0.9,0.8,0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E(X))</td>
<td>0.0146</td>
<td>0.0634</td>
<td>0.0604</td>
<td>0.1181</td>
<td>0.0890</td>
</tr>
<tr>
<td>(E(X^2))</td>
<td>0.0073</td>
<td>0.0351</td>
<td>0.0292</td>
<td>0.0659</td>
<td>0.0502</td>
</tr>
<tr>
<td>(E(X^3))</td>
<td>0.0049</td>
<td>0.0241</td>
<td>0.0190</td>
<td>0.0448</td>
<td>0.0349</td>
</tr>
<tr>
<td>(E(X^4))</td>
<td>0.0036</td>
<td>0.0183</td>
<td>0.0140</td>
<td>0.0336</td>
<td>0.0267</td>
</tr>
<tr>
<td>(E(X^5))</td>
<td>0.0029</td>
<td>0.0148</td>
<td>0.0111</td>
<td>0.0268</td>
<td>0.0216</td>
</tr>
<tr>
<td>(E(X^6))</td>
<td>0.0024</td>
<td>0.0124</td>
<td>0.0092</td>
<td>0.0223</td>
<td>0.0182</td>
</tr>
<tr>
<td>SD</td>
<td>0.0021</td>
<td>0.0106</td>
<td>0.0078</td>
<td>0.0190</td>
<td>0.0157</td>
</tr>
<tr>
<td>CV</td>
<td>0.0018</td>
<td>0.0093</td>
<td>0.0068</td>
<td>0.0166</td>
<td>0.0138</td>
</tr>
<tr>
<td>CS</td>
<td>0.0016</td>
<td>0.0083</td>
<td>0.0060</td>
<td>0.0147</td>
<td>0.0123</td>
</tr>
<tr>
<td>CK</td>
<td>0.0014</td>
<td>0.0075</td>
<td>0.0054</td>
<td>0.0132</td>
<td>0.0111</td>
</tr>
</tbody>
</table>
5.2.1 Conditional Moments

For lifetime models, it is also of interest to obtain the r^{th} conditional moments and the mean residual lifetime function. The r^{th} conditional moment for the HLLLoGW distribution can be readily obtained from those of the ELLoGW distribution. The conditional r^{th} moment for the ELLoGW distribution is given
by
\[
E(Y^r | Y > t) = \frac{1}{G_{\text{ELLoGW}}(t)} \int_t^\infty x^r g_{\text{ELLoGW}}(y; \alpha, \beta, c, k + 1) dy
\]
\[
= \frac{1}{G_{\text{ELLoGW}}(t)} \sum_{i,j=0}^\infty \frac{(k + 1)(-1)^i (\alpha(i + 1))^j}{j!} \left((k + 1) - 1 \right)
\times \left[B_{(1+i^r)^{-1}} \left(i - \frac{r + \beta j + c}{c}, \frac{r + \beta j + c}{c} \right)
+ B_{(1+i^r)^{-1}} \left(i - 1 - \frac{r + \beta(j + 1)}{c}, \frac{r + \beta(j + 1)}{c} \right) \right],
\] (5.20)
where \(B_{(1+i^r)^{-1}}(a,b) \) is the incomplete beta function. Consequently, the \(r \)th conditional moment of the HLLLoGW distribution is given by
\[
E(X^r | X > t) = \sum_{p,k=0}^\infty \frac{\Gamma(2+p)}{\Gamma(2)p!} \left(\frac{p}{k} \right) (-1)^{p+k} \frac{2}{k+1} E(Y^r | Y > t)
\]
\[
= \frac{1}{C_{\text{ELLoGW}}(t)} \sum_{p,k=0}^\infty \frac{\Gamma(2+p)}{\Gamma(2)p!} \left(\frac{p}{k} \right) (-1)^{p+k} \frac{2}{k+1}
\times \sum_{i,j=0}^\infty \frac{(k + 1)(-1)^i (\alpha(i + 1))^j}{j!} \left((k + 1) - 1 \right)
\times \left[B_{(1+i^r)^{-1}} \left(i - \frac{r + \beta j + c}{c}, \frac{r + \beta j + c}{c} \right)
+ B_{(1+i^r)^{-1}} \left(i - 1 - \frac{r + \beta(j + 1)}{c}, \frac{r + \beta(j + 1)}{c} \right) \right].
\] (5.21)

5.2.2 Mean Deviation, Lorenz and Bonferroni Curves

In this subsection, we present Mean deviation about the mean and mean deviation about the median as well as Lorenz and Bonferroni curves for the HLLLoGW distribution. Bonferroni and Lorenz curves are widely used tool for analyzing and visualizing income inequality.

5.2.3 Mean Deviations

If \(Y \) has the ELLoGW distribution, we can derive the mean deviation about the mean \(\mu \) by
\[
\delta_1 = \int_0^\infty |y - \mu| f_{\text{ELLoGW}}(y) dy = 2\mu F_{\text{ELLoGW}}(\mu) - 2\mu + 2T(\mu),
\]
and the median deviation about the median \(M \) by
\[
\delta_2 = \int_0^\infty |y - M| f_{\text{ELLoGW}}(y) dy = 2T(M) - \mu,
\]
where \(\mu = E(Y) \) is given in equation (5.18) with \(r = 1 \), \(M \) the median of \(F_{\text{ELLLoGW}}(x) \) and \(T(a) = \int_a^\infty x \cdot f_{\text{ELLoGW}}(y)dy \). Note that

\[
T(a) = \sum_{i,j=0}^{\infty} \frac{(k+1)(-1)^{i+j}[\alpha(i+1)]^j}{j!} \binom{k+1}{i} \\
\times \left[B_{1+(\alpha c)}^{-1} \left(i - \frac{1 + \beta j + c}{c}, \frac{1 + \beta j + c}{c} \right) \\
+ B_{1+(\alpha c)}^{-1} \left(i - 1 - \frac{1 + \beta(j+1) + c}{c}, \frac{1 + \beta(j+1) + c}{c} \right) \right].
\] (5.22)

Consequently, the mean deviations for HLLLoGW can be readily obtained from those of the ELLoGW distribution.

5.2.4 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves for the ELLoGW are given as

\[
B(p) = \frac{1}{\mu} \int_0^p yf_{\text{ELLoGW}}(y)dy = \frac{1}{\mu} \left[\mu - T(q) \right],
\]

and

\[
L(p) = \frac{1}{\mu} \int_0^p yf_{\text{ELLoGW}}(y)dy = \frac{1}{\mu} \left[\mu - T(q) \right],
\]

respectively, where \(T(q) = \int_q^\infty yf_{\text{ELLoGW}}(y)dy, q = F_{\text{ELLoGW}}^{-1}(p), 0 \leq p \leq 1 \). It follows therefore that Bonferroni and Lorenz curves for the HLLLoGW distribution can be readily obtained from those of the ELLoGW distribution. Note that

\[
T(q) = \sum_{i,j=0}^{\infty} \frac{(k+1)(-1)^{i+j}[\alpha(i+1)]^j}{j!} \binom{k+1}{i} \\
\times \left[B_{1+(\alpha c)}^{-1} \left(i - \frac{1 + \beta j + c}{c}, \frac{1 + \beta j + c}{c} \right) \\
+ B_{1+(\alpha c)}^{-1} \left(i - 1 - \frac{1 + \beta(j+1) + c}{c}, \frac{1 + \beta(j+1) + c}{c} \right) \right].
\] (5.23)

Consequently, the mean deviations for HLLLoGW can be readily obtained from those of the ELLoGW distribution.

5.3 Order Statistics and Rényi Entropy

The concept of entropy plays a very important role in information theory. In this section, we present the distribution of the order statistic and Rényi entropy for the HLLLoGW distribution.
5.3.1 Distribution of Order Statistics

Order statistics play an important role in probability and statistics. Let $X_1, X_2, ..., X_n$ be a random sample from the HLLLoGW distribution and suppose $X_{1:n} < X_{2:n} < ... < X_{n:n}$ denote the corresponding order statistics. The pdf of the k^{th} order statistic is given by

$$f_{k:n}(x) = \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l f(x) [F(x)]^{k+l-1}.$$ \hspace{1cm} (5.24)

Note, $f(x) [F(x)]^{k+l-1} = \frac{1}{k+l+1} d[F(x)]^{k+l}$. The corresponding pdf of $f_{k:n}(x)$ is given by

$$f_{k:n}(x) = \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l \frac{d}{dx} [F(x)]^{k+l}$$

$$= \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l \frac{d}{dx} \left[\frac{1 - (1 + x^c)^{-1} e^{-\alpha x^\beta}}{1 + (1 + x^c)^{-1} e^{-\alpha x^\beta}} \right]^{k+l}$$

$$= \frac{n!}{(k-1)!(n-k)!} \sum_{l=0}^{n-k} \binom{n-k}{l} (-1)^l \frac{d}{dx} G_{EHLLLoGW}(x; \lambda, c, \gamma, k + l),$$

where $G_{EHLLLoGW}(x; \alpha, \beta, c, k + l)$ is exponentiated half logistic log-logistic Weibull (EHLLLoGW) distribution function with parameters α, β, c and $k+l > 0$. Thus, the pdf of the k^{th} order statistic can be expressed as a linear combination of the pdf of the EHLLLoGW distribution.

5.3.2 Rényi Entropy

In this section, we present Rényi entropy for the HLLLoGW distribution. Rényi entropy (Rényi [70]) is an extension of Shannon entropy. Rényi entropy is defined to be

$$I_R(v) = \frac{1}{1-v} \log \left(\int_0^\infty [f(x; \alpha, \beta, c)]^v dx \right), \quad v \neq 1, v > 0.$$ \hspace{1cm} (5.25)
Rényi entropy tends to Shannon entropy as $v \to 1$. Note that
\[
 f_{HLLLoGW}^v(x) = 2^v e^{-\alpha x^\beta} (1 + x^c)^{-v} \left[(1 + x^c)^{-1} cx^{c-1} + \alpha \beta x^{\beta-1} \right]^v \\
 \times \left[1 + (1 + x^c)^{-1} e^{-\alpha x^\beta} \right]^{-2v} \\
 = \sum_{p=0}^{\infty} 2^v e^{-\alpha x^\beta} (1 + x^c)^{-v} \binom{v}{p} (1 + x^c)^{-p} e^{pc} x^{pc-p} (\beta-1)(v-p) \\
 \times (\alpha \beta)^{v-p} \sum_{z=0}^{\infty} \frac{\Gamma(2v + z)}{\Gamma(2v)z!} (-1)^z (1 + x^c)^{-z} e^{-\alpha x^\beta} \\
 = \sum_{p,z=0}^{\infty} 2^v (\alpha \beta)^{v-p} \binom{v}{p} \frac{\Gamma(2v + z)}{\Gamma(2v)z!} (-1)^z (1 + x^c)^{-z-p-v} \\
 \times (\alpha \beta)^{v-p} \sum_{z=0}^{\infty} \frac{\Gamma(2v + z)}{\Gamma(2v)z!} (-1)^z + sp \\
 = \sum_{p,z,s=0}^{\infty} 2^v (\alpha \beta)^{v-p} \binom{v}{p} \frac{\Gamma(2v + z)}{\Gamma(2v)z!} (-1)^z + sp \\
 \times (1 + x^c)^{-z-p-v}.
\]

Note that, by applying the substitution $y = (1 + x^c)^{-1}$, we have the following
\[
 \int_0^\infty \frac{x^{pc+\beta s-p+\beta-1(v-p)}}{(1 + x^c)^{z+p+v}} dx = \frac{1}{c} B \left(z + p + v - 2 - \frac{pc + \beta s - p + (\beta - 1)(v - p) + 1}{c}, \frac{pc + \beta s - p + (\beta - 1)(v - p) + 1}{c} \right),
\]

Consequently, Rényi entropy for the HLLLoGW distribution reduces to
\[
 I_R(v) = \frac{1}{1-v} \log \left(\sum_{p,z,s=0}^{\infty} 2^v (\alpha \beta)^{v-p} \binom{v}{p} \frac{\Gamma(2v + z)}{\Gamma(2v)z!} (-1)^z + sp \\
 \times \frac{1}{c} B \left(z + p + v - 2 - \frac{pc + \beta s - p + (\beta - 1)(v - p) + 1}{c}, \frac{pc + \beta s - p + (\beta - 1)(v - p) + 1}{c} \right) \right),
\]

for $v \neq 1$ and $v > 0$.

