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Abstract

In this thesis, we use the theory of minimal Sullivan models in rational homotopy theory to

study the partial computation of the Lie bracket structure of the string homology on a for-

mal elliptic space. In the process, we show the total space of the unit sphere tangent bundle

S2m−1 → E
p→ Gk,n(C) over complex Grassmannian manifolds Gk,n(C) for 2 ≤ k ≤ n/2,

where m = k(n− k) is not formal. This is done by exhibiting a non trivial Massey triple

product. On the other hand, let φ : (∧V,d)→ (B,d) be a surjective morphism between com-

mutative differential graded algebras, where V is finite dimensional, and consider (B,d) a

module over∧V via the mapping φ. We show that the Hochschild cohomology HH∗(∧V ;B)

can be computed in terms of the graded vector space of positive φ-derivations.

Given a Koszul Sullivan extension (∧V,d)
f
↣ (∧V ⊗∧W,d) = (C,d), we show that if

(∧V,d) is an elliptic 2-stage Postnikov tower Sullivan algebra, and if the natural homo-

morphism of the differential graded algebras (C,d)→ (∧W, d̄) is surjective in homology,

then the natural graded linear map HH∗( f ) : HH∗(∧V ;∧V )→ HH∗(∧V ;C), induced in

Hochschild cohomology by the inclusion (∧V,d)
f
↣ (C,d), is injective. In particular, if X

is an elliptic 2-stage Postnikov tower, and (∧V,d) is the minimal Sullivan model of X , then

HH∗( f ) : H∗(XS1
;Q)→ HH∗(∧V ;C) is injective, where XS1

is the space of free loops on

X , and H∗(XS1
;Q) is the loop space homology.
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1 Introduction

1.1 Rational homotopy theory

We begin by reviewing some basic facts of rational homotopy and notations that will be

used throughout. After that, we continue reviewing some topics that are more specific to

this work. We also state problems and significance of the study.

In this thesis, all topological spaces should be of the rational homotopy type of simply con-

nected CW-complexes of finite type. One of the main problems in topology is to understand

when two topological spaces X and Y are similar or dissimilar. Intuitively, two topological

spaces X and Y are similar if there are continuous maps f : X ⇆ Y : g such that both com-

positions are equal to the identities. In other words, f is an homeomorphism. The problem

then is to describe the equivalence classes of spaces under homeomorphism, which is re-

ferred to as a classification problem (see (Gallier & Quaintance, 2016)). Classification of

all topological spaces or continuous maps between them is a very difficult task (Dieudonné,

1989; Gallier & Quaintance, 2016). However, the reaction to this fundamental difficulty

was the creation of algebraic topology, whose main role is to associate “algebraic invari-

ants”to different types of spaces, so that homeomorphic spaces have “isomorphic”algebraic

invariants. If two spaces X and Y happen to have some different algebraic invariant objects,

then they are not homeomorphic. Typical examples of such algebraic invariants are the

singular homology groups Hi(X) and cohomology groups which are abelian groups aris-
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ing from a possibly infinite sequence called a chain complex that is built from singular

chains and cochains, and the homotopy groups πn(X). Of interest are the homotopy groups

of spheres πn(Sk). Despite their well-known definition, the groups πn(Sk) are not easy to

compute and most of them are still unknown. Although they are hard to compute, these

algebraic invariants provide an accurate and deep understanding of the geometric and ana-

lytic behavior of topological spaces and the continuous maps between them. For example,

the notion of a fibration where one of the main properties is the long exact sequence of

homotopy groups which relates homotopy groups of different topological spaces.

On the other hand, in the rational homotopy setting, the computations of these algebraic

invariants are simplified. The coarser rational homotopical classification is somewhat eas-

ier. According to (Félix, Halperin, & Thomas, 2001), rational homotopy theory is the study

of algebraic invariants and properties of topological spaces X and continuous maps f that

depend only on the rational homotopy type of the space and the homotopy class of the map.

That is, one studies topological spaces with rational homotopy equivalences. Hence, the

equivalent spaces will have equal algebraic invariants.

In this paragraph we recall some useful definitions and notations on continuous mappings.

Let I denote the unit interval [0,1]. Given two maps f ,g : X → Y, they are said to be ho-

motopic, denoted by f ≃ g if there is a continuous map that is referred to as a homotopy

H : X × I → Y such that H(x,0) = f (x) and H(x,1) = g(x). Basically, a homotopy is a

continuous one-parameter family of maps from X to Y. That is, we imagine a parameter t
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as representing time, then f deforms continuously into g, as t goes from zero to one. A map

f : X → Y is a homotopy equivalence if it has a homotopy inverse h, that is, if h◦ f ≃ idX

and f ◦h≃ idY . A map f is said to be null-homotopic if it is homotopic to a constant map,

f ≃ c. A space X is contractible if it is homotopy equivalent to a point, that is, if the re-

traction X → ∗ is homotopic to the identity. The fundamental group π1(X ,x0) is the group

of homotopy classes of paths γ from I→ X such that γ(0) = γ(1) = x0. Given points x and

y of the space X , a path in X from x to y is a continuous map f : I→ X such that f (0) = x

and f (1) = y. A space X is said to be path-connected if every pair of points of X can be

joined by a path in X . A space X is said to be simply connected if it is a path-connected

space and if π1(X ,x0) = 0, for every x0 ∈ X . The free path space of a topological space X

is the mapping space PX = {γ : I→ X}. The based path space of a based space (X ,x0) is

the mapping space P∗X = {γ : I→ X : γ(0) = x0} of paths in X that start at the base point.

Let S1 = R/Z and let X be a topological space with basepoint x0. The based loop space is

ΩX = {γ : S1→ X : γ continuous, γ(1) = x0}, and the free loop space of X is the mapping

space XS1
= {γ : S1 → X}. If f : X → Y is a map between topological spaces, then the

space of mappings from X to Y is denoted by map(X ,Y ), and the component of f in the

space of mappings from X to Y is denoted by map(X ,Y ; f ). In the case where X and Y have

basepoints, then the associated mapping space is map∗(X ,Y ).

Now that the notation has been established, we shall continue with the classical algebraic

invariants, but instead of considering Hi(X) and πn(X), n ≥ 2, we consider the rational
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homology groups Hi(X ;Q) (and cohomology groups) and the rational homotopy groups

πn(X)⊗Q. These groups are Q-vector spaces and they contain no torsion information.

This disadvantage of losing some information is compensated by the fact that these alge-

braic invariants are easier to compute. The first steps towards this theory date back to the

work of Serre in the 1950s when he successfully computed the torsion-free part of πn(Sk)

for all n and k (Serre, 1953). The results were remarkably easy and structured. The fact that

the rational homotopy groups of spheres are so easy to compute led other mathematicians

to believe that there could be a simpler, more explicit, and more complete description for

all of the rational homotopy theory. The first success stories are the discoveries by Quillen

(1969) and D. Sullivan (1977) that associate to a simply connected CW-complex X of fi-

nite type an explicit algebraic model. This gave computational power to rational homotopy

theory. Sullivan algebras and models make the computational approach to rational homo-

topy theory effective, wherein the rational homotopy type of a simply connected space is

identified with minimal Sullivan models. More precisely, if (∧V,d) is a Sullivan model for

a space X then we have an isomorphism of graded algebras H∗(∧V,d) ∼= H∗(X ;Q) (Félix

et al., 2001, §Introduction). The theory of Sullivan algebras and models is the main subject

of this thesis.
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1.1.1 Formality and fibrations

Here we state the notion of formality and study the lifting problem of a map to lead into

the concept of a fibration.

Definition 1.1.2. (Félix, Oprea, & Tanré, 2008a) A simply connected space X of finite

type over Q is called formal if there is a quasi-isomorphism (∧V,d)→ H∗(∧V,d), where

(∧V,d) is the minimal Sullivan model of X .

Examples of formal spaces include spheres, projective complex spaces, homogeneous

spaces G/H where G and H have the same rank and compact Kähler manifolds (see (D. Sul-

livan, 1977)).

Definition 1.1.3. (Félix et al., 2008a) Let (A,d) be a commutative differential graded alge-

bra (cdga for short) with cohomology H∗(A,d). Let a, b, and c be cohomology classes in

H∗(A,d) whose products a ·b = b ·c = 0. Choose cocycles x, y and z representing a, b and c

respectively. Then there are elements v and w such that dv = xy and dw = yz. The element

vz− (−1)|x|xw is a cocycle whose cohomology class depends on the choice of v and w. The

set ⟨a,b,c⟩ of all cohomology classes vz− (−1)|x|xw is called the triple Massey product of

a, b and c. The triple Massey product is trivial if 0∈ ⟨a,b,c⟩. Let I be the ideal generated by

a and c in H∗(A,d). The set ⟨a,b,c⟩ projects to a single element in H∗(A,d)/I. Moreover,

this element is zero if and only if the triple Massey product is trivial.

Theorem 1.1.4. (Félix et al., 2008a) If X has a non-trivial triple Massey product then X is
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not formal.

The definition of a fibration begins from an important problem of algebraic topology

called the lifting problem.

Definition 1.1.5. Suppose that p : E→ B and f : X→ B are maps and there is a continuous

map f0 : X → E such that p f0 = f

E
p
��

X
f
//

f0
??