5.4 Estimation

Let $X_i \sim HLLLoGW(\alpha, \beta, c)$ and $\Delta = (\alpha, \beta, c)^T$ be the parameter vector. The log-likelihood $\ell = \ell(\Delta)$ based on a random sample of size n is given by
\[
 \ell = n \ln(2) - \alpha \sum_{i=1}^n x_i^\beta - \sum_{i=1}^n \ln(1 + x_i^c) + \sum_{i=1}^n \ln \left[(1 + x_i^c)^{-1} cx_i^{c-1} + \alpha \beta x_i^{\beta-1} \right] \\
 - 2 \sum_{i=1}^n \ln \left[1 + (1 + x_i^c)^{-1} e^{-\alpha x_i^\beta} \right].
\]
Elements of the score vector $U = \left(\frac{\partial \ell}{\partial \alpha}, \frac{\partial \ell}{\partial \beta}, \frac{\partial \ell}{\partial c} \right)$ can be readily obtained. The equations obtained by setting the partial derivatives to zero are not in closed form and the values of the parameters α, c, β must be found via iterative methods. The maximum likelihood estimates (MLE) of the parameters, denoted by $\hat{\Delta}$, is obtained by solving the nonlinear equation $\left(\frac{\partial \ell}{\partial \alpha}, \frac{\partial \ell}{\partial \beta}, \frac{\partial \ell}{\partial c} \right)^T = 0$, using a numerical method such as Newton-Raphson procedure. The Fisher information matrix is given by $I(\Delta) = \left[I_{\theta_i \theta_j} \right]_{3 \times 3} = E\left(-\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j} \right), \ i, j = 1, 2, 3$, can be numerically obtained by MATLAB or NLMIXED in SAS or R software. The total Fisher information matrix $nI(\Delta)$ can be approximated by

$$J_n(\hat{\Delta}) \approx \left[-\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j} \right]_{\Delta = \hat{\Delta}}^{\Delta = \hat{\Delta}}, \ i, j = 1, 2, 3. \quad (5.27)$$

For a given set of observations, the matrix given in equation (5.27) is obtained after the convergence of the Newton-Raphson procedure via NLMIXED in SAS or R software.

The multivariate normal distribution $N_3(0, J^{-1}(\hat{\Delta}))$, where the mean vector $0 = (0, 0, 0)^T$ and $J^{-1}(\hat{\Delta})$ is the observed Fisher information matrix evaluated at $\hat{\Delta}$, can be used to construct confidence intervals and confidence regions for the individual model parameters and for the survival and hazard rate functions. That is, the approximate $100(1 - \eta)\%$ two-sided confidence intervals for $\lambda, c,$ and δ are given by:

$$\hat{\lambda} \pm Z_{\frac{\eta}{2}} \sqrt{I^{-1}_{\lambda\lambda}(\hat{\Delta})}, \quad \hat{c} \pm Z_{\frac{\eta}{2}} \sqrt{I^{-1}_{cc}(\hat{\Delta})}, \quad \text{and} \quad \hat{\delta} \pm Z_{\frac{\eta}{2}} \sqrt{I^{-1}_{\delta\delta}(\hat{\Delta})},$$

respectively, where $I^{-1}_{\lambda\lambda}(\hat{\Delta}), I^{-1}_{cc}(\hat{\Delta}),$ and $I^{-1}_{\delta\delta}(\hat{\Delta})$, are the diagonal elements of $I^{-1}_n(\hat{\Delta}) = (nI(\hat{\Delta}))^{-1}$, and $Z_{\frac{\eta}{2}}$ is the upper $\frac{\eta}{2}$th percentile of a standard normal distribution.

5.5 Monte Carlo Simulations

In this section, the performance of the maximum likelihood estimates is examined by conducting simulation studies for different sample sizes. We examine the performance of the HLLLoGW distribution by conducting various simulations for different sizes ($n=25, 50, 100, 200, 400, 800, 1200$) via the R package. We simulate $N = 1000$ samples for the true parameters values
given in the Table 5.3 and Table 5.4. The Average Bias and Root Mean Square Error (RMSE) were computed. The average bias and RMSE for the estimated parameter $\hat{\theta}$, say, are given by:

$$ABias(\hat{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \hat{\theta}_i - \theta,$$

and

$$RMSE(\hat{\theta}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{\theta}_i - \theta)^2},$$

respectively. The table lists the mean MLEs of the parameters along with the respective root mean squared errors (RMSEs).

Table 5.3: Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample Size</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>25</td>
<td>0.3770</td>
<td>0.2238</td>
<td>-0.0229</td>
<td>1.4484</td>
<td>0.4283</td>
<td>0.0484</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.3778</td>
<td>0.1647</td>
<td>-0.0221</td>
<td>1.4140</td>
<td>0.2665</td>
<td>0.0140</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.3889</td>
<td>0.1113</td>
<td>-0.0110</td>
<td>1.4095</td>
<td>0.1932</td>
<td>0.0095</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.3952</td>
<td>0.0788</td>
<td>-0.0047</td>
<td>1.3945</td>
<td>0.1301</td>
<td>-0.0054</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.3982</td>
<td>0.0557</td>
<td>-0.0017</td>
<td>1.3959</td>
<td>0.0918</td>
<td>-0.0040</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.3986</td>
<td>0.0411</td>
<td>-0.0013</td>
<td>1.3963</td>
<td>0.0640</td>
<td>-0.0036</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>0.3992</td>
<td>0.0307</td>
<td>-0.0007</td>
<td>1.3969</td>
<td>0.0505</td>
<td>-0.0030</td>
</tr>
<tr>
<td>β</td>
<td>25</td>
<td>1.1515</td>
<td>0.6706</td>
<td>0.2515</td>
<td>1.7665</td>
<td>0.6636</td>
<td>0.2665</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.0041</td>
<td>0.3799</td>
<td>0.1041</td>
<td>1.6411</td>
<td>0.4169</td>
<td>0.1410</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.9392</td>
<td>0.2029</td>
<td>0.0392</td>
<td>1.5879</td>
<td>0.2907</td>
<td>0.0879</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.9114</td>
<td>0.1297</td>
<td>0.0114</td>
<td>1.5541</td>
<td>0.2105</td>
<td>0.0541</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.9042</td>
<td>0.0905</td>
<td>0.0042</td>
<td>1.5327</td>
<td>0.1615</td>
<td>0.0327</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.9033</td>
<td>0.0613</td>
<td>0.0033</td>
<td>1.5205</td>
<td>0.1313</td>
<td>0.0205</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>0.9011</td>
<td>0.0482</td>
<td>0.0011</td>
<td>1.5150</td>
<td>0.1145</td>
<td>0.0150</td>
</tr>
<tr>
<td>ϵ</td>
<td>25</td>
<td>0.8826</td>
<td>0.3218</td>
<td>0.0826</td>
<td>1.9035</td>
<td>0.9145</td>
<td>0.1035</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.8632</td>
<td>0.2515</td>
<td>0.0632</td>
<td>1.9477</td>
<td>0.9200</td>
<td>0.1477</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.8390</td>
<td>0.1721</td>
<td>0.0390</td>
<td>1.8668</td>
<td>0.6362</td>
<td>0.0668</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.8304</td>
<td>0.1384</td>
<td>0.0304</td>
<td>1.8438</td>
<td>0.4899</td>
<td>0.0438</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.8158</td>
<td>0.0857</td>
<td>0.0158</td>
<td>1.8388</td>
<td>0.4158</td>
<td>0.0388</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>0.8079</td>
<td>0.0554</td>
<td>0.0079</td>
<td>1.8248</td>
<td>0.3487</td>
<td>0.0248</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>0.8052</td>
<td>0.0445</td>
<td>0.0052</td>
<td>1.8231</td>
<td>0.3025</td>
<td>0.0231</td>
</tr>
</tbody>
</table>
Table 5.4: Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample Size</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
<th>Mean</th>
<th>RMSE</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>25</td>
<td>2.2207</td>
<td>0.7338</td>
<td>0.2207</td>
<td>3.4622</td>
<td>1.2786</td>
<td>0.4622</td>
<td>3.4705</td>
<td>1.3094</td>
<td>0.4705</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.0876</td>
<td>0.3748</td>
<td>0.2076</td>
<td>3.2513</td>
<td>0.7018</td>
<td>0.2513</td>
<td>3.2182</td>
<td>0.7654</td>
<td>0.2182</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.0431</td>
<td>0.2376</td>
<td>0.1431</td>
<td>2.9615</td>
<td>0.4579</td>
<td>0.2961</td>
<td>3.1250</td>
<td>0.4219</td>
<td>0.2250</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>2.0198</td>
<td>0.1620</td>
<td>0.1098</td>
<td>2.8656</td>
<td>0.2854</td>
<td>0.1865</td>
<td>3.0872</td>
<td>0.2715</td>
<td>0.1672</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2.0164</td>
<td>0.1041</td>
<td>0.1016</td>
<td>3.0332</td>
<td>0.1829</td>
<td>0.1032</td>
<td>3.0941</td>
<td>0.1835</td>
<td>0.0341</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2.0097</td>
<td>0.0849</td>
<td>0.0097</td>
<td>3.0290</td>
<td>0.1321</td>
<td>0.0290</td>
<td>3.0314</td>
<td>0.1332</td>
<td>0.0314</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2.0022</td>
<td>0.0649</td>
<td>0.0022</td>
<td>3.0185</td>
<td>0.1086</td>
<td>0.0185</td>
<td>3.0152</td>
<td>0.1037</td>
<td>0.0152</td>
</tr>
<tr>
<td>(\beta)</td>
<td>25</td>
<td>3.2089</td>
<td>1.0516</td>
<td>0.4089</td>
<td>2.9459</td>
<td>0.9585</td>
<td>0.4959</td>
<td>3.1442</td>
<td>1.1905</td>
<td>0.5442</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.9372</td>
<td>0.5824</td>
<td>0.2372</td>
<td>2.7485</td>
<td>0.5654</td>
<td>0.2485</td>
<td>3.1761</td>
<td>0.7698</td>
<td>0.2761</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.8377</td>
<td>0.4105</td>
<td>0.2377</td>
<td>2.6677</td>
<td>0.4040</td>
<td>0.1677</td>
<td>3.1758</td>
<td>0.5001</td>
<td>0.1758</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>2.7816</td>
<td>0.3171</td>
<td>0.2183</td>
<td>2.6009</td>
<td>0.2851</td>
<td>0.1009</td>
<td>3.3013</td>
<td>0.3759</td>
<td>0.1013</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2.7870</td>
<td>0.2418</td>
<td>0.1429</td>
<td>2.5612</td>
<td>0.2069</td>
<td>0.0612</td>
<td>3.2684</td>
<td>0.2756</td>
<td>0.0674</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2.7904</td>
<td>0.1766</td>
<td>0.0996</td>
<td>2.5454</td>
<td>0.1666</td>
<td>0.0454</td>
<td>3.2526</td>
<td>0.2110</td>
<td>0.0526</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2.7916</td>
<td>0.1449</td>
<td>0.0683</td>
<td>2.5345</td>
<td>0.1433</td>
<td>0.0345</td>
<td>3.2431</td>
<td>0.2065</td>
<td>0.0431</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>25</td>
<td>2.2358</td>
<td>0.8174</td>
<td>0.2358</td>
<td>3.3568</td>
<td>17.2607</td>
<td>0.8568</td>
<td>3.4926</td>
<td>59.9048</td>
<td>0.6998</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.2474</td>
<td>0.7831</td>
<td>0.2474</td>
<td>2.4606</td>
<td>3.8383</td>
<td>0.1406</td>
<td>4.0007</td>
<td>2.2780</td>
<td>0.6007</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.2319</td>
<td>0.7259</td>
<td>0.2319</td>
<td>2.4733</td>
<td>0.7425</td>
<td>0.0265</td>
<td>3.6606</td>
<td>2.3400</td>
<td>0.2660</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>2.2086</td>
<td>0.6263</td>
<td>0.2086</td>
<td>2.4779</td>
<td>0.6413</td>
<td>0.0220</td>
<td>3.5826</td>
<td>1.6641</td>
<td>0.1820</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>2.1423</td>
<td>0.4936</td>
<td>0.1423</td>
<td>2.4783</td>
<td>0.5246</td>
<td>0.0216</td>
<td>3.4765</td>
<td>0.9394</td>
<td>0.0765</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>2.0935</td>
<td>0.3592</td>
<td>0.0935</td>
<td>2.5126</td>
<td>0.4851</td>
<td>0.0126</td>
<td>3.4065</td>
<td>0.7565</td>
<td>0.0605</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>2.0588</td>
<td>0.2875</td>
<td>0.0588</td>
<td>2.5002</td>
<td>0.4322</td>
<td>0.0002</td>
<td>3.4442</td>
<td>0.7111</td>
<td>0.0442</td>
</tr>
</tbody>
</table>

From Table 5.3 and Table 5.4 above we conclude that estimation method is adequate as the simulated estimates are close to the true values of parameters. We also observed that estimated root mean square errors (RMSEs) consistently decreases with increasing sample size and the average bias decreases as the sample size \(n \) increases.

5.6 Applications

The flexibility and usefulness of the HLLLoGW distribution and its sub-models for data modeling is illustrated in this section. We compare the HLLLoGW distribution with the generalized Lindley (GL) distribution (Zakerzadeh and Dolati [87]), Lindley-Weibull (LW) distribution (Asgharzadeh et al. [5]), Log-Logistic Weibull (LLoGW) distribution (Oluyede et al. [66]), Marshall-Olkin Log-logistic distribution (MOLLD) (Wenhao [84]), the exponentiated Fréchet (EF) distribution (Nadarajah and Kotz [55]) and the Odd Lindley Fréchet (OLiFr) distribution (Mansour et al. [46]) . The pdf of the
generalized Lindley (GL) distribution is given by
\[
g_{GL}(x; \alpha, \beta, \theta) = \frac{\theta^{\alpha+1}}{(\beta + \theta)^{(\alpha+1)}}(\alpha + \beta x)e^{-\theta x},
\]
(5.28)
for \(\alpha, \beta, \theta > 0\) and \(x > 0\). The LW distribution (see Asgharzadeh et al. [5] for details) has the pdf given by
\[
g_{LW}(x; \lambda, \alpha, \beta) = e^{-\lambda x - \alpha x^\beta} \frac{1}{1 + \lambda} \left[\lambda^2 (1 + x) + (1 + \lambda + \lambda x) \alpha \beta x^{\beta-1} \right],
\]
(5.29)
for \(\lambda, \alpha, \beta > 0\) and \(x > 0\). The pdf of the Log-logistic Weibull (LLoGW) distribution is given by
\[
g_{LLoGW}(x; c, \alpha, \beta) = (1 + x^c)^{-1} e^{-\alpha x^\beta} \left[(1 + x^c)^{-1} c x^{c-1} + \alpha \beta x^{\beta-1} \right],
\]
(5.30)
for \(c, \alpha, \beta > 0\), and \(x \geq 0\). The MOLLD pdf is given by
\[
g_{MOLLD}(x; \alpha, \beta, \gamma) = \frac{\alpha^\beta x^{\beta-1}}{(x^\beta + \alpha^\beta \gamma)^2}
\]
(5.31)
for \(\alpha, \beta, \gamma > 0\), and \(x > 0\). The pdf of the exponentiated Fréchet (EF) distribution is given by
\[
g_{EF}(x; \alpha, \beta, \theta) = \theta \beta \alpha^\beta x^{\beta-1} \exp\left(-\frac{\alpha}{x}\right) \left(1 - \exp\left(-\frac{\alpha}{x}\right)\right)^{\theta-1}
\]
(5.32)
for \(\alpha, \beta, \theta > 0\), and \(x > 0\).

The maximum likelihood estimates (MLEs) of the HLLLoGW parameters and its sub-models are computed by maximizing the objective function via the subroutine NLMIXED in SAS as well as the function nlm in R. The estimated values of the parameters (standard error in parenthesis), -2log-likelihood statistic (-2 \(\ln(L)\)), Akaike Information Criterion (AIC = 2\(p - 2\ln(L)\)), Bayesian Information Criterion (BIC = \(p \ln(n) - 2\ln(L)\)), and Consistent Akaike Information Criterion (AICC = AIC + \(\frac{2p(p+1)}{n-p-1}\)), where \(L = L(\hat{\Delta})\) is the value
of the likelihood function evaluated at the parameter estimates, \(n \) is the number of observations, and \(p \) is the number of estimated parameters. Tables 5.5 and 5.6 shows results for the data set for HLLLoGW distribution, its sub-models and several non-nested models.

The likelihood ratio (LR) test can be used to compare the fit of the HLLLoGW distribution with its sub-models for a given data set. For example, to test \(\beta = 1 \), the LR statistic is
\[
\omega = 2[\ln(L(\hat{\alpha}, \hat{c}, \hat{\beta})) - \ln(L(\hat{\alpha}, \hat{c}, 1))],
\]
where \(\hat{\alpha}, \hat{c}, \) and \(\hat{\beta} \) are the unrestricted estimates, and \(\hat{\alpha}, \) and \(\hat{c} \) are the restricted estimates. The LR test rejects the null hypothesis if \(\omega > \chi^2_{\epsilon} \), where \(\chi^2_{\epsilon} \) denote the upper 100\(\epsilon \)% point of the \(\chi^2 \) distribution with 1 degrees of freedom.

Plots of the fitted densities, the histogram of the data and probability plots (Chambers et al. [14]) are given in Figure 5.4 and Figure 5.5. For the probability plot, we plotted
\[
G_{HLLLoGW}(x(j); \hat{\alpha}, \hat{c}, \hat{\beta}) \text{ against } \frac{j - 0.375}{n + 0.25}, j = 1, 2, \ldots, n,
\]
where \(x(j) \) are the ordered values of the observed data. The measures of closeness are given by the sum of squares
\[
SS = \sum_{j=1}^{n} \left[G_{HLLLoGW}(x(j)) - \left(\frac{j - 0.375}{n + 0.25} \right) \right]^2.
\]

The goodness-of-fit statistics \(W^* \) and \(A^* \), described by (Chen and Balakrishnan [16]) are presented in the tables. The Kolmogorov-Smirnov (KS) and its P-value are also presented in Tables 5.5 and 5.6. These statistics can be used to verify which distribution fits better to the data. In general, the smaller the values of KS, \(W^* \) and \(A^* \), the better the fit.

5.6.1 Time to failure of kevlar 49/epoxy strands tested at various stress level data

The data consists of 101 data points representing the stress-rupture life of kevlar 49/epoxy strands which were subjected to constant sustained pressure at the 90% stress level until all had failed, so that we have complete data with exact times of failure. The failure times in hours from (Barlow et al. [6]) are shown below
\[
0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, \\
0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35,
\]
Estimates of the parameters of HLLLoGW distribution and its related sub-models (standard error in parentheses), AIC, BIC, and the goodness-of-fit statistics W^*, A^*, Kolmogorov-Smirnov (KS) and its P-value as well as SS are given in Table 5.5. Plots of the fitted densities and the histogram, observed probability vs predicted probability are given in Figure 5.4.