B

then we say that f can be lifted to E and we call f0 a lifting of f .

Definition 1.1.6. Suppose that p : E → B is a map. Then p is said to have the homotopy

lifting property with respect to a space X if given maps g0 : X×{0}→ E and F : X× I→ B

such that F(x,0) = p(g0(x)) for x ∈ X , then there is a map G : X × I→ E with G(x,0) =

g0(x) for x ∈ X and pG = F where I is the unit interval [0,1].

The commutative diagram below visualizes this situation.

X×0
g0 //

� _

��

E
p
��

X× I
F

//

G
<<

B

We are now in a position to define a fibration.

Definition 1.1.7. A map p : E→ B is called a fibration if p has the homotopy lifting prop-
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erty with respect to every space X . The fibration is sometimes called Hurewicz fibration.

Furthermore, if the mapping p has the homotopy lifting property with respect to CW -

complexes then it is called Serre fibration. Here E is the total space and B is the base

space of the fibration p.

In the sequel, a fibration will mean a Serre fibration.

Definition 1.1.8. If p : E→ B is a fibration then for b ∈ B, p−1(b) is the fibre of p over b.

Example 1.1.9. Let p : B×F→ B be the projection. Then p is the canonical example of a

fibration, called the trivial fibration.

Example 1.1.10. (Félix et al., 2008a, Page 79) Define p : P∗X → X by p(γ) = γ(1). It is a

fibration of fibre ΩX that is called the path space fibration.

Definition 1.1.11. Suppose f : X → B is a continuous map and p : E→ B a fibration. The

pullback of p over f is defined by letting E f be the set {(x,y) ∈ X ×E : f (x) = p(y)}.

Projection maps of E f give the following diagram

E f //

p f
��

E
p
��

X
f
// B

If α : Z→ X , and β : Z→ E are such that f ◦α = p◦β, there is a unique map γ : Z→ E f

such that all triangles and squares in the diagram below commute.
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Z
γ

��

β

""
α

��

E f

p f
��

q
// E
p
��

X
f // B

Proposition 1.1.12. (Félix et al., 2001, Page 24) The induced map p f : E f → X is a fibra-

tion.

Definition 1.1.13. (McCleary, 2001, Page 148) A fibration X i→ E
p→ B is said to be totally

non cohomologous to zero (TNCZ for short) if the induced map in rational cohomology

H∗(i) : H∗(E;Q)→H∗(X ;Q) is surjective. It is equivalent to the fact that the Serre spectral

sequence (Er,dr) collapses at the E2-level, i.e., H∗(E;Q)∼=H∗(B;Q)⊗H∗(X ;Q) as graded

vector spaces. Moreover, H∗(p) : H∗(B;Q)→ H∗(E;Q) is injective. If p is trivial then

H∗(E;Q) ∼= H∗(B;Q)⊗H∗(X ;Q) as an algebra and H∗(i) is the projection on the second

factor, hence H∗(i) is surjective. The TNCZ condition is a way of expressing that a fibration

is close to being trivial.

1.1.14 Free loop space homology

The main point of this section - and of this thesis - is the free loop space XS1
= map(S1,X).

Free loop spaces are certainly not as popular, but it has become increasingly clear over the

recent years, following the seminal work of Chas and Sullivan (1999), that they play a vital

role in rational homotopy theory with a viewpoint to string topology, a field of research
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that uses most of the modern techniques of algebraic topology and relates them to several

other areas of mathematics influenced by theoretical physics (see (Cohen & Voronov, 2005;

Roger, 2009)).

Let X be a closed, simply connected manifold of dimension m and map(S1,X) the space

of free loops on X . The loop space homology of X denoted by H∗(XS1
) is the ordinary

homology of XS1
with a shift of degrees by m, i.e., H∗(XS1

) = H∗+m(XS1
) equipped with an

associative and graded commutative product µ : Hp(XS1
)⊗Hq(XS1

)→Hp+q(XS1
), called

loop product (Chas & Sullivan, 1999). In addition, the action of S1 on XS1
by rotation, ϕ :

S1×XS1 → XS1
, (θ,γ(·)) 7→ γ(·+θ) also induces an operator of degree +1, ∆ : Hp(XS1

)→

Hp+1(XS1
), ∆([u]) = ϕ∗([S1]⊗ [u]).

In their seminal paper, Chas and Sullivan (1999) discovered a wealth of structure on the

shifted homology H∗(XS1
) = H∗+m(XS1

). They showed that the loop product together with

∆ makes H∗(XS1
) = H∗+m(XS1

) a Batalin-Vilkovsky algebra (BV algebra for short). In

particular H∗(XS1
) is a Gerstenhaber algebra. On the other hand, if A is a differential graded

algebra, then the Hochschild cohomology of A, denoted by HH∗(A;A), is a Gerstenhaber

algebra (Gerstenhaber, 1963). Cohen and Jones (2002) showed that, when coefficients

are taken in a field k, there is an isomorphism of graded vector spaces Φ : H∗(XS1
)→

HH∗(C∗X ;C∗X), where C∗X is the algebra of singular cochains of X . In Félix, Thomas,

and Vigué (2004); Félix and Thomas (2008); Félix, Thomas, and Vigué (2008), the authors

showed that Φ is an isomorphism of Gerstenhaber algebras when X is simply connected
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CW-complex of finite type and k = Q. Furthermore, Félix and Thomas (2008) showed

that Φ is an isomorphism of BV-algebras. If (∧V,d) is the minimal Sullivan model of X ,

then there is an isomorphism of Gerstenhaber algebras (Félix, Menichi, & Thomas, 2005)

HH∗(C∗X ;C∗X)∼= HH∗(∧V ;∧V ).

1.2 Statement of Problem

In this section, we give brief introductions of the minor problems and the main problem of

study in this thesis.

1.2.1 On unit sphere tangent bundle over complex Grassmannians

Here we state our first minor problem on the formality of the total space of the unit sphere

tangent bundle over complex Grassmannian manifolds.

Let Gk,n(C) denote the complex Grassmann manifold of k-dimensional vector subspaces

of Cn. In (Banyaga, Gatsinzi, & Massamba, 2018), it has been shown that for k = 1, which

corresponds to the complex projective space CP(n), the total space of its unit sphere tangent

bundle is formal. We show that this result is no longer true when 2≤ k ≤ n/2.

1.2.2 Hochschild cohomology of a Sullivan model of mapping spaces

Here we state our second minor problem on the Hochschild cohomology of a Sullivan

model of mapping spaces.

Let f : X → Y be a continuous map between simply connected CW-complexes of finite
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type, and φ : (∧V,d)→ (B,d) a surjective Sullivan model of f . In (Gatsinzi, 2010), it has

been shown that there is an isomorphism HH∗(∧V ;∧V )∼=H∗(∧∧V (s−1 Der∧V ),d′), where

s−1 Der∧V is the desuspended differential graded Lie algebra of derivations of (∧V,d). If

V is finite dimensional, we show that HH∗(∧V ;B) can be computed in terms of the graded

vector space Der(∧V,B;φ) of positive φ-derivations.

1.2.3 Loop space homology of elliptic spaces

Here we state our main problem on the loop space homology of elliptic spaces.

Let (∧V,d) be a Sullivan algebra. The Hochschild cohomology space HH∗(∧V ;∧V ) has

the well-known cup product operations under which it is a graded commutative algebra, and

a graded Lie bracket making it a graded Lie algebra of degree -1. These turn HH∗(∧V ;∧V )

into a Gerstenhaber algebra (Gerstenhaber, 1963). On the other hand, let X be a closed,

simply connected manifold of dimension m and XS1
the space of free loops on X . If (∧V,d)

is the minimal Sullivan model of X where V is finite dimensional, then there is an isomor-

phism of Gerstenhaber algebras H∗(XS1
;Q)→ HH∗(∧V ;∧V ) (Gatsinzi, 2016). In addi-

tion, let (∧V,d)
f
↣ (C,d) be a morphism of cdga’s. Then C is considered as a ∧V -module

by the action induced by f . One would like to understand the structure of HH∗(∧V ;∧V )

as a graded vector space, as a ring, and as a graded Lie algebra, and also the structure of

HH∗(∧V ;C). In turn, such information about cohomology sheds light on the structure of

the algebra ∧V itself and on its bimodules C. Therefore, under some assumptions, we show
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that there is an injective natural graded linear map HH∗( f ) between the Hochschild coho-

mologies HH∗(∧V ;∧V ) and HH∗(∧V ;C).

Moreover, if XS1

Y is the pullback of the fibration p : XS1 → X , where p(γ) = γ(0) along the

inclusion Y ↣ X , as shown in the diagram below;

XS1

Y
//

��

XS1

p
��

Y // X ,

then we get a morphism of algebras (Félix et al., 2004)

H∗(XS1
)
∼=→ HH∗(C∗X ;C∗X)→ HH∗(C∗X ;C∗Y )

∼=→H∗(XS1

Y ).

Let h : Y → X be a map between simply connected spaces and f a cdga model of h. The

computation of HH∗(∧V ;C) and the study of HH∗(∧V ;∧V )→ HH∗(∧V ;C) is a tool to

understand the morphism H∗(XS1
)→H∗(XS1

Y ).

1.3 Significance of the Study

The result on unit tangent sphere bundles over complex Grassmannians together with the

result shown by (Banyaga et al., 2018) completes the study of the formality of the total

spaces of the unit sphere tangent bundles over complex Grassmann manifolds. The result

on the Hochschild cohomology of a Sullivan model of mapping spaces will be useful for

13



computations for homotopy theorists in general and rational homotopy theorists in partic-

ular. In addition, the result on the natural graded linear map induced in the Hochschild

cohomology by a certain Koszul-Sullivan extension is interesting and it should have appli-

cations in rational homotopy theory from a string topology perspective. The study mainly

acknowledges the developments and applications of algebraic models to geometry in gen-

eral, and this has been an important goal in algebraic topology in recent years.
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2 Literature review

We begin this chapter with a review of basic definitions and notations. We refer to (Félix

et al., 2001, 2008a) for details.

2.1 Basic Definitions and Notations

In this section, all vector spaces and algebras are taken over the field Q of rational numbers.

Definition 2.1.1. A lower or homologically graded vector space V is a direct sum of vector

spaces, that is, V = ⊕iVi, where i ∈ Z. If V = ⊕i≥0Vi, then we say V is non negatively

graded. Likewise, V • = ⊕iV i is called cohomologically graded. The elements of V i are

homogeneous elements of degree i and we write |x|= i if x ∈V i. We say V is of finite type

if each V i is finite dimensional. We use the standard convention V i :=V−i.

Definition 2.1.2. The suspension sV of the graded vector space V is the graded vector space

defined by (sV )n =V n+1 or (sV )n =Vn−1 for all n.

Definition 2.1.3. A graded algebra A is a sum A = ⊕
i≥0

Ai together with a graded multipli-

cation Ai⊗A j→ Ai+ j such that x⊗ y 7→ xy and has 1 ∈ A0. It is graded commutative if for

any homogeneous elements x and y,

xy = (−1)|x||y|yx.

15



If A is a graded algebra equipped with a linear differential map d : An → An+1 such that

d ◦d = 0 and

d(xy) = (dx)y+(−1)|x|x(dy),

then (A,d) is called a differential graded algebra and d is called a differential. Moreover,

if A is also a graded commutative algebra, then (A,d) is a commutative differential graded

algebra. It is said to be connected if A0 ∼=Q.

Definition 2.1.4. Let A be a graded algebra. A (left) A-module M is a sum M = ⊕
i≥0

Mi,

where Mi is a vector space, together with an action Ai⊗M j→Mi+ j, x⊗m 7→ xm, such that

x(ym)= (xy)m and 1m=m for all x,y∈A and m∈M. Analogously, M is a (right) A-module

if the associative multiplication Mi⊗A j → Mi+ j, m⊗ x 7→ mx, satisfies (mx)y = m(xy).

Moreover, if x(my) = (xm)y, then M is an A-bimodule.

Example 2.1.5. If V = ⊕
i
V i is a graded vector space, then the tensor algebra T (V ) =

⊕n≥0T n(V ) defined by setting T n(V ) = V ⊗·· ·⊗V for n ≥ 1 factors and T 0(V ) = Q is a

graded algebra.

Definition 2.1.6. A free commutative graded algebra A is the quotient of the tensor al-

gebra T (V ) on the graded vector space V by the ideal generated by the elements x⊗ y−

(−1)|x||y|y⊗ x where x and y are the homogeneous elements of T (V ).

Definition 2.1.7. A morphism of differential graded algebras f : (A,d)→ (B,d) is a family

of linear maps f : An → Bn such that f d = d f and f (ab) = f (a) f (b). It induces a mor-
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phism H∗( f ) : H∗(A)→ H∗(B) of graded algebras, where H(A) is the homology algebra

H(A,d) = kerd/ Imd of the differential graded algebra (A,d).

Definition 2.1.8. A (left) module M over a differential graded algebra (A,d) is an (A,d)-

module M equipped with a linear differential map d : Mn→Mn+1 with d ◦d = 0 and

d(xm) = (dx)m+(−1)|x|x(dm),

for x ∈ A and m ∈M. If f : (A,d)→ (B,d) is a morphism of differential graded algebras,

and (M,d) is a differential (B,d)-module, then (M,d) is an (A,d)-module via the action

induced by f . That is, if we define a ·m = f (a) ·m for all a ∈ A and m ∈M, we obtain an

(A,d)-module structure on (M,d).

Let A be a commutative graded algebra and M a Z-graded A-module. Denote by

TA(M) the A-tensor algebra. The symmetric algebra ∧AM is the commutative graded al-

gebra obtained as the quotient of TA(M) by the ideal generated by elements of the form

x⊗ y− (−1)|x||y|y⊗ x, where x,y ∈ TA(M) are homogeneous elements. The symmetric

product induces a graded commutative algebra structure on ∧A(M). Moreover, if Z is a

Q-vector space, then there is a canonical isomorphism of commutative graded algebras

Φ : ∧A(A⊗Z)→ A⊗∧QZ.

Definition 2.1.9. Let (A,d) be a differential graded algebra. A differential graded module
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(M,d) over (A,d) is said to be free if it is free as an A-module, and the basis is made up of

cycles.

Definition 2.1.10. A differential (A,d)-module (M,d) is said to be semi-free if there is a

filtration F0M ⊂ F1M ⊂ ·· · ⊂M such that each FiM/(Fi−1M) is free on a basis of cycles.

Definition 2.1.11. A graded Lie algebra is a graded vector space L =⊕
i
Li, i ∈ Z equipped

with a bilinear map

[−,−] : Li⊗L j→ Li+ j

such that

(1) [x,y] =−(−1)|x||y|[y,x], (antisymmetry).

(2) (−1)|x||z|[x, [y,z]]+ (−1)|z||y|[z, [x,y]]+ (−1)|x||y|[y, [z,x]] = 0, (Jacobi identity).

Example 2.1.12. (D. Sullivan, 1977) π∗(ΩX)⊗Q endowed with the Samelson product is

a graded Lie algebra.

Definition 2.1.13. Let L be a graded Lie algebra. If L is equipped with a linear map

δ : Li→ Li−1 such that δ◦δ = 0, then (L,δ) is called a differential graded Lie algebra.

Definition 2.1.14. The cohomology ring of a topological space is usually defined by means

of the chain complex generated by singular k-simplices ∆k → X . Recall that a singular k-
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simplex in a space X is a continuous map ∆k→ X , where k ≥ 0 and

∆k =
{

x = (x0,x1,x2, . . . ,xk) ∈ Rk+1 : xi ≥ 0 and ∑xi = 1
}

= {∑xivi,xi ≥ 0 and ∑xi = 1} ,

where v0 = (1,0, . . . ,0),v1 = (0,1,0, . . . ,0), . . . ,vk = (0,0, . . . ,1) are the vertices of ∆k.

Moreover, ∆k is simply written as [v0, . . . ,vk].

Let Sk(X) for k ≥ 0 be the set of singular k-simplices on a space X . Denote by CSk(X ;Q),

the free Q-module with basis Sk(X), and the singular chain complex of X is the chain

complex CS∗(X ;Q) = ⊕k≥0CSk(X ;Q), with differential d = ∑i(−1)i∂i. The set maps ∂i :

CSk(X ;Q)→CSk−1(X ;Q) and δi : CSk(X ;Q)→CSk+1(X ;Q) are called the face and de-

generacy maps (see (Félix et al., 2001, §4)). Let DSk+1(X ;Q) be the submodule of CSk+1(X ;Q)

spanned by degenerate singular k-simplices. Since DS∗(X ;Q) is a subcochain complex of

CS∗(X ;Q) and H(DS∗(X ;Q)) = 0 (see (Félix et al., 2001, §4)). Then, the quotient chain

complex

C∗(X ;Q) =CS∗(X ;Q)/DS∗(X ;Q)

is called the normalised singular chain complex of X . Its homology, denoted H∗(X ;Q),

is the singular homology of X with Q-coefficients. In particular, the normalised singular

cochain complex of a topological space X is the cochain complex

C∗(X ;Q) = Hom(C∗(X ;Q),Q),

19



where for f ∈ Ck(X ;Q), then Ck(X ;Q) = Hom(Ck(X ;Q),Q) and d f = −(−1)| f | f d. Its

cohomology, denoted as H∗(X ;Q) is known as the singular cohomology of X with coeffi-

cients in Q. It turns out that it is a graded ring with respect to the well-known cup product

operations, and it is called the cohomology ring of the topological space X .

The algebra C∗(X ;Q) is almost never commutative, since the singular cochains over Q are

not commutative. However, since Q is a field of characteristic zero, it turns out that we

may replace C∗(X ;Q) by a genuinely commutative cochain algebra in which all torsion

and divisibility phenomena have been removed, allowing one to focus on the rational in-

formation in the original space (Griffiths & Morgan, 1981; Félix et al., 2001, §1 and §10).

More precisely, there is a naturally defined commutative cochain algebra APL(X) of rational

polynomial differential forms on X and natural cochain algebra quasi-isomorphisms

C∗(X ;Q)
≃→ D(X)

≃← APL(X ;Q),

where D(X) is a third natural commutative cochain algebra. Thus, C∗(X ;Q) is homo-

topy commutative, and there is a natural isomorphism of graded algebras H∗(X ;Q) =

H∗(APL(X ;Q)).
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2.2 Review of current status of research problems

In this section, we give reviews of the current status of our research problems. We begin

with two minor problems and the main problem.