Table 5.5: MLEs of the parameters, SEs in parenthesis and the goodness-of-fit statistics for kevlar 49/epoxy failure time data

<table>
<thead>
<tr>
<th>Model</th>
<th>α</th>
<th>β</th>
<th>c</th>
<th>$-2\log L$</th>
<th>AIC</th>
<th>AICC</th>
<th>BIC</th>
<th>W^*</th>
<th>A^*</th>
<th>KS</th>
<th>P-value</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLLLoGW</td>
<td>0.7797</td>
<td>0.5296</td>
<td>2.2184</td>
<td>203.5713</td>
<td>209.5713</td>
<td>209.8187</td>
<td>217.4166</td>
<td>0.0822</td>
<td>0.5948</td>
<td>0.0700</td>
<td>0.7049</td>
<td>0.1038</td>
</tr>
<tr>
<td>HLLLoG</td>
<td>0</td>
<td>0</td>
<td>1.2229</td>
<td>282.8573</td>
<td>284.8573</td>
<td>284.8977</td>
<td>287.4725</td>
<td>0.0666</td>
<td>2.1424</td>
<td>0.3634</td>
<td>2.5410e-11</td>
<td>5.7580</td>
</tr>
<tr>
<td>HLLLoGR</td>
<td>0.2311</td>
<td>2</td>
<td>0.7462</td>
<td>233.7703</td>
<td>237.7703</td>
<td>237.8928</td>
<td>243.0004</td>
<td>0.2067</td>
<td>1.5106</td>
<td>0.2321</td>
<td>0.0093</td>
<td>1.6510</td>
</tr>
<tr>
<td>HLLLoGW(1, β, c)</td>
<td>1</td>
<td>0.8914</td>
<td>0.7652</td>
<td>207.1673</td>
<td>211.1673</td>
<td>211.2898</td>
<td>216.3976</td>
<td>0.1718</td>
<td>0.9811</td>
<td>0.1422</td>
<td>0.0335</td>
<td>0.5198</td>
</tr>
<tr>
<td>GL</td>
<td>0.7474</td>
<td>0.9518</td>
<td>1.1653</td>
<td>205.0725</td>
<td>211.0725</td>
<td>211.3199</td>
<td>218.9178</td>
<td>0.0847</td>
<td>4.5739</td>
<td>0.0785</td>
<td>0.5617</td>
<td>0.1441</td>
</tr>
<tr>
<td>LW</td>
<td>0.5980</td>
<td>0.4716</td>
<td>0.7481</td>
<td>205.2548</td>
<td>211.2548</td>
<td>211.5023</td>
<td>219.1002</td>
<td>0.1479</td>
<td>0.8797</td>
<td>0.0785</td>
<td>0.5617</td>
<td>0.1441</td>
</tr>
<tr>
<td>LLoGW</td>
<td>2.1997</td>
<td>0.4113</td>
<td>0.5412</td>
<td>207.4965</td>
<td>213.4965</td>
<td>213.7439</td>
<td>221.3419</td>
<td>0.1243</td>
<td>0.8664</td>
<td>0.0968</td>
<td>0.2664</td>
<td>0.2699</td>
</tr>
<tr>
<td>M-LLoD</td>
<td>0.6396</td>
<td>1.2704</td>
<td>0.9721</td>
<td>210.4262</td>
<td>216.4262</td>
<td>216.6738</td>
<td>224.2717</td>
<td>0.3573</td>
<td>1.8018</td>
<td>0.1218</td>
<td>0.0996</td>
<td>0.9559</td>
</tr>
<tr>
<td>EF</td>
<td>2.2676e+18</td>
<td>1.5188e-01</td>
<td>3.288e+03</td>
<td>210.4262</td>
<td>216.4262</td>
<td>216.6738</td>
<td>224.2717</td>
<td>0.3573</td>
<td>1.8018</td>
<td>0.1218</td>
<td>0.0996</td>
<td>0.9559</td>
</tr>
</tbody>
</table>

The Likelihood ratio (LR) test statistic for testing the hypothesis $H_0 : HLLLoG$ against $H_1 : HLLLoGW$, $H_0 : HLLLoGR$ against $H_1 : HLLLoGW$ and $H_0 : HLLLoG(1, \beta, c)$ against $H_1 : HLLLoGW$ are 78.2860 (p-value< 0.00001), 30.1990 (p-value< 0.00001) and 3.596 (p-value= 0.0579). We conclude that there are significant differences between HLLLoG and HLLLoGW distributions, HLLLoGR and HLLLoGW distributions as well as between $HLLLoG(1, \beta, c)$ and HLLLoGW distributions at the 10% level of significance based on the LR tests. The values of the goodness-of-fit statistics: W^*, A^*, KS and its p-value clearly

105
show that the HLLLoGW distribution is by far the better fit for the kevlar 49/epoxy failure time data. The value of sum of squares (SS=0.1038) from the probability plots in Figure 5.4 is smaller for HLLLoGW distribution. Also, the goodness-of-fit statistics KS, W^* and A^* are smaller for HLLLoGW distribution as compared to nested and non-nested distributions for the kevlar 49/epoxy failure time data, hence we can conclude that the HLLLoGW distribution is by far better fit.

5.6.2 Electronics Data

The data for lifetimes of 20 electronic components obtained from (Murthy et al. [51]) are given as

0.03,0.12,0.22,0.35,0.73,0.79,1.25,1.41,1.52,1.79,1.80,1.94,2.38,2.40,2.87,2.99,3.14,3.17,4.72,5.09.

Estimates of the parameters of HLLLoGW distribution and its related sub-models (standard error in parentheses), AIC, BIC, and the goodness-of-fit statistics W^*, A^*, Kolmogorov-Smirnov (KS) and its P-value as well as SS are given in Table 5.6. Plots of the fitted densities and the histogram, observed probability vs predicted probability are given in Figure 5.5.
Table 5.6: Estimates of Models for Lifetimes of 20 Electronic Components Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Estimate of Models for Lifetimes of 20 Electronic Components Data</th>
<th>LogL</th>
<th>AIC</th>
<th>AICc</th>
<th>BIC</th>
<th>W</th>
<th>£</th>
<th>¥</th>
<th>¥</th>
<th>¥</th>
<th>¥</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLLLoGW</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>62.9432</td>
<td>68.9432</td>
<td>70.4432</td>
<td>71.9304</td>
<td>0.0288</td>
<td>0.2022</td>
<td>0.1194</td>
<td>0.9058</td>
<td>0.0368</td>
</tr>
<tr>
<td>HLLLoG</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>71.9342</td>
<td>73.9342</td>
<td>74.1564</td>
<td>74.9299</td>
<td>0.1572</td>
<td>0.9015</td>
<td>0.1542</td>
<td>0.6723</td>
<td>0.0865</td>
</tr>
<tr>
<td>HLLLoGE</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>68.1241</td>
<td>72.1241</td>
<td>72.8300</td>
<td>74.1155</td>
<td>0.0897</td>
<td>0.5790</td>
<td>0.2339</td>
<td>0.1907</td>
<td>0.2397</td>
</tr>
<tr>
<td>HLLLoGW(1,β,c)</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>79.5829</td>
<td>83.5829</td>
<td>84.2887</td>
<td>85.5743</td>
<td>0.0904</td>
<td>0.5281</td>
<td>0.4486</td>
<td>0.0003</td>
<td>1.3743</td>
</tr>
<tr>
<td>GL</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>64.9147</td>
<td>70.9147</td>
<td>72.4147</td>
<td>73.9019</td>
<td>0.0767</td>
<td>0.6479</td>
<td>0.3118</td>
<td>0.2862</td>
<td>0.0626</td>
</tr>
<tr>
<td>LW</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>65.0536</td>
<td>71.0536</td>
<td>72.5536</td>
<td>74.0408</td>
<td>0.0610</td>
<td>0.3644</td>
<td>0.1352</td>
<td>0.8108</td>
<td>0.0628</td>
</tr>
<tr>
<td>LLoGW</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>66.3973</td>
<td>72.3973</td>
<td>73.8973</td>
<td>75.3887</td>
<td>0.0539</td>
<td>0.3194</td>
<td>0.2642</td>
<td>0.1016</td>
<td>0.3366</td>
</tr>
<tr>
<td>M-LlOd</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>71.8445</td>
<td>77.8445</td>
<td>78.3445</td>
<td>80.317</td>
<td>0.1628</td>
<td>0.9318</td>
<td>0.1415</td>
<td>0.7060</td>
<td>0.0971</td>
</tr>
<tr>
<td>EF</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>87.8966</td>
<td>93.8966</td>
<td>95.3966</td>
<td>96.8838</td>
<td>0.1105</td>
<td>0.6387</td>
<td>0.1642</td>
<td>0.5961</td>
<td>0.1115</td>
</tr>
<tr>
<td>OLlFr1</td>
<td>☀ ☀ ☀ ☀</td>
<td>☀ ☀ ☀ ☀</td>
<td>68.8885</td>
<td>72.8885</td>
<td>74.3885</td>
<td>75.8787</td>
<td>0.0970</td>
<td>0.5664</td>
<td>0.1475</td>
<td>0.7322</td>
<td>0.0975</td>
</tr>
</tbody>
</table>

The Likelihood ratio (LR) test statistic for testing the hypothesis $H_0 : HLLLoG$ against $H_a : HLLLoGW$, $H_0 : HLLLoGE$ against $H_a : HLLLoGW$ and $H_0 : HLLLoG(1,β,c)$ against $H_a : HLLLoGW$ are 8.991 (p-value= 0.0111), 5.1809 (p-value= 0.0143) and 16.6397 (p-value= 0.00004). We conclude that there are significant differences between HLLLoGW and its Sub-models at the 5% level of significance. The values in table 5.6 show that the HLLIoGW distribution gives the smallest values for the goodness-of-fit statistics and the greatest p-value of KS-test. Thus, the HLLLoGW distribution provides better fit than the rest of the distributions for the lifetimes of 20 electronic components data. Additionally, the value of sum of squares (SS=0.0368) from the probability plots in Figure 5.5 is smaller for HLLLoGW distribution confirming that the HLLLoGW distribution is a better fit for the lifetimes of 20 electronic components data compared to the nested and non-nested distributions in Table 5.6.
5.7 Concluding Remarks

We have proposed and studied a new three parameter distribution called the Half Logistic Log-Logistic Weibull (HLLLoGW) distribution. Distributional properties of this model are derived. Maximum likelihood estimation technique is used to estimate the model parameters. Monte Carlo simulation study is carried out to examine the accuracy of the maximum likelihood estimates. The importance of the HLLLoGW is exemplified by two real life datasets.
Chapter 6

Conclusion and Suggestions For Further Studies

6.1 Conclusion

Lifetime modeling and reliability analysis are very important in areas such as computer science, engineering, social sciences. We developed and studied new models namely, Lindley-Weibull Power Series (LWPS) class of distributions and their special case called Lindley-Weibull logarithmic (LWL) distribution, a new gamma generalized Lindley log-logistic (GELLLoG) distribution, Marshall-Olkin Lindley log-logistic (MOLLLoG) distribution and half logistic log-logistic Weibull (HLLLoGW) distribution. These distributions exhibit monotonic and non-monotonic hazard rate behavior. Distributional properties of these models were derived. Monte Carlo simulation study at different sample sizes was carried out to examine the accuracy of the maximum likelihood estimates. The importance of the proposed distributions was exemplified by real life datasets. We conclude that the proposed models are useful since they performed better than the nested models and other non-nested models on the selected datasets.
6.2 Suggestions for Further Studies

Future research may include the use of other methods of estimation such as Weighted Least Square estimation and Bayesian estimation. Also, further research on proposed distributions can be study on mixtures and multivariate extensions.
Bibliography

Marshall-Olkin Log-Logistic Extended Weibull Distribution, Journal of
Data Science, 691-722.

[41] Lindley, D. V., (1958). _Fiducial Distributions and Bayes Theorem_, J. Royal

Exponential-Geometric Distribution: a Distribution with Decreasing,

Series Distributions_, Computational Statistics and Data Analysis, 56(12),
4047-4066.

Linear Failure Rate-Power Series Distributions: Model, Properties and
Applications_, Communications in Statistics - Simulation and Computation,
46(2), 1414-1440.