2.2.1 Sphere bundles over Kähler manifolds

Here we review our first minor problem based on unit sphere bundles over Kähler mani-

folds studied in (Banyaga et al., 2018).

The authors consider the sphere bundle S2m−1→ E → X2m, where the base X is a Kähler

manifold and determine a suitable condition on X to make the total space E formal. Thus,

it is shown that the sphere bundle over the complex projective space CP(n) = G1,n+1(C) is

formal. We also mention here that there is much of work in the literature on formality or

non-formality relations amongst spaces involved in a fibration sequence (see for example,

(Blair, 2010; Biswas, Fernández, Muñoz, & Tralle, 2016; Boyer & Galicki, 2008; Hajduk

& Tralle, 2014; Hatakeyama, 1963; Muñoz & Tralle, 2015; Tievsky, 2008)). However,

according to the result of (Banyaga et al., 2018), the case on the unit sphere tangent bundle

S2m−1 → E → Gk,n(C), for 2 ≤ k ≤ n/2, is not known. Here m = k(n− k). Therefore,

we study the case for 2≤ k ≤ n/2. On one hand, since complex Grassmann manifolds are

symplectic manifolds, and Kähler manifolds are the well-known example of symplectic

manifolds. For a more general result, one can use the same approach to study the formal-

ity of the unit sphere bundle over Kähler manifolds with non-monogenic cohomology in
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place of the complex Grassmann manifolds. Thus, our study provides another addition to

the already existing results on formality relations amongst spaces involved in a fibration

sequence.

Remark 2.2.2. Following the result of (Banyaga et al., 2018), we might expect to do more

by considering the following cases:

(i) Is it possible to indicate more general results or more general classes of space like

complex flag manifolds, or maybe products of complex projective spaces, in place of

complex Grassmann manifolds for which the same approach might work?

(ii) Are there any kinds of spaces that the current approach does not work for?

2.2.3 Hochschild cohomology of Sullivan algebras and mapping spaces

Here we review our second minor problem based on Hochschild cohomology of Sullivan

algebras and mapping spaces studied in (Gatsinzi, 2019).

Let f : X → Y be a map between simply connected CW-complexes of finite type, where

H∗(Y ;Q) is finite dimensional and φ : (∧V,d)→ (B,d) a Sullivan model of f , with (B,d) as

a module over∧V via the mapping φ. In (Gatsinzi, 2019), it was shown that there is a canon-

ical injection π∗(Ωmap(X ,Y ; f ))⊗Q→ HH∗(∧V ;B). In addition, π∗(Ωmap(X ,Y ; f ))⊗

Q→ H∗(s−1 Der(∧V,B;φ)) is an isomorphism. The result is a generalization of the in-

clusion π∗(Ωmap(X ,X ;1X))⊗Q→HH∗(∧V ;∧V ) (see (Félix & Thomas, 2004, Theorem

2) and (Gatsinzi, 2013, Theorem 1.1)). However, to our knowledge, it is not known in
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the literature whether the injection H∗(s−1 Der(∧V,B;φ))→ HH∗(∧V ;B) extends to an

isomorphism of graded commutative algebras H∗(Ψ) : H∗(∧∧V s−1 Der(∧V,B;φ),d0) →

HH∗(∧V ;B). It turns out that this happens when φ is surjective. More precisely, we show

that if φ is surjective, then the Hochschild cohomology HH∗(∧V ;B) can be computed in

terms of the graded vector space of positive φ-derivations.

Remark 2.2.4. (i) Here we illustrate the reason why φ surjective works. The neces-

sity of φ being surjective is shown by the following counterexample. Let φ : ∧V =

(∧x3,0) → (∧(y3,y7),0) = B, where φ(x3) = y3. This is a Sullivan model of the

projection S3× S7 p→ S3. As all differentials are zero HH∗(∧V ;B) ∼= Hom∧V (∧V ⊗

∧sV,B). Moreover, s−1 Der(∧V,B;φ)=< s−1(x3,1)>=< z2 >, and∧∧V s−1 Der(∧V,

B;φ) ∼= ∧x3⊗∧z2. This implies that ImΨ ∼= Hom∧V (∧V ⊗∧sV,∧y3). Hence, Ψ is

not surjective.

(ii) On the other hand, let φ : (∧V,d)→ (B,d) is a surjective morphism between cdga’s

where V finite dimensional and I = kerφ. Then, we do not know if the isomorphism

s−1 Der(∧V,B;φ)∼= (∧V/I)⊗ s−1V ∗ extends into an isomorphism of cdga’s

(∧∧V s−1 Der(∧V,B;φ),d0)→ ((∧V/I)⊗∧s−1V ∗,d1),

where V ∗ = Hom(V,Q) denotes the dual space of V.
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2.2.5 Rational string topology

Here we review our main problem based on Hochschild cohomology of a Sullivan algebra

studied in (Félix et al., 2005; Gatsinzi, 2010).

The cohomology theory of algebras associated to a space X was introduced by Hochschild

(1945) as a tool for studying the homological properties of algebras. The right setup for

this is the language of algebraic deformation theory, which is governed by the Hochschild

cohomology as a graded Lie algebra under the Gerstenhaber bracket. Therefore, the first

step towards understanding an algebra’s deformation theory begins with a depiction of the

Gerstenhaber bracket (Shepler & Witherspoon, 2012).

Recall that if (∧V,d) is the minimal Sullivan model of X , then there is an isomorphism

of Gerstenhaber algebras (Félix et al., 2005) HH∗(C∗X ;C∗X) ∼= HH∗(∧V ;∧V ). Hence,

H∗(XS1
) can be computed in terms of (∧V,d). In Gatsinzi (2010), if (∧V,d) is the min-

imal Sullivan model of X where V is finite dimensional, then the Gerstenhaber struc-

ture of HH∗(∧V ;∧V ) can be computed in terms of derivations of (∧V,d). Moreover, if

V is finite dimensional, then HH∗(∧V ;∧V ) is the homology of a Gerstenhaber algebra

(∧V ⊗∧s−1V ∗,d), where V ∗ is a positively lower graded dual of V, and it is isomorphic

to the loop space homology H∗(XS1
) (Gatsinzi, 2016). Hence, there are isomorphisms of

Gerstenhaber algebras

H∗(XS1
;Q)

∼=→ HH∗(∧V ;∧V )
∼=← H∗(∧∧V L,d0)

∼=→ H∗(∧V ⊗∧Z,d),
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where L = s−1 Der∧V and Z = s−1V ∗. On the other hand, a given Koszul Sullivan ex-

tension (∧V,d)
f
↣ (C,d) induces a natural graded linear map HH∗( f ) : HH∗(∧V ;∧V )→

HH∗(∧V ;C). The algebraic structure of HH∗(∧V ;∧V ) as a graded vector space, as a ring,

and as a graded Lie algebra is well understood. In the same way, one would be interested

in understanding the structure of HH∗(∧V ;C). Following this line of thinking, we are in-

terested in examining HH∗( f ) because to our knowledge not much is known about the

Hochschild cohomology of Koszul-Sullivan extensions.

Therefore, we study the properties of the natural graded linear map HH∗( f ). More pre-

cisely, we show that, if F → E
p→ X is a TNCZ fibration, where X is an elliptic 2-stage

Postnikov tower and f : (∧V,d)↣ (C,d) a KS-model of p, then the induced map in

Hochschild cohomology HH∗( f ) : HH∗(∧V ;∧V )→ HH∗(∧V ;C) is injective. In partic-

ular, since HH∗(∧V ;∧V ) and H∗(XS1
;Q) are isomorphic, where (∧V,d) is the minimal

Sullivan model of X , we deduce that HH∗( f ) : H∗(XS1
;Q)→ HH∗(∧V ;C) is injective.

Remark 2.2.6. It is not known whether HH∗( f ) is injective when X is an n-stage Postnikov

tower, where n≥ 3.
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3 Methodology

In this thesis, we rely on the theory of minimal Sullivan models in rational homotopy

theory, spectral sequences, L∞-models of function spaces and Hochschild cohomology of

an algebra for which (Félix et al., 2001, 2008a; McCleary, 2001; Lada & Markl, 1995;

Buijs, Félix, & Murillo, 2011, 2013; Burghelea & Vigué, 1985; Félix et al., 2004; Gatsinzi,

2010, 2016) are our main references.

3.1 Sullivan algebras and models

Here we introduce the theory of Sullivan algebras and models.

Sullivan algebras and models resemble some ideas from de Rham cohomology (D. P. Sul-

livan, 2005), which has a more geometric approach. That is when de Rham proved that

H∗(ADR(M)) ∼= H∗(M;R) for the differential algebra of C∞-differential forms ADR(M) on

a smooth manifold M, it immediately provided a link between the C∞-differential forms on

a smooth manifold to algebraic invariants of the smooth manifold. It is noted in Félix et

al. (2008a, §Preface) that in his seminal paper D. Sullivan (1977) suggests in his remark

that even within the world of topology, there is more topological information in ADR(M).

It is difficult to detect this information, since in the de Rham algebra, we might suspect

that some information is contained in two different entities; that is, the product of forms

and the exterior derivative of a form. However, for easier detection of the corresponding
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topological information in the de Rham algebra, one looks for a simplification MM of the

de Rham algebra with an explicit differential graded algebra morphism MM→ ADR(M) in-

ducing an isomorphism in cohomology. This was motivated by the fact that for a compact

connected Lie group G there is a subdifferential algebra of bi-invariant forms Ω(G), inside

the de Rham algebra ADR(M) such that the canonical inclusion Ω(G)↣ ADR(M) induces

an isomorphism in cohomology.

In his seminal paper, D. Sullivan (1977) successfully constructed a cdga of the form (∧V,d).

The cdga (∧V,d) is called a Sullivan algebra. It is a commutative cochain algebra with

V = ∪
k≥0

V (k), where V (0)⊂V (1)⊂ ·· · such that d(V (0)) = 0 and d(V (k))⊂∧V (k−1). It

is minimal if dV ⊂ ∧≥2V := ∧+V.∧+V. This means that the differential d of any element

of V is a “polynomial”in ∧V with no linear term (Félix et al., 2001, §12). There is also the

smallest possible sub-differential algebra of forms with the same cohomology as the model

(∧V,d) (see (Félix et al., 2008a, §Preface)). It is a minimal model, in which we may ask

what geometrical invariants can be detected in it. This is a functor from algebra to geometry

that together with forms, serves as a dictionary between the algebraic and the geometrical

worlds. However, it is studied over the rationals and not over the reals. As a result, the de

Rham algebra is being replaced by other types of forms. This new construction is of great

advantage since it allows for an extension of the usual theory from manifolds to topologi-

cal spaces (Félix et al., 2008a, §Preface). The right setup for this is found in the work of

(D. Sullivan, 1977) who constructs a contravariant functor X ⇝ APL(X) from the homo-
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topy category of simply connected rational spaces of finite type to the homotopy category

of simply connected rational cgdas of finite type. It is a commutative differential graded

cochain algebra of rational polynomial differential forms on X that uniquely determines the

rational homotopy type of X .

Definition 3.1.1. Two commutative cochain algebras (A,d) and (B,d) are weakly equiva-

lent if they are connected by a chain

(A,d) ≃→ (C(0),d) ≃← ··· ≃→ (C(k),d) ≃← (B,d)

of quasi-isomorphisms of commutative cochain algebras. Such a chain is called a weak

equivalence between (A,d) and (B,d).

Definition 3.1.2. A commutative model for X is a commutative cochain algebra (A,d)

which is weakly equivalent to APL(X ;Q).

If (A,d) is a commutative differential graded algebra of which the cohomology is con-

nected and finite in each degree, then there is a homomorphism m : (∧V,d)→ (A,d) which

induces an isomorphism in cohomology. A minimal Sullivan model of a simply con-

nected space X is a minimal Sullivan model of APL(X) (D. Sullivan, 1977). More precisely

H∗(X ;Q)∼=H∗(∧V,d)as graded algebras, andV n =Hom(πn(X),Q)as graded vector spaces.

Example 3.1.3. (Félix et al., 2008a)
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(i) The minimal Sullivan model of an odd dimensional sphere S2n+1 is given by (∧x,0)

for |x|= 2n+1.

(ii) The minimal Sullivan model for an even dimensional sphere S2n is given by (∧(x,y),d)

for |x|= 2n, |y|= 4n−1, dx = 0, and dy = x2.

(iii) The Sullivan minimal model of CP(n) is given by (∧(x,y),d) with |x| = 2, |y| =

2n+1, and dx = 0,dy = xn+1.

Definition 3.1.4. (Félix et al., 2008a) Let (A,d) be a commutative model for a closed,

simply connected n-dimensional manifold X . A Poincaré duality model for X is a cdga

(A,d) that satisfies the following properties.

1. Ap = 0 for all p > n,

2. A0 =Q and A1 = 0,

3. the bilinear form Ai⊗Q An−i→ An, a⊗b→ ab is non degenerate, that is, an element

a ∈ Ai is zero if and only if ab = 0 for all b ∈ An−i.

Moreover, if (A,d) is a Poincaré duality model for a closed, simply connected n-

dimensional manifold X , then there is an element ω ∈ An such that An = Qω. Such an

element is called the fundamental class of A.

Definition 3.1.5. A commutative cochain algebra of the form (B⊗∧V,d) is a relative

Sullivan algebra whenever
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(a) (B,d) = (B⊗1,d) is a sub-cochain algebra, and H0(B) =Q.

(b) 1⊗V =V =⊕p∈NV p.

(c) V =
⋃

∞
k=0V (k) where V (k) is an increasing sequence of graded subspaces such that

d : V (0)→ B and d : V (k)→ B⊗∧V (k−1), for k ≥ 0.

Definition 3.1.6. Let (B⊗∧V,d) be a relative Sullivan algebra, then we say (B⊗∧V,d) is

minimal if Im d ⊂ B+⊗∧V +B⊗∧≥2V.

Definition 3.1.7. A morphism of commutative differential graded algebras (B,d)↣ (B⊗

∧V,d)→ (∧V, d̄) is called a Koszul Sullivan extension (KS-extension for short) if (B⊗

∧V,d) is a relative Sullivan algebra.

In general, for any morphism of commutative cochain algebras

ϕ : (B,d)→ (C,d)

with H0(B) = H0(C) = Q, and H1(ϕ) is injective, there is a KS-extension (B,d)→ (B⊗

∧V,d) and a quasi-isomorphism ψ : (B⊗∧V,d)→ (C,d) such that the following diagram

commutes (see (Félix et al., 2001, Prop 14.3))

B
ϕ //

%%

C

(B⊗∧V,d),

∼=ψ

OO
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we call ψ a relative Sullivan model of ϕ. Moreover, (B⊗∧V,d) can be chosen to be min-

imal and a minimal relative Sullivan model unique upto isomorphism (see (Félix et al.,

2001, Prop 14.12)).

Note that, if F i→ E
p→ X is a fibration, where X is simply connected, then the KS-extension

(B,d)
f
↣ (B⊗∧V,d) is called a Koszul Sullivan model of p (Félix et al., 2001, §15). If the

fibration p is trivial, then (B⊗∧V,d) is quasi-isomorphic to (B,d)⊗ (∧V, d̄).

By analogy, we will call E a rational 2-stage Postnikov tower if there is a non trivial fibra-

tion F i→ E
p→ X where F and X are products of Eilenberg-Mac Lane spaces. In this case,

a Koszul Sullivan model of APL(p) is of the form (∧V,0)↣ (∧V ⊗∧W,d).

Definition 3.1.8. Let (A,d) be a differential graded algebra. A derivation θ of A of degree

k is a linear mapping θ : An→ An−k such that θ(ab) = θ(a)b+(−1)k|a|aθ(b).

Denote by Derk A the vector space of all derivation of degree k and DerA =⊕k Derk A.

The Lie bracket induces a graded Lie algebra structure on DerA. On the other hand,

(DerA,δ) is a differential graded Lie algebra (D. Sullivan, 1977) with the differential δ

defined in the usual way by

δθ = [d,θ] = d ◦θ− (−1)k
θ◦d.

Furthermore, DerA is a differential graded A-module via the action (aθ)(x) = aθ(x). If

θ1 ∈ Derk A and a ∈ Ai, then aθ1 ∈ Derk−i A. That is, DerA is a graded A-module which
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satisfies the relation

[d,aθ] = (da)θ+(−1)|a|a[d,θ].

Let θ1,θ2 ∈ DerA and a ∈ A. Then

[θ1,aθ2] = θ1(a)θ2 +(−1)|a||θ1|a[θ1,θ2] (1)

(see (Gatsinzi, 2016, 2017)). Let (∧V,d) be a Sullivan algebra where V is spanned by

{v1 . . . ,vk}. Consider θi = (vi,1) the unique derivation of ∧V defined by θi(v j) = δi j. Then

the graded ∧V -module Der∧V is spanned by {θ1, . . . ,θk}.

3.2 Spectral sequences

Here we introduce the study of spectral sequences.

Definition 3.2.1. A bigraded module is a family M = ⊕(p,q)∈Z×ZMp,q of modules over a

commutative ring k indexed by pairs of integers (p,q).

Definition 3.2.2. A differential bigraded module (M,d) is a bigraded module M =⊕(p,q)∈Z×ZMp,q

together with a bigraded map d : M→M called the differential, such that d ◦d = 0 and d

has bidegree (−r,r−1) for some r.

Definition 3.2.3. The homology H(M,d) of a differential bigraded module (M,d) is de-

fined by:

Hp,q(M,d) =
kerdp,q

Imdp−a,q−b
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where (a,b) is the bidegree of the differential d.

Combining these notions, we can now define spectral sequences.

Definition 3.2.4. A homology spectral sequence starting at En is a sequence

(Er,dr)r≥n

in which Er = {Er
p,q} is a bigraded module, dr is a differential in Er of bidegree (−r,r−1)

and H(Er)
∼=→ Er+1 is an isomorphism of bigraded modules.