Z. (2018). _A New Three-Parameter Fréchet Distribution: Properties and

to a Family of Distributions with Application to the Exponential and
Weibull Families_, Biometrika 84: 641-652.

Weibull and Power Series Distributions_, Computational Statistics and Data
Analysis, 55(3), 1410-1425.

Family for Analyzing Bathtub Failure data_, IEEE Transactions on
Reliability, 43, 299-302.

Appendix

Chapter 2 Appendix

The elements of the score vector are given by

$$\frac{\partial \ell}{\partial \beta} = -\alpha \sum_{i=1}^{n} x_i \beta \ln x_i + \sum_{i=1}^{n} \alpha \frac{(1 + \lambda + \lambda x_i) [x_i^{\beta - 1}(1 + \beta \ln x_i)]}{\lambda^2 (1 + x_i) + (1 + \lambda + \lambda x_i) \alpha \beta x_i^{\beta - 1}}$$

$$+ \sum_{i=1}^{n} C'' \left(\frac{\theta (1 - \frac{1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^\beta}}{1 + \lambda})}{1 + \lambda} \right) \left(1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^\beta} \right) \alpha x_i^\beta \ln x_i,$$

$$\frac{\partial \ell}{\partial \theta} = \frac{n C'(\theta)}{C(\theta)} + \sum_{i=1}^{n} \frac{C''(1 - \frac{1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^\beta}}{1 + \lambda})}{1 + \lambda} \left(1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^\beta} \right),$$

$$\frac{\partial \ell}{\partial \alpha} = -\sum_{i=1}^{n} x_i \beta + \sum_{i=1}^{n} \frac{(1 + \lambda + \lambda x_i) (\beta x_i^{\beta - 1})}{\lambda^2 (1 + x_i) + (1 + \lambda + \lambda x_i) \alpha \beta x_i^{\beta - 1}}$$

$$+ \sum_{i=1}^{n} C'' \left(\frac{\theta (1 - \frac{1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^\beta}}{1 + \lambda})}{1 + \lambda} \right) \left(1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^\beta} \right),$$

and

$$\frac{\partial \ell}{\partial \lambda} = -n x_i + \sum_{i=1}^{n} \frac{2 \lambda (1 + x_i) + (1 + x_i) \alpha \beta x_i^{\beta - 1}}{\lambda^2 (1 + x_i) + (1 + \lambda + \lambda x_i) \alpha \beta x_i^{\beta - 1}}$$

$$+ \left(\sum_{i=1}^{n} \frac{C''(1 - \frac{1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^\beta}}{1 + \lambda})}{1 + \lambda} \right) \left(1 + \lambda + \lambda x_i e^{-\lambda x_i - \alpha x_i^\beta} \right) x_i \beta$$

$$\times \theta e^{-\lambda x_i - \alpha x_i^\beta} \left[x_i \left(\frac{1 + \lambda + \lambda x_i}{1 + \lambda} \right) - \frac{(1 + \lambda)(1 + x_i) - (1 + \lambda + \lambda x_i)}{(1 + \lambda)^2} \right].$$

LWL R Algorithms

pdf plot of LWL Distribution

```r
f1 = function(x, lambda, alpha, beta, theta) {
  y = (theta * exp(-lambda * x - alpha * x^beta))/(1 + lambda) * ((lambda^2) * (1 + x)
  + (1 + lambda + lambda * x) * alpha * beta * x^(beta - 1)) * 
  ((1 - theta) * (1 - ((1 + lambda + lambda * x)/(1 + lambda))
  * exp(-lambda * x - alpha * x^beta)))) - 1)/(-log(1 - theta))
  return(y)
}
```
$$x = \text{seq}(0, 1.5, \text{by} = 0.001)$$

$$y_1 = f_1(x, 1.5, 1.8, 0.99)$$

$$\text{plot}(x, y_1, \text{ylim} = c(0, 3), \text{col} = 2, lwd = 2, xlab = "x", ylab = "density")$$

$$y_2 = f_1(x, 1.5, 1.8, 0.49)$$

$$\text{lines}(x, y_2, \text{col} = 3, lwd = 2)$$

$$y_3 = f_1(x, 1.5, 1.8, 0.0001)$$

$$\text{lines}(x, y_3, \text{col} = 4, lwd = 2)$$

$$y_4 = f_1(x, 1.5, 1.8, 0.82)$$

$$\text{lines}(x, y_4, \text{col} = 5, lwd = 2)$$

$$y_5 = f_1(x, 1.5, 1.8, 0.45)$$

$$\text{lines}(x, y_5, \text{col} = 6, lwd = 2)$$

legend("topleft", c(expression(paste(lambda, = 1.5, , alpha, = 1, , beta, = 8, , theta, = 0.999)), expression(paste(lambda, = 1.5, , alpha, = 1, , beta, = 8, , theta, = 0.499)), expression(paste(lambda, = 1.5, , alpha, = 1, , beta, = 8, , theta, = 0.00019)), expression(paste(lambda, = 1.5, , alpha, = 1, , beta, = 8, , theta, = 0.829)), expression(paste(lambda, = 1.5, , alpha, = 1, , beta, = 8, , theta, = 0.459)), col = c(2, 3, 4, 5, 6), lwd = c(2, 2, 2, 2))

hazard plot of LWL Distribution

$$f_1 = \text{function}(x, \text{alpha}, \text{lambda}, \text{beta}, \text{theta})\{$$

$$y = ((\text{theta} * \exp((-\text{lambda} * x) - \text{alpha} * x^{\text{beta}})) / (1 + \text{lambda})) * ((\text{lambda}^2) * (1 + x) + (1 + \text{lambda} + \text{lambda} * x) * (\text{alpha} * \text{beta} * x^{(\text{beta} - 1)})) * (1 - \text{theta} * (1 - ((1 + \text{lambda} + \text{lambda} * x) / (1 + \text{lambda}))) * (\exp((-\text{lambda} * x) - \text{alpha} * x^{\text{beta}})))^{(-1)} / (\log(1 - \text{theta}) * (1 - ((1 + \text{lambda} + \text{lambda} * x) / (1 + \text{lambda}))) * (\exp((-\text{lambda} * x) - \text{alpha} * x^{\text{beta}})) - \log(1 - \text{theta}))$$

$$\text{return}(y)\}$$

$$x = \text{seq}(0, 1.5, \text{by} = 0.001)$$

$$y_1 = f_1(x, 1.0, 1.8, 1.4, 0.9)$$

$$\text{plot}(x, y_1, \text{ylim} = c(0, 3), \text{col} = 2, lwd = 2, xlab = "x", ylab = "h(x)")$$

$$y_5 = f_1(x, 0.2, 1.4, 3.8, 0.99)$$

$$\text{lines}(x, y_5, \text{col} = 6, lwd = 2)$$
legend("topright", c(expression(paste(alpha,' = 1.0', lambda,' = 1.8', beta,' = 1.4', theta,' = 0.9')),
expression(paste(alpha,' = 0.2', lambda,' = 1.4', beta,' = 3.8', theta,' = 0.99'))), col = c(2,6), lwd = c(2,2))

Quantile numbers and moments of LWL Distribution

install.packages("stats4")
install.packages("bbmle")
install.packages("stats")
install.packages("numDeriv")
install.packages("Matrix")
install.packages("zipfR")
library(rootSolve)
library(stats4)
library(bbmle)
library(stats)
library(numDeriv)
library(Matrix)
library(zipfR)
define pdf LWL
LWL_pdf <- \!-\! function(alpha, lambda, beta, theta, x)
{\!
y = (theta * exp(-lambda * x - alpha * x^beta)/(1 + lambda)) * ((lambda^2) *
(1 + x) + (1 + lambda + lambda * x) * alpha * beta * x^{(beta-1)} * ((1 - theta * (1 - (((1 + lambda + lambda * x)/(1 + lambda)) * exp(-lambda * x - alpha * x^beta))))/log(1 - theta)))\!
}

define cdf LWL Distribution
LWL_cdf <- \!-\! function(alpha, lambda, beta, theta, x)
{\!
y = log(1 - theta) * (1 - (((1 + lambda + lambda * x)/(1 + lambda)) *
exp(-lambda * x - alpha * x^beta))/log(1 - theta))\!
}

define hazard LWL
LWL_hazard <- \!-\! function(alpha, lambda, beta, theta, x)
{\!
y = (theta * exp(-lambda * x - alpha * x^beta)/(1 + lambda)) * ((lambda^2) \!
}
\[(1 + x) + (1 + \lambda + \lambda * x) * \alpha * \beta * x^{(\beta - 1)} \cdot \]

\[((1 - \theta) * (1 - (((1 + \lambda + \lambda * x)/(1 + \lambda)) \cdot \exp(-\lambda * x - \alpha * x^\beta)) \cdot (1 - (((1 + \lambda + \lambda * x)/(1 + \lambda)) \cdot \exp(-\lambda * x - \alpha * x^\beta))) - \log(1 - \theta))) \]

\}

define LWL quantile

\[
LWL_{quantile} = function(parameter, u) \{
\]

\[\alpha = parameter[1] \]
\[\lambda = parameter[2] \]
\[\beta = parameter[3] \]
\[\theta = parameter[4] \]
\[f = function(x) \{ \]
\[LWL_{cdf}(\alpha, \lambda, \beta, \theta, x) - u \]
\} \]
\[x = min(unirouf.all(f, lower = 0, upper = 100, tol = 0.01)) \]
\[return(x) \}
\]

\[
LWL_{QuantileTable} = function(parameter_matrix) \{ u = seq(0.1, 0.9, 0.1) \]
\[size = dim(parameter_matrix)[1] \]
\[Table_{Quantile} = matrix(NA, nrow = length(u), ncol = size) \]
\[rownames(Table_{Quantile}) = u \]
\[colnames(Table_{Quantile}) = apply(parameter_matrix, 1, function(x)
\[paste0(","paste0(x, collapse = ","),"")) \]
\[Table_{Quantile} \]
\[for(iter in 1 : size) \{ \]
\[parameter = parameter_matrix[iter,] \]
\[for(i in 1 : length(u)) \{ \]
\[Table_{Quantile}[i, iter] = LWL_{quantile}(parameter, u[i]) \]
\} \]
\[return(Table_{Quantile}) \]
table of quantile

\[
\text{parameter}_{\text{matrix}} = \text{as.matrix(rbind(par1 = c(0.1, 0.5, 2.5, 0.5),}
par2 = c(0.4, 1.0, 1.2, 0.2),
par3 = c(1.5, 1.0, 2.5, 0.5),
par4 = c(3.0, 2.5, 3.5, 0.8),
par5 = c(1.6, 4.5, 6.5, 0.6))}
\]

\[LWL_{\text{QuantileTable}}(\text{parameter}_{\text{matrix}})\]

\[
\text{print(\text{parameter}_{\text{matrix}})}
\]

\[
\text{print(}LWL_{\text{QuantileTable}}(\text{parameter}_{\text{matrix}}))
\]

End of Quantile

\[
LWL_{\text{pdf}} = -function(alpha, lambda, beta, theta, x)\{ \\
y = (theta * exp(-lambda * x - alpha * x^{\beta})/(1 + lambda)) * \\
((lambda^2) * (1 + x) + (1 + lambda + lambda * x) * alpha * beta * x^{(\beta-1)}) \\
* ((1 - theta * (1 - ((1 + lambda + lambda * x)/(1 + lambda)) * \\
exp(-lambda * x - alpha * x^{\beta})))^{(1-1)/(-log(1 - theta))}) \\
return(y)
\}
\]

\[
LWL_{\text{moments}} = function(alpha, lambda, beta, theta, n)\{ \\
f = function(alpha, lambda, beta, theta, n, x)\{(x^n) * (LWL_{\text{pdf}}(alpha, lambda, beta, theta, x)) \\
}y = \text{integrate(f, lower = 0, upper = 1, alpha = alpha, lambda = lambda,} \\
\beta = beta, theta = theta, n = n) \\
\text{return(y$value)}
\}
\]

\text{table of moments}\n
\[
\text{parameter}_{\text{matrix}}_{\text{Moments}} = \text{matrix(c(0.1, 0.2, 0.2, 0.5, 0.7, 1.0, 1.5, 0.5, 0.2, 2.0, 2.0,} \\
0.2, 3.4, 4.0, 0.5, 0.9, 0.2, 2.0, 1.5, 0.5) \\
, ncol = 4, byrow = T)
\]

\[
\text{parameter}_{\text{matrix}}_{\text{Moments}}
\]

\[
\text{listMoments} = c('EX', 'EX2', 'EX3', 'EX4', 'EX5', 'EX6', 'SD', 'CV', 'CS', 'CK')
\]
TableMoments = matrix(0, nrow = length(listMoments),
ncol = dim(parameter_matrixMoments)[1])
row.names(TableMoments) = listMoments
TableMoments
for(iter in 1: dim(parameter_matrixMoments)[1]){
 parameter = parameter_matrixMoments[iter,]
 for(i in 1:10){
 TableMoments[i, iter] = EOLW_moments(parameter[1], parameter[2], parameter[3]
 , parameter[4], i)
 }
}

APPLICATION FOR LWL Distribution

rm(list = ls())
library(stats)
library(bbmle)
library(stats)
library(numDeriv)
library('bbmle')
x <- c(5.50, 5.00, 4.90, 6.40, 5.10, 5.20, 5.00, 4.70, 4.00, 4.50, 4.20, 4.10, 4.56, 5.01, 4.70,
3.13, 3.12, 2.68, 2.77, 2.70, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08,
2.13, 3.80, 3.73, 3.71, 3.28, 3.90, 4.00, 3.80, 4.10, 3.90, 4.05, 4.00, 3.95, 4.00, 4.50, 4.50, 4.20,
4.55, 4.65, 4.10, 4.25, 4.30, 4.50, 4.70, 5.15, 4.30, 4.50, 4.90, 5.00, 5.35, 5.15, 5.25, 5.80,
5.85, 5.90, 5.75, 6.25, 6.05, 5.90, 3.60, 4.10, 4.50, 5.30, 4.85, 5.30, 5.45, 5.10, 5.30, 5.20, 5.30,
5.25, 4.75, 4.50, 4.20, 4.00, 4.15, 4.25, 4.30, 3.75, 3.95, 3.51, 4.13, 5.40, 5.00, 2.10, 4.60,
3.20, 2.50, 4.10, 3.50, 3.20, 3.30, 4.60, 4.30, 4.30, 4.50, 4.50, 4.60, 4.90, 4.30, 3.00, 3.40, 3.70,
4.40, 4.90, 4.90, 5.00)
LWL <- function(theta, lambda, alpha, beta){
 - sum(log(theta) - lambda * x - alpha * x^beta + log(((lambda)^2) * (1 + x)) +
 (1 + lambda + lambda * x) * alpha * beta * x^(beta - 1))
 + log((1 - (theta * (1 - ((1 + lambda + lambda * x) * exp((-lambda * x) - (alpha * x^beta))) / (1 + lambda))))^(beta - 1)) - log(1 + lambda)
 - log(-log(1 - theta)))}
GOODNESS OF FIT FOR LWL Distribution

```r
summary(LWL.result)
```

```r
GOODNESS OF FIT FOR LWL Distribution

DATA <- c(5.50, 5.00, 4.90, 6.40, 5.10, 5.20, 5.20, 5.00, 4.70, 4.00, 4.50, 4.20, 4.10, 4.56, 5.01, 4.70, 3.13, 3.12, 2.68, 2.77, 2.70, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04, 2.08, 2.13, 3.80, 3.73, 3.71, 3.28, 3.90, 4.00, 3.80, 4.10, 3.90, 4.05, 4.00, 3.95, 4.00, 4.50, 4.50, 4.20, 4.55, 4.65, 4.10, 4.50, 4.70, 5.15, 4.30, 4.50, 4.90, 5.00, 5.35, 5.15, 5.25, 5.80, 5.85, 5.90, 5.75, 6.25, 6.05, 5.90, 3.60, 4.10, 4.50, 5.30, 4.85, 5.30, 5.45, 5.10, 5.30, 5.20, 5.30, 5.25, 4.75, 4.50, 4.20, 4.00, 4.15, 4.25, 4.30, 3.75, 3.95, 3.51, 4.13, 5.40, 5.00, 2.10, 4.60, 3.20, 2.50, 4.10, 3.50, 3.20, 3.30, 4.60, 4.30, 4.30, 4.50, 5.50, 4.60, 4.90, 4.30, 3.00, 3.40, 3.70, 4.40, 4.90, 4.90, 5.00)

define LWL pdf

```r
LWL_pdf <- function(parameter, x) { alpha = parameter[1] lambda = parameter[2] beta = parameter[3] theta = parameter[4] (theta * exp(-lambda * x - alpha * x^beta)/(1 + lambda)) * ((lambda^2) * (1 + x) + (1 + lambda + lambda * x) * alpha * beta * x^(beta-1)) * ((1 - theta * (1 - (((1 + lambda + lambda * x)/(1 + lambda)) * exp(-lambda * x - alpha * x^beta))))(−1)/(−log(1 - theta))) }
define LWL cdf

```r
LWL_cdf <- function(parameter, x) {
```
Elements of the score vector are given by

\[\frac{\partial \ell_n}{\partial c} = (\delta - 1) \sum_{i=1}^{n} \left(\frac{1 - \left(1 + \frac{\lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1}}{1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} \left(1 + x_i^\alpha \right) + \frac{x_i^\alpha \ln x_i}{1 + x_i^\alpha}} \right) \times \\
\times \left[\frac{\left(1 + \frac{\lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1} \left(1 + \frac{\lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1}}{1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} \left(1 + x_i^\alpha \right) + \frac{x_i^\alpha \ln x_i}{1 + x_i^\alpha}} \right] \\
- \sum_{i=1}^{n} \frac{x_i^\alpha \ln x_i}{1 + x_i^\alpha} + \sum_{i=1}^{n} \left(x_i^\alpha \ln x_i \right) \left(1 + \frac{\lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right) \left(1 + x_i^\alpha \right) \left(x_i^\alpha \ln x_i \right) \left(1 + x_i^\alpha \right) \left(x_i^\alpha \ln x_i \right) \left(1 + x_i^\alpha \right) \left(1 + x_i^\alpha \right) \left(1 + x_i^\alpha \right) , \right)

\[\frac{\partial \ell_n}{\partial \alpha} = (\delta - 1) \sum_{i=1}^{n} \left(\frac{1 - \left(1 + \frac{\lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1}}{1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} \left(1 + x_i^\alpha \right) + \frac{x_i^\alpha \ln x_i}{1 + x_i^\alpha}} \right) \times \\
\times \left[\frac{\left(1 + \frac{\lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1} \left(1 + \frac{\lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1}}{1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} \left(1 + x_i^\alpha \right) + \frac{x_i^\alpha \ln x_i}{1 + x_i^\alpha}} \right] \\
+ \sum_{i=1}^{n} \frac{x_i^\alpha \ln x_i}{1 + x_i^\alpha} + \sum_{i=1}^{n} \left(x_i^\alpha \ln x_i \right) \left(1 + \frac{\lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right) \left(1 + x_i^\alpha \right) \left(x_i^\alpha \ln x_i \right) \left(1 + x_i^\alpha \right) \left(1 + x_i^\alpha \right) \left(1 + x_i^\alpha \right) , \right) \]
\[\frac{\partial \ell}{\partial \lambda} = (\delta - 1) \sum_{i=1}^{n} \left(1 - \left(1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{-\alpha} \right) \left(1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1} + \sum_{i=1}^{n} \frac{e^{-\lambda x_i}}{(1 + x_i^c)} \left(\frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1} - \sum_{i=1}^{n} \frac{n}{1 + \lambda} \]

\[\times \frac{-e^{-\lambda x_i}}{(1 + x_i^c)(1 + \lambda)} \left(\frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha - 1} \left(1 + \lambda + \lambda x_i \right)(x_i) \]

\[+ (\alpha - 1) \sum_{i=1}^{n} \frac{e^{-\lambda x_i}}{(1 + x_i^c)} \left[\frac{(1 + \lambda + \lambda x_i)(1 + \lambda + \lambda x_i)}{(1 + \lambda)} \right] \left[1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right] \left(1 + \lambda + \lambda x_i \right)(x_i) \]

\[+ \sum_{i=1}^{n} \frac{2\lambda x_i + c x_i^{c-1}(1 + x_i)}{(1 + x_i^c)} \left[\lambda^2(1 + x_i) + \frac{(1 + \lambda + \lambda x_i)(c x_i^{c-1})}{(1 + x_i^c)} \right], \]

and

\[\frac{\partial \ell}{\partial \delta} = -\frac{n \Gamma'(\delta)}{\Gamma(\delta)} + \sum_{i=1}^{n} \ln \left(1 - \left(1 - \frac{1 + \lambda + \lambda x_i}{1 + \lambda} e^{-\lambda x_i} \right)^{\alpha} \right) \]