A cohomology spectral sequence is a sequence (Er,dr)r≥n in which Er = {E p,q
r }, dr a

differential of bidegree (r,−r+1) and H(Er)
∼=→ Er+1.

Definition 3.2.5. A first quadrant cohomology spectral sequence is a sequence of differ-

ential bigraded modules (Er,dr) in which each Er = {E p,q
r }p≥0,q≥0 for r = 1,2,3, . . . , is

equipped with a differential, dr ◦dr = 0, of bidegree (r,−r+1),

dr : E p,q
r → E p+r,q+1−r

r .

Thus, for all r ≥ 1, E∗,∗r+1
∼= H(E∗,∗r ,dr). That is,

E p,q
r+1 = (Kerdr : E p,q

r → E p+r,q+1−r
r )/(Imdr : E p−r,q−1+r

r → E p,q
r ).

We call the rth stage of such an object its Er-level. Moreover, consider E p,q
r for r >
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max(p,q+1), then for k ≥ 0 we have E p,q
r+k = E p,q

r see (McCleary, 2001). We denote this

common graded module by E p,q
∞ .

Definition 3.2.6. (McCleary, 2001; Félix et al., 2001). A filtration ℑ on an A-module M is

a family of submodules {F pM}p∈Z of M, such that

· · · ⊂ F p−1M ⊂ F pM ⊂ F p+1M ⊂ ·· · ⊂M

is an increasing sequence of submodules or

· · · ⊂ F p+1M ⊂ F pM ⊂ F p−1M ⊂ ·· · ⊂M

is a decreasing sequence of submodules. Then, M is called a filtered graded module, and

denoted by (M,ℑ). We can collapse the filtered module (M,ℑ) to its associated bigraded

module E∗,∗0 (M) given by

E p,q
0 (M) = F pMp+q/F p+1Mp+q,

where p is the filtration degree, q is the complementary degree and ℑ is decreasing or

increasing respectively

Example 3.2.7. (Félix et al., 2001) Relative Sullivan algebras.
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Let (B⊗∧V,d) be a relative Sullivan algebra, filtered by the degree of B, that is

F p(B⊗∧V ) = B≥p⊗∧V, p≥ 0.

The associated bigraded module is given by

E∗,∗0 (B⊗∧V,d) = (B,0)⊗ (∧V, d̄).

We now define the notion of convergence.

Definition 3.2.8. (McCleary, 2001; Félix et al., 2001) Consider a cohomology spectral

sequence (E p,q
r ,dr). If for each (p,q) there is an integer s such that

E p,q
s
∼= E p,q

s+1
∼= · · · ∼= E p,q

r
∼= · · · r ≥ s,

then the spectral sequence (E p,q
r ,dr) is convergent. In this case the bigraded module E p,q

∞

is defined by E p,q
∞ = E p,q

r , r≥ s. The spectral sequence collapses at Er-level if di = 0, i≥ r.

In this case E∞ is defined and Er = E∞.

The spectral sequence converges to H∗ if there is a filtration on H∗ such that E p,q
∞ = E p,q

0 (H∗).

Theorem 3.2.9. (McCleary, 2001; Félix et al., 2008a) (The cohomology Serre spectral

sequence) Let k be a field. Suppose F→ E
p→ X is a fibration, where X is simply connected

and F is path connected. There is a first quadrant spectral sequence of algebras (E∗,∗r ,dr)
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such that

E p,q
2
∼= H p(X ;k)⊗Hq(F ;k),

converging to H∗(E;k) as an algebra.

3.3 L∞-models of function spaces

L∞ algebras were introduced by Lada and Markl (1995) and L∞ models of function spaces

were studied by Félix et al. in Buijs et al. (2011, 2013). Here we provide details on their

notion.

Definition 3.3.1. Let Sk be the symmetric group. A permutation σ∈ Sk is called an (i,k− i)

shuffle if σ(1) < · · · < σ(i) and σ(i+1) < · · · < σ(k) where i = 1, . . . ,k. The Koszul sign

ε(σ) of a permutation σ ∈ Sk is determined by

x1∧·· ·∧ xk = ε(σ)xσ(1)∧·· ·∧ xσ(k),

where the subscripts indicate the degrees of the graded objects x1, . . . ,xk.

Definition 3.3.2. (Buijs et al., 2011) An L∞ algebra or a strongly homotopy Lie algebra is

a graded vector space L =⊕iLi endowed with a collection of linear maps

ℓk : L⊗k→ L
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of degree k−2 for k ≥ 1, called brackets, such that

(1) ℓk are skew-symmetric, that is, for any k-permutation σ

ℓk(xσ(1), . . . ,xσ(k)) = sgn(σ)ε(σ)ℓk(xσ(1), . . . ,xσ(k)),

where sgn(σ) is the sign of σ.

(2) The Jacobi identities are generalised as follows;

∑
i+ j=k+1

∑
σ

sgn(σ)ε(σ)(−1)i( j−1)ℓ j(ℓi(xσ(1), . . . ,xσ(i)),xσ(i+1), . . . ,xσ(k)) = 0,

where σ ∈ S(i,k− i).

In particular, if ℓk = 0 for k ≥ 3, we recover the notion of a differential graded Lie al-

gebra where [x,y] := ℓ2(x,y) and δx = ℓ1(x).

There is a bijection between L∞ structures on L and codifferentials dk :∧p(sL)→∧p−k+1(sL)

of degree -1 on the coalgebra ∧sL such that d2 = 0 where d = d1 + · · ·+dk + · · · (Lada &

Markl, 1995).

Definition 3.3.3. Let φ : (A,dA)→ (B,dB) be a morphism of cdga’s. A φ-derivation of

degree k is a linear mapping θ : An→ Bn−k for which θ(ab) = θ(a)φ(b)+(−1)k|a|φ(a)θ(b).

Denote by Dern(A,B;φ) the vector space of φ-derivations of degree n and by Der(A,B;φ)=

⊕n Dern(A,B;φ) the graded vector space of all φ-derivations. We consider only derivations
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of positive degree. The differential graded vector space of φ-derivations is denoted by

(Der(A,B;φ),∂), where the differential ∂ is defined by ∂θ = dBθ− (−1)|θ|θdA. If ∧V = B

and φ = 1∧V , then we get the Lie algebra of derivations Der∧V. Moreover, whenever

A = (∧V,d) is a Sullivan algebra, we note that, there is an isomorphism of graded vec-

tor spaces

Der(∧V,B;φ)∼= Hom(V,B).

If {vi} is a basis of V, and {b j} is a basis of B, then the graded vector space Der(∧V,B;φ)

is spanned by the unique φ-derivation θ denoted by (vi,b j) such that


θi(vi) = b j, b j ∈ B,

θi(v j) = 0, i ̸= j.

Moreover, let A = (∧V,d) be a minimal Sullivan algebra where V is finite dimensional. A

morphism of cdga’s φ : (∧V,d)→ (B,d) induces a linear mapping

Φ : Der∧V → Der(∧V,B;φ),

by post composing by φ.
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Define D̃er(A,B;φ) as follows (Buijs et al., 2013),

D̃eri(A,B;φ) =


Deri(A,B;φ), i > 1,

{θ ∈ Der1(A,B;φ) : ∂θ = 0}, i = 1.

Let (∧V,d) be a Sullivan algebra and θ1, . . . ,θk ∈ D̃er(∧V,B;φ) be φ-derivations of respec-

tive degrees n1, . . . ,nk, we define their bracket [θ1, . . . ,θk] ∈ D̃er(∧V,B;φ) of length k by

[θ1, . . . ,θk](v) = (−1)η
∑ ∑

i1,...,ik

εφ(v1 . . . v̂i1 . . . v̂ik . . .vn)θ1(vi1) . . .θk(vik),

where dv = ∑v1 . . .vn, η = n1 + · · ·+ nk−1 and ε is the suitable sign given by the Koszul

convention. These operations may be desuspended to define linear maps ℓk for k ≥ 1 each

of degree k−2 on s−1D̃er(∧V,B;φ) by

ℓ1(s−1
θ) =−s−1

∂θ, ℓk(s−1
θ1, . . . ,s−1

θk) = (−1)βs−1[θ1, . . . ,θk],

where β = k2−k
2 +∑

k−1
i=1 (k− i)|θi| (Buijs et al., 2013). It is shown that (s−1 Der(∧V,B;φ),

ℓk) is an L∞ algebra (Buijs et al., 2013). Also, an L∞ algebra is an L∞ model of a simply

connected space X , if it is a model of the differential graded Lie algebra C∗(X). Here C∗

denotes the Quillen functor that associates to any simply connected space X , a differential

graded Lie algebra C∗(X), which yields an equivalence between the homotopy category of
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simply connected rational spaces and that of reduced differential graded Lie algebras over

the rationals (Félix et al., 2001, Chapter 22).

Proposition 3.3.4. (Buijs et al., 2013) Let f : X → Y be a map between simply connected

spaces having the rational homotopy type of a CW complex of finite type and φ : (∧V,d)→

(B,d) a Sullivan model of f . Then (s−1D̃er(∧V,B;φ), ℓk) is an L∞ model of map(X ,Y ; f ).

3.4 Hochschild cohomology

Here we give details on the Hochschild cohomology of an algebra.