R Code: Pdf plot of GELLLoG

```r
f1=function (x, lambda, c, alpha, delta) {
    y=(1/gamma( delta ))*((-log (1-(1-(((1+lambda+lambda *x )/( (1+ lambda )*(1+x ˆ c ) ) ) ))^alpha ))^(delta-1))*alpha* 
    ((1-(((1+lambda+lambda *x )/( (1+ lambda )*(1+x ˆ c ) ) ) ))^(alpha-1))
    return ( y )
}
x=seq ( 0 , 1.5 , by=0.001)
y1=f1 ( x , 4.0 , 4.0 , 3.8 , 0.8)
plot ( x , y1 , ylim=c(0,3) , col=2 , lty=1, lwd=2, xlab="x" , ylab="density")
y2=f1 ( x , 2.4 , 8.0 , 3.0 , 2.0)
lines ( x , y2 , col=3, lwd=2)
y3=f1 ( x , 4.0 , 1.0 , 0.2 , 2.0)
lines ( x , y3 , col=4, lwd=2)
```
\[y_4 = f_1(x, 8.0, 5.8, 1.2, 5.4) \]

\[\text{lines}(x, y_4, \text{col}=5, \text{lwd}=2) \]

\[y_5 = f_1(x, 1.5, 1, 9.0, 1.0) \]

\[\text{lines}(x, y_5, \text{col}=6, \text{lwd}=2) \]

\[\text{legend}("\text{topright}", \text{c(} \]

\[\text{expression}(\text{paste}(\lambda, '\= 4.0, ', \alpha, '\= 4.0, ', \beta, '\= 3.8, ',', \theta, '\= 0.8'))), \]

\[\text{expression}(\text{paste}(\lambda, '\= 2.4, ', \alpha, '\= 8.0, ', \beta, '\= 3.0, ',', \theta, '\= 2.0'))), \]

\[\text{expression}(\text{paste}(\lambda, '\= 4.0, ', \alpha, '\= 1.0, ', \beta, '\= 0.2, ',', \theta, '\= 2.0'))), \]

\[\text{expression}(\text{paste}(\lambda, '\= 8.0, ', \alpha, '\= 5.8, ', \beta, '\= 1.2, ',', \theta, '\= 5.4'))), \]

\[\text{expression}(\text{paste}(\lambda, '\= 1.5, ', \alpha, '\= 1, ', \beta, '\= 9.0, ',', \theta, '\= 1.0'))) \], \text{col=c}(2, 3, 4, 5, 6), \text{lwd=c}(2, 2, 2, 2)) \]

R Code: Hazard plot of GELLoG

\(f_1 = \text{function}(x, \lambda, c, \alpha, \delta) \{
\)

\[y = ((-\log(1-(1-(((1+\lambda+\lambda*x)/(1+\lambda)*(1+x^c))))^\alpha)/(\lambda^2+(1+x)/(1+x^c)))) \]

\(\text{return}(y) \)

\}

\(x = \text{seq}(0, 1.5, \text{by}=0.001) \)

\(y_1 = f_1(x, 0.4, 3.0, 1.2, 0.6) \)

\(\text{plot}(x, y_1, \text{ylim=c}(0, 3), \text{col}=2, 'l', \text{lwd}=2, \text{xlab}="x", \text{ylab}="h(x)") \)

\(y_2 = f_1(x, 2.4, 8.0, 3.0, 2.0) \)

\(\text{lines}(x, y_2, \text{col}=3, \text{lwd}=2) \)
y3=f1(x,2.0,3.8,0.2,2.0)
lines(x,y3,col=4,lwd=2)
y4=f1(x,8.0,5.8,1.2,5.4)
lines(x,y4,col=5,lwd=2)
y5=f1(x,2.0,2.0,1.8,0.2)
lines(x,y5,col=6,lwd=2)
legend("topright",c(
 expression(paste(lambda,’=0.4,’ ,alpha,’=3.0,’ ,beta,’=1.2,’ ,theta,’=0.6’)),
 expression(paste(lambda,’=2.4,’ ,alpha,’=8.0,’ ,beta,’=3.0,’ ,theta,’=2.0’)),
 expression(paste(lambda,’=2.0,’ ,alpha,’=3.8,’ ,beta,’=0.2,’ ,theta,’=2.0’)),
 expression(paste(lambda,’=8.0,’ ,alpha,’=5.8,’ ,beta,’=1.2,’ ,theta,’=5.4’)),
 expression(paste(lambda,’=2.0,’ ,alpha,’=2.0,’ ,beta,’=1.8,’ ,theta,’=0.2’))))

R Code: Moments and Quantiles of GELLLoG

install.packages("stats4")
install.packages("bbmle")
install.packages("stats")
install.packages("numDeriv")
install.packages("Matrix")
install.packages("zipfR")
install.packages("rootSolve")
library(rootSolve)
library(stats4)
library(bbmle)
library(stats)
library(numDeriv)
library(Matrix)
library(zipfR)
##define pdf GELLLoG
GELLLoG_pdf=function (lambda, c, alpha, delta, x) {
 y=(1/gamma(delta))*((− log (1 −(1 −(((1+lambda+lambda *x)* (exp(−lambda *x))) / ((1 + lambda)*(1+xˆc)))) ^ alpha)) ^ (delta −1)) *
 alpha*(((1−(((1+lambda+lambda *x)* (exp(−lambda *x))) / ((1 + lambda)*(1+xˆc)))) ^ (alpha −1)))
 (((1+xˆc)^−1)*
 (exp(−lambda*x)))/(1+lambda)) *((lambda^2)*
 (1+x)+((1+lambda+lambda*x)*
 (c*x^(c−1))/(1+xˆc)))
 return(y)
}

define cdf GELLLoG
GELLLoG_cdf=function (lambda, c, alpha, delta, x) {
 y=pgamma((− log (1 −(1 −(((1+lambda+lambda *x)* (exp(−lambda *x))) / ((1 + lambda)*(1+xˆc)))) ^ alpha)) , delta) /gamma(delta)
}

define hazard GELLLoG
GELLLoG_hazard=function (lambda, c, alpha, delta) {
 y=(((− log (1 −(1 −(((1+lambda+lambda *x)* (exp(−lambda *x))) / ((1 + lambda)*(1+xˆc)))) ^ alpha)) ^ (delta −1)) *
 alpha*(((1−(((1+lambda+lambda *x)* (exp(−lambda *x))) / ((1 + lambda)*(1+xˆc)))) ^ (alpha −1)))
 (((1+xˆc)^−1)*
 (exp(−lambda*x)))/(1+lambda)) *((gamma(delta)−
 pgamma((− log (1 −(1 −(((1+lambda+lambda *x)* (exp(−lambda *x))) / ((1 + lambda)*(1+xˆc)))) ^ alpha)) , delta))^(−1)
)
}

define GELLoG quantile

GELLLoG.quantile = function(parameter, u) {
 lambda = parameter[1]
 c = parameter[2]
 alpha = parameter[3]
 delta = parameter[4]
 f = function(x) {
 GELLLoG.cdf(lambda, c, alpha, delta, x) - u
 }
 x = min(unroot.all(f, lower = 0, upper = 100, tol = 0.01))
 return(x)
}

GELLLoG_QuantileTable = function(parameter_matrix) {
 u = seq(0.1, 0.9, 0.1)
 size = dim(parameter_matrix)[1]
 Table_Quantile = matrix(NA, nrow = length(u), ncol = size)
 row.names(Table_Quantile) = u
 colnames(Table_Quantile) = apply(parameter_matrix, 1, function(x) {
 paste0('(' , paste0(x, collapse = ',', '), '))
 })
 Table_Quantile
 for (iter in 1:size) {
 parameter = parameter_matrix[iter,]
 for (i in 1:length(u)) {
 Table_Quantile[i, iter] = GELLLoG.quantile(parameter, u[i])
 }
 }
 return(Table_Quantile)
}

table of quantile

parameter_matrix = as.matrix(rbind(
 par1 = c(1.2, 1.2, 1.0, 1.8),
 par2 = c(0.2, 1.5, 2.2, 2.0)
)
par3=c(0.8,1.2,2.0,1.0),
par4=c(2.0,1.0,1.0,2.2),
par5=c(1.0,1.8,2.6,2.0)

GELLLoG_QquantileTable(parameter_matrix)
print(parameter_matrix)
print(GELLLoG_QquantileTable(parameter_matrix))

End of Quantile
End of Quantile
Define pdf GELLLoG

GELLLoG_pdf=function(lambda,c,alpha,delta,x){
y=(1/gamma(delta))*(-log(1-(1-((1+lambda+lambda*x)*
(exp(-lambda*x))/(1+lambda*(1+x^c))))^alpha))^(delta-1)*
alpha*(((1-((1+lambda+lambda*x)*
(exp(-lambda*x))/(1+lambda*(1+x^c))))^(alpha-1))*
(((1+x^c)^(-1))*
(exp(-lambda*x))/(1+lambda)) *((lambda^2)*(1+x)+
((1+lambda+lambda*x)*
(c*x^((c-1))/(1+x^c))))
return(y)
}

GELLLoG_moments=function(lambda,c,alpha,delta,n){
f=function(lambda,c,alpha,delta,n,x){
 (x^n)*(GELLLoG_pdf(lambda,c,alpha,delta,x))
}
y=integrate(f,lower = 0, upper =1,lambda=lambda,c=c,
alpha=alpha,
\[
\frac{\partial \ell_n}{\partial \lambda} = -\sum_{i=1}^{n} x_i - \frac{n}{1 + \lambda} + \sum_{i=1}^{n} \frac{2\lambda(1 + x_i) + \frac{(1+x_i)cx_i^{\lambda-1}}{1+x_i^{\lambda}}}{\lambda^2(1 + x_i) + \frac{(1+\lambda+\lambda x_i)cx_i^{\lambda-1}}{1+x_i^{\lambda}}} \\
+ 2 \sum_{i=1}^{n} \frac{\tilde{\gamma}_i - \frac{\lambda \gamma_i}{(1+\gamma_i)(1+\lambda)^{\gamma_i}}}{(1+\gamma_i)(1+\lambda)^{\gamma_i}} \left[(1 + x_i)(1 + \lambda) - (1 + \lambda + \lambda x_i) \right] \left[1 - \delta \frac{1+\lambda+\lambda x_i}{(1+\lambda)(1+\gamma_i)} e^{-\lambda x_i} \right],
\]
(6.1)
\[
\frac{\partial \ell_n}{\partial c} = -\sum_{i=1}^{n} \frac{x_i \ln(x_i)}{(1 + x_i^c)} + \sum_{i=1}^{n} \frac{c(1+\lambda+\lambda x_i)x_i^{c-1}}{(1+x_i^c)^2} \left[\ln(x_i)\left(1 + x_i^c\right) - x_i^c \ln(x_i) \right] - 2 \sum_{i=1}^{n} \frac{\delta (1+\lambda+\lambda x_i)e^{-\lambda x_i}}{1 - \delta (1+\lambda+\lambda x_i)/\lambda e^{\lambda x_i}} x_i^c \ln(x_i),
\]

(6.2)

and

\[
\frac{\partial \ell_n}{\partial \delta} = \frac{n}{\delta} - 2 \sum_{i=1}^{n} \frac{(1+\lambda+\lambda x_i)e^{-\lambda x_i}}{(1+\lambda+\lambda x_i)/\lambda e^{\lambda x_i}} - \frac{\delta}{1 - \delta (1+\lambda+\lambda x_i)/\lambda e^{\lambda x_i}}.
\]

(6.3)

R Code: Pdf plot of MOLLLoG

```r
f1=function (x, lambda, c, delta) {
  y =(( delta *exp(−lambda *x ) / ( ( 1 + lambda )*(1+x ^ c ) ) )* ( ( lambda ^ 2 )
  *(1+x ) +((1+lambda+lambda *x ) *( c*x ^ ( c −1) ) ) /(1+ x ^ c ) ) )/(1 −(1 − delta )
  *(1+lambda+lambda *x )*exp(−lambda *x ) )/((1+x ^ c )*(1+lambda ) ) )^2
  return ( y )
}
x=seq ( 0 , 1.5 , by=0.001)
y1=f1 ( x , 1.0 , 1.0 , 0.2 )
plot ( x , y1 , ylim=c ( 0 , 3 ) , col=2 , ' l' , lwd=2 , xlab ="x " , ylab =”density “ )
y2=f1 ( x , 0.01 , 3.8 , 10.0 )
lines ( x , y2 , col=3 ,lwd=2)
y3=f1 ( x , 0.2 , 8.4 , 0.6 )
lines ( x , y3 , col=4 ,lwd=2)
y4=f1 ( x , 0.2 , 3.4 , 0.2 )
lines ( x , y4 , col=5 ,lwd=2)
y5=f1 ( x , 0.05 , 8.2 , 0.1 )
lines ( x , y5 , col=6 ,lwd=2)
legend ( " topright " , c ( expression ( paste ( lambda , ’ = 1.0 , ’ , c , ’ = 1.0 , ’ , delta , ’ =0.2 ’ ) ) ,
  expression ( paste ( lambda , ’ =0.01 , ’ , c , ’ =3.8 , ’ , delta , ’ =10.0 ’ ) ) ,
  expression ( paste ( lambda , ’ =0.2 , ’ , c , ’ =8.4 , ’ , delta , ’ =0.6 ’ ) ) ,
  expression ( paste ( lambda , ’ =0.2 , ’ , c , ’ =3.4 , ’ , delta , ’ =0.2 ’ ) ) ) ,
  legend="topright")
```
R Code: Hazard plot of MOLLLoG

```r
f1=function (x, lambda, c, delta) {
  y = ((lambda^2)*(1+x)/(1+lambda+lambda*x)) + ((1+x^c)^(-1))*c*
      (x^(c-1))/(1-(((1-delta)*((1+lambda+lambda*x)/(1+lambda)*
      (1+x^c))*exp(-lambda*x)))
  return(y)
}
x = seq(0, 1.5, by=0.0001)
y1 = f1(x, 3.0, 0.7, 3.4)
plot(x, y1, ylim=c(0, 3), col=2, lty=1, lwd=2, xlab="x", ylab="h(x)")
y3 = f1(x, 0.8, 8.8, 3.0)
lines(x, y3, col=4, lwd=2)

legend("topright", c(
  expression(paste(lambda,'=3.0',',c','=0.7',',delta','=3.4')),
  expression(paste(lambda,'=0.8',',c','=8.8',',delta','=3.0'))
), col=c(2,4), lwd=c(2,2))
y4 = f1(x, 2.0, 1.0, 4.8)
lines(x, y4, col=3, l
```

R Code: Application of MOLLLoG

```r
rm(list=ls())
library(stats4)
library(bbmle)
library(stats)
library(numDeriv)
library('bbmle')
x <- c(13, 16, 20, 22, 22, 25, 32, 45, 49, 59, 64, 70, 88, 8, 89, 93, 95, 10, 112, 116, 122, 147, 150, 151, 177, 179, 190, 204, 207, 221, 233, 240, 245, 247, 264, 267, 272, 283,
```
\[\text{hist}(x) \]

\[\text{MOLLLoG}<- \text{function}(\lambda, c, \delta) \{ \]
\[\quad \text{sum}(\log(((\delta \times \exp(-\lambda \times x)) / ((1 + \lambda) \times (1 + x^c)))) \}
\[\quad \times (1 + x) + ((1 + \lambda + \lambda \times x) \times (c \times x^{(c-1)}) / ((1 + x^c))) / \]
\[\quad ((1 - (\delta \times ((1 + \lambda + \lambda \times x) \times \exp(-\lambda \times x)) / ((1 + x^c) \times (1 + \lambda))))^2) \}
\] \]

\[\text{MOLLLoG. result <- mle2(MOLLLoG.LL, hessian = \text{\texttt{NULL}}, start= \text{\texttt{list}}(\lambda = 1.09, c = 1.0, \delta = 1.0), optimizer = "\text{\texttt{nlminb}}", \text{\texttt{lower}} = 0) \]
\[\text{summary(MOLLLoG.result)} \]

Chapter 5 Appendix

Elements of Score Vector

Elements of the score vector are given by

\[
\frac{\partial \ell_n}{\partial \alpha} = - \sum_{i=1}^{n} x_i^\beta + \sum_{i=1}^{n} \frac{\beta x_i^{\beta-1}}{(1 + x_i^c - 1)x_i^{\alpha x_i^c \beta-1} + 2 \sum_{i=1}^{n} \frac{(1 + x_i^c)^{-1} x_i^\beta \times e^{-\alpha x_i^c}}{1 + (1 + x_i^c)^{-1}e^{-\alpha x_i^c}},} \quad (6.4)
\]

\[
\frac{\partial \ell_n}{\partial c} = - \sum_{i=1}^{n} \frac{x_i^\beta \ln(x_i)}{(1 + x_i^c) + \sum_{i=1}^{n} \frac{x_i^{c-1} + cx_i^{c-1} \times \ln(x_i)}{(1 + x_i^c) - x_i^\beta \ln(x_i)cx_i^{c-1}} \times (1 + x_i^c)^{-1}cx_i^{c-1} + \alpha \beta \times x_i^{\beta-1]}} \times (6.5)
\]

and

\[
\frac{\partial \ell_n}{\partial \beta} = \sum_{i=1}^{n} \frac{\alpha [x_i^{\beta-1} + \beta x_i^{\beta-1} \times \ln(x_i)]}{((1 + x_i^c)^{-1}cx_i^{c-1} + \alpha \beta x_i^{\beta-1])} \times 2 \sum_{i=1}^{n} \frac{(1 + x_i^c)^{-1} x_i^\beta \times e^{-\alpha x_i^c}}{1 + (1 + x_i^c)^{-1}e^{-\alpha x_i^c}}
\]

\[- \frac{\alpha}{1 + (1 + x_i^c)^{-1}e^{-\alpha x_i^c}} \quad (6.6)\]

R Code: Pdf plot of HLLLoGW

\[f1=function(x, alpha, c, beta)\{ \]
\[\quad y=(2*\exp(-alpha*x^beta)*((1+x^c)^(-1))*((((1+x^c)^(-1)))\]
\]
\[c \ast (x^{(c-1)}) + \alpha \ast \beta \ast (x^{(\beta-1)}) \ast \left(1 + (1 + x^c) \ast \exp(-\alpha \ast x^\beta) \right)^{-2} \]

\[\text{return } (y) \]

\[
x = \text{seq}(0, 1.5, \text{by}=0.001)
x1 = f1(x, 2.0, 5.0, 3.2)
\]

\[
\text{plot}(x, y1, \text{ylim} = c(0,3), \text{col}=2, 'l', \text{lwd}=2, \text{xlab} ="x", \text{ylab} = "density")
\]

\[
y2 = f1(x, 1.2, 0.9, 0.6)
y3 = f1(x, 0.1, 5.2, 1.0)
y4 = f1(x, 4.0, 1.0, 1.2)
\]

\[
\text{lines}(x, y2, \text{col}=3, \text{lwd}=2)
y4 = f1(x, 4.0, 1.0, 1.2)
y3 = f1(x, 0.1, 5.2, 1.0)
\]

\[
\text{lines}(x, y3, \text{col}=4, \text{lwd}=2)
\]

\[
\text{lines}(x, y4, \text{col}=5, \text{lwd}=2)
\]

\[
\text{legend("topright", c(}
 \text{expression(paste(alpha, '= 2.0', c, '= 5.0', beta, '= 3.2'))},
 \text{expression(paste(alpha, '= 1.2', c, '= 0.9', beta, '= 0.6'))},
 \text{expression(paste(alpha, '= 0.1', c, '= 5.2', beta, '= 1.0'))},
 \text{expression(paste(alpha, '= 4.0', c, '= 1.0', beta, '= 1.2'))),
 \text{col=c(2,3,4,5), lwd=c(2,2,2))}
\]

\[
\textbf{R Code: Application of HLLLoGW}
\]

```r
###
\text{rm(list=ls())}
\text{library(stats4)}
\text{library(bbmle)}
\text{library(stats)}
\text{library(numDeriv)}
\text{library('bbmle')}
x <- c(0.03, 0.12, 0.22, 0.35, 0.73, 0.79, 1.25, 1.41, 1.52, 1.79, 1.80, 1.94, 2.38, 2.40, 2.87, 2.99, 3.14, 3.17, 4.72, 5.09)
hist(x)

\text{HLLLoGW.LL} <- \text{function(alpha, beta, c) } \{
```
\[-\sum (\log (2 \cdot \exp(-\alpha x^\beta) \cdot ((1+x^c)^{-1}) \cdot (c \cdot x^{(c-1)} + \alpha \beta \cdot x^{(\beta-1)}) \cdot (1+((1+x^c)^{-1}) \cdot \exp(-\alpha x^\beta))^2)) \]

\text{main.result} <- \text{mle2(HLLLoGW.LL, hessian = NULL, start=list(alpha=0.082996, beta=0.008799878, c=19.899827), optimizer="nlminb", lower=0)}

\text{summary(main.result)}

\textbf{R Code: Goodness-of-Fit for HLLLoGW}

\begin{verbatim}
rm(list=ls())
install.packages("stats4")
install.packages("AdequacyModel")
install.packages("bbmle")
install.packages("stats")
library(stats4)
library(AdequacyModel)
library(bbmle)
library(stats)

air <- c(0.03, 0.12, 0.22, 0.35, 0.73, 0.79, 1.25, 1.41, 1.52, 1.79, 1.80, 1.94, 2.38, 2.40, 2.87, 2.99, 3.14, 3.17, 4.72, 5.09)

define HLLLoGW pdf
HLLLoGW.pdf <- function(parameter, x){
 alpha=parameter[1]
 beta=parameter[2]
 c=parameter[3]
 2*exp(-alpha*x^beta)*((1+x^c)^(-1))*((1+x^c)^(-1))*c*(x^(c-1))
 + alpha*beta*(x^(beta-1))*(1+((1+x^c)^(-1))*exp(-alpha*x^beta))*(1+((1+x^c)^(-1))*exp(-alpha*x^beta))^(-2)
}

define HLLLoGW cdf
\end{verbatim}
HLLLoGW.cdf <- function (parameter, x) {
 alpha = parameter[1]
 beta = parameter[2]
 c = parameter[3]
 (1 - ((1 + x^c)^(-1)) * exp(-alpha * x^beta)) / (1 + ((1 + x^c)^(-1)) * exp(-alpha * x^beta))
}

goodness.fit (pdf = HLLLoGW.pdf, cdf = HLLLoGW.cdf, mle = c(0.061398, 2.405721, 0.822303), data = air, method = "BFGS", domain = c(0, 100), lim.inf = c(0, 0, 0, 0), lim.sup = c(100, 100, 100, 100))