Let (A,d) be an augmented differential graded cochain algebra over a field k of char-

acteristic zero and Ā = ker(ε : A → k). The Hochschild cohomology of A with coeffi-

cients in A is defined as ExtAe(A,A) where A is an Ae = A⊗Aop-module under the action

(a⊗b)c = (−1)|c||b|acb for a,b,c ∈ A (see (Gatsinzi, 2019)). If (P,d) is a right differential

graded A-module and (N.d) a left graded differential A-module, the definition of the two

sided (normalised) bar construction on (A,d) is as follows (see for instance (Félix et al.,

2005, 2004)). It is the complex

(B(P;A;N),D) = (⊕kBk(P;A;N),D)

with

Bk(P;A;N) = P⊗T k(sĀ)⊗N, k ≥ 1.
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A generic element p[a1|a2| · · · |ak]n in Bk(P;A;N) has (upper) degree |p|+ |n|+∑
k
i=1(|sai|).

If k = 0, then p[ ]n = p⊗1⊗n ∈ P⊗T 0(sĀ)⊗N. The differential D decomposes into two

terms D = d0 +d1 as follows, d0 : Bk(P;A;N)→ Bk(P;A;N), with

d0(p[a1|a2| · · · |ak]n) = d(p)[a1|a2| · · · |ak]n−
k

∑
i=1

(−1)εi p[a1|a2| · · · |d(ai)| · · · |ak]n

+(−1)εk+1 p[a1|a2| · · · |ak]d(n),

and d1 : Bk(P;A;N)→ Bk−1(P;A;N), is given by

d1(p[a1|a2| · · · |ak]n) = (−1)|p|pa1[a2| · · · |ak]n+
k

∑
i=2

(−1)εi p[a1|a2| · · · |ai−1ai| · · · |ak]n

− (−1)εk p[a1|a2| · · · |ak−1]akn,

where εi = |p|+∑ j<i(sa j). There is a canonical projection ϕ : B(A;A;A)→ A defined by

ϕ([ ]) = 1 and ϕ([a1| · · · |ak]) = 0 if k > 0 which provides a semi-free resolution of A as an

Ae-module (Félix, Halperin, & Thomas, 1995). Thus, HH∗(A;A) is the homology of the

normalized Hochschild cochain complex

(C∗(A;A),D) = HomAe(B(A;A;A),A)∼= (Hom(T k(sĀ),A),D0 +D1).
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The differential D0 +D1 is defined as follows (Félix et al., 2005).

(D0 f )([a1|a2| · · · |ak]) = d( f ([a1|a2| · · · |ak]))+
k

∑
i=1

(−1)ε̄(i)( f ([a1|a2| · · · |ak])

and

(D1 f )([a1|a2| · · · |ak]) =−(−1)|sa1|| f |a1 f ([a2| · · · |ak])+(−1)ε̄(k) f ([a1| · · · |ak−1])ak+

k

∑
i=2

(−1)ε̄(i) f ([a1| · · · |ai−1ai| · · · |ak]),

where ε̄(i) = | f |+ |sa1|+ · · · |sai−1|.

As T k(sĀ) is a graded coalgebra, the complex C∗(A;A) is endowed with a product,

making it a differential graded algebra. For f ∈Cp(A;A) and g ∈Cq(A;A),

( f ◦g)(a1| · · · |ap+q) = (−1)ε(p) f (a1| · · · |ap) ·g(ap+1| · · · |ap+q),

where ε(p)= |g|(|sa1|+· · ·+|sap|). This product induces a well-defined product in Hochschild

cohomology ⌣: HH p(A;A)⊗HHq(A;A)→HH p+q(A;A) which turns the graded k-vector

space HH∗(A;A) = ⊕n≥0HH p(A;A) into a graded commutative algebra HH∗(A;A) (see

(Gerstenhaber, 1963, Corollary 1)).

Definition 3.4.1. (Félix et al., 2005) A (graded) Gerstenhaber algebra is a commutative
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graded algebra A equipped with a bracket

Ai⊗A j→ Ai+ j+1, x⊗ y 7→ {x,y}

such that

(i) the suspension of A is a graded Lie algebra with bracket

(sA)i⊗ (sA) j→ (sA)i+ j, sx⊗ sy 7→ −(−1)|x|s{x,y},

(ii) the product is compatible with the bracket, i.e. for a,b,c ∈ A,

{a,bc}= {a,b}c+(−1)|b|(|a|+1)b{a,c}.

Moreover, Gerstenhaber (1963) defined a bracket called the Gerstenhaber bracket on

C∗(A;A), inducing a graded Gerstenhaber algebra structure on HH∗(A;A) (Gerstenhaber,

1963). The bracket is defined by the formula

{ f ,g}= f ◦̄g− (−1)| f ||g|g◦̄ f ,
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where

( f ◦̄g)([a1|a2 · · · |ak]) = ∑
0≤i≤ j≤k

(−1)ε(i) f ([a1| · · · |ai|g([ai+1| · · · |a j])|a j+1| · · · |ak]),

and ε(i) = |g|(|sa1|+ · · ·+ |sai|) on C∗(A;A).

Example 3.4.2. Exterior algebra of a graded Lie algebra. If L is a graded Lie algebra, then

∧∗(L) is naturally a Gerstenhaber algebra, for exterior product and natural prolongation of

the bracket of L (see, (Roger, 2009)).

Definition 3.4.3. (Félix & Thomas, 2008) A Batalin-Vilkovisky algebra is a commutative

graded algebra, A together with a linear map (called a BV-operator)

∆ : Ak→ Ak+1

such that

(1) ∆2 = 0

(2) A is a Gerstenhaber algebra with the bracket defined by

{a,a′}= (−1)|a|
(

∆(aa′)−∆(a)a′− (−1)|a|a∆(a′)
)
.
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3.5 Hochschild cohomology of a Sullivan algebra

Here we provide details on Hochschild cohomology of a Sullivan algebra.

As HH∗(A;A) := ExtAe(A,A), therefore in order to compute the Hochschild cohomology

of a differential graded algebra A, it suffices to find a free resolution of A as an A⊗Aop-

module. In particular, for any commutative differential graded algebra (∧V,d) and any

differential graded ∧V -module B, the Hochshild cohomology HH∗(∧V ;B) is computed

with ease using technical tools introduced in rational homotopy theory. This was first

observed by Burghelea and Vigué (1985) and enhanced by Burghelea and Vigué-Poirrier

(1988). Many other authors have made use of this material. In Félix et al. (2001), for the

minimal Sullivan algebra (∧V,d), one considers a relative Sullivan model of the multipli-

cation m : (∧V ⊗∧V,d
′
)→ (∧V,d), where d

′
= d⊗1+1⊗d. Such a model is given by the

following commutative diagram

(∧V ⊗∧V,d
′
)
))

))

m // (∧V,d)

(∧V ⊗∧V ⊗∧sV,D),

ϕ∼=

OO
,

where sV n =V.n+1 In (Félix et al., 2001, §15), the differential in ∧V ⊗∧V ⊗∧sV is defined

by

D(v⊗1⊗1) = dv⊗1⊗1, D(1⊗ v⊗1) = 1⊗dv⊗1,
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and D(1⊗1⊗ sv) is defined by induction on the degree of v by the formula

D(1⊗1⊗ sv) = v⊗1⊗1−1⊗ v⊗1+
∞

∑
i=1

(sD)i

i!
(v⊗1⊗1). (2)

Here, s is the derivation of degree -1 on ∧V ⊗∧V ⊗∧sV defined as

s(v⊗1⊗1) = s(1⊗ v⊗1) = 1⊗1⊗ sv, s(1⊗1⊗ sv) = 0.

Example 3.5.1. (Félix et al., 2001) Consider X = CP(2) of which the minimal Sullivan

model is (∧(x2,x5),d), dx2 = 0, dx5 = x3
2. Then using (2) we have;

D(1⊗1⊗ sx2) = x2⊗1⊗1−1⊗ x2⊗1,

D(1⊗1⊗ sx5) = x5⊗1⊗1−1⊗ x5⊗1+1⊗ x2
2⊗ sx2 + x2⊗ x2⊗ sx2 + x2

2⊗1⊗ sx2.

Proposition 3.5.2. (Félix et al., 2001) ϕ : (∧V ⊗∧V ⊗∧sV,D)
∼=→ (∧V,d) is a semi-free

resolution of (∧V,d) as a ∧V ⊗∧V differential module.

Therefore, the Hochschild cohomology HH∗(∧V ;∧V ) is given by the homology of the

following complex

(C∗(∧V ;∧V ),D)∼= (Hom∧V⊗∧V (∧V ⊗∧V ⊗∧sV,∧V ),D).
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Thus, for any for any ∧V -module B, HH∗(∧V ;B) is the homology of a complex of the

form (Hom∧V⊗∧V (∧V⊗∧V⊗∧sV,B),D). Moreover, (Hom∧V⊗∧V (∧V⊗∧V⊗∧sV,B),D)

is isomorphic to Hom∧V (∧V⊗∧sV,B), where (∧V⊗∧sV,D) is a Sullivan algebra such that

Dv = dv, D(sv) =−S(dv) and S is the unique derivation on ∧V ⊗∧sV defined by Sv = sv

and Ssv= 0. If (∧V,d) is the minimal Sullivan model of X , then (∧V⊗∧sV,D) is a Sullivan

model of the free loop space XS1
(Félix et al., 2001, §15). It is obtained as a push out in the

following diagram.

(∧V ⊗∧V,d
′
)

��

i
��

m // (∧V,d)

��
(∧V ⊗∧V ⊗∧sV,D)

m′ // (∧V ⊗∧sV,D).

The composition with m′ gives an isomorphism of complexes Hom∧V (∧V ⊗∧sV,∧V )→

Hom∧V⊗∧V (∧V⊗∧V⊗∧sV,∧V ). Moreover, the differential D satisfies the condition D(∧V⊗

∧nsV )⊂ ∧V ⊗∧nsV. Hence each subspace (Hom∧V (∧V ⊗∧nsV,∧V ),D) is a sub cochain

complex of (Hom∧V (∧V ⊗∧sV,∧V ),D). This gives a Hodge type decomposition of the

Hochschild cohomology HH∗(∧V ;∧V ) =⊕n≥0HH∗(n)(∧V ;∧V ). In particular, for any ∧V -

module B, HH∗(∧V ;B) =⊕n≥0HH∗(n)(∧V ;B) (see (Loday, 1998, Page 184) and (Gatsinzi,

2010, 2019)). There is also an isomorphism of graded vector spaces Hom∧V (∧V⊗sV,∧V )∼=

Der∧V, and Hom∧V (∧V ⊗ sV,B)∼= Der(∧V,B;φ) (see (Gatsinzi, 2010, 2019)).
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3.6 Gerstenhaber structure on the Hochschild cohomology

Here we review the Gerstenhaber structure on HH∗(∧V ;∧V ).

Let A = (∧V,d) be a Sullivan algebra. The Gerstenhaber bracket on HH∗(∧V ;∧V ) is de-

fined by identifying the homology of (C∗(A;A),D) with the exterior algebra of the desus-

pended differential graded Lie algebra of derivations of A (Gatsinzi, 2010, 2016). The

following are more general results.

Theorem 3.6.1. (Gatsinzi, 2010) If A = (∧V,d) is a Sullivan algebra, and L = s−1 DerA,

then there is a mapping φ : (∧AL,d0)→ (C∗(A;A),D) which induces an isomorphism of

graded Gerstenhaber algebras in homology.

Theorem 3.6.2. (Gatsinzi, 2016) Let A = (∧V,d) be a minimal Sullivan algebra where

V is finite dimensional and Z = s−1V ∗. Then, ϕ : (∧AL,d0)→ (A⊗∧Z,D) extends to an

isomorphism of differential graded Gerstenhaber algebras.

3.7 The free loop space homology spectral sequence

We review here a spectral sequence that is useful to compute the loop space homology of

certain spaces as given in (Gatsinzi, 2016).

Let X be a simply connected closed manifold of dimension m of which V is finite di-

mensional and (∧V,d) = (∧(V0⊕·· ·⊕Vn−1),d) its minimal Sullivan model, where dVi ⊂

∧(V0⊕ ·· ·⊕Vi−1). Let Z = Z0⊕ ·· ·⊕Zp, where Zk = s−1V ∗n−k. Filter ∧V ⊗∧Z by Fp =
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∧V ⊗∧(Z0⊕·· ·⊕Zp). . It verifies

∧V = F0 ⊂ F1 ⊂ ·· · ⊂ Fn = ∧V ⊗∧Z.

This filtration yields a spectral sequence of Gerstenhaber algebras for which E1 =H∗(∧V )⊗

∧Z and which converges to H∗(∧V ⊗∧Z,d)∼=H∗(XS1
;Q).
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4 Preliminary results

In this chapter, we study the following problems.

(i) The partial computation of the Lie bracket structure of the string homology on a

formal elliptic space.

(ii) The formality of the total space of the unit sphere tangent bundle S2m−1 → E
p→

Gk,n(C) over complex Grassmannian manifolds Gk,n(C), for 2 ≤ k ≤ n/2, where

m = k(n− k), by exhibiting a non trivial Massey triple product in H∗(E;Q).

(iii) The Hochschild cohomology of a Sullivan model of mapping spaces.

4.1 On the Lie bracket structure of the string homology on a formal

elliptic space

In this section, we consider the Chas-Sullivan loop space homology H∗(XS1
) of a formal

elliptic space X and show that the centre of the graded Lie algebra sH∗(XS1
;Q) is non

trivial.

Definition 4.1.1. A Lie group G is a group that is also a smooth manifold such that the

multiplication µ : G×G→ G and the inverse map g 7→ g−1 are both smooth.

Example 4.1.2. (i) The general linear group GL(n;C), which is the group of n× n in-

vertible matrices with entries in C under matrix multiplication, is a Lie group of

50



dimension (2n)2.

(ii) A matrix A∈Mn(C) is unitary, if AA∗= I, where A∗= ĀT . The subgroup of GL(n;C)

consisting of all unitary matrices is a compact Lie group called the unitary group, and

denoted by U(n).

The subgroup of U(n), of matrices with determinant 1 is called the special unitary

group, and it is denoted SU(n).

(iii) The n×n quarternionic symplectic group, Sp(n) is defined by

Sp(n) = {A ∈ GL(n;H) : AA∗ = I}.

Observe that both U(n) and SU(n) are subgroups of Sp(n).

Definition 4.1.3. Let G be a compact connected Lie group with a closed subgroup H. The

coset space G/H admits a differentiable structure and it is called a homogeneous space.

Example 4.1.4. The quaternionic Grassmannian Gk,n(H) of k-dimensional vector sub-

spaces of Hn is a homogeneous space as Gk,n(H) ∼= Sp(n)/(Sp(k)× Sp(n− k)) for 1 ≤

k < n.

Below we compute the free loop space homology for some homogeneous spaces. Recall

that, if X is homogeneous space, then its minimal Sullivan model is given by

(A,d) = (∧(b1, . . . ,bn,a1, . . . ,am),d),
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where dbi = 0 and dai ∈∧(b1, . . . ,bn) (see (Félix et al., 2008a)). Thus, to compute the loop

space homology of X we consider a complex of the form (A⊗∧(z1, . . . ,zm,u1, . . . ,un),d)

where z j = s−1a∗j , ui = s−1b∗i , dz j = 0 and dui = ∑
∂ f j

∂bi
z j with f j = db j. Further, if A is a

minimal Sullivan model of a simply connected compact oriented m-manifold X of which

π∗(X)⊗Q is finite dimensional, then there is a filtration on A⊗∧(z1, . . . ,zm,u1, . . . ,un)

which yields a spectral sequence of Gerstenhaber algebras for which E1 =H∗(A)⊗∧(z1, . . . ,

zm,u1, . . . ,un) and which converges to H∗(A⊗∧(z1, . . . ,zm,u1, . . . ,un),d) ∼= H∗(XS1
;Q)

(see (Gatsinzi, 2016)). In particular, if X = G/K is a homogeneous space of which G

and K have an equal rank, then

H∗(XS1
;Q)∼= H∗(H∗(A)⊗∧(Z0⊕Z1),d),

where dZ0 = 0 and dZ1 ⊂ H+⊗Z0 (see (Gatsinzi, 2016)).

Example 4.1.5. (Félix et al., 2008a; Gatsinzi, 2016) Let X = CP(n) of which the minimal

model is A = (∧(b2,a2n+1),d), db2 = 0, da2n+1 = bn+1
2 . Thus,

H∗(CP(n),Q)∼= H∗((∧b2)/(bn+1
2 )⊗∧(z1,z2n),d), dz2n = 0, dz1 = (n+1)bn

2z2n.

Homology classes are

{b jzk
2n,b

iz1,biz1zk
2n, k ≥ 0, 0≤ j ≤ n−1, 1≤ i≤ n}.
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Example 4.1.6. We consider the Sullivan minimal model of

X = Sp(5)/(Sp(2)×Sp(3))

which is given by

A = (∧(b4,b8,a15,a19),d)

where dbi = 0, and da15 = 2b8b2
4 + b4

4− b2
8, da19 = 2b8b3

4 + b2
8b4. Consider the ideal I =

(2b8b2
4 +b4

4−b2
8,2b8b3

4 +b2
8b4). It follows thus, H∗(∧V,d) = ∧(b4,b8)/I. Hence, there is

a quasi-isomorphism

f : (∧(b4,b8,a15,a19),d)
∼=→ H∗(∧V,d).

Thus, Sp(5)/(Sp(2)×Sp(3)) is formal. The rational cohomology is given by classes of

{1,b4,b2
4,b8,b3

4,b4b8,b8b2
4,b

4
4, [2b8b2

4 +b4
4] = [b2

8],

[b5
4] = [−2b3

4b8] = [b2
8b4], [b6

4] = [b2
4b2

8] = [b3
8]}.

Thus, to compute the loop space homology of X = Sp(5)/(Sp(2)× Sp(3)) we consider a

complex of the form

(A⊗∧(z14,z18,u3,u7),d),
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where dzi = 0, and

du3 = (4b4b8 +4b3
4)z14 +(6b8b2

4 +b2
8)z18,du7 = (2b2

4−2b8)z14 +(2b3
4 +2b4b8)z18.

In some lower degrees, the loop space homology is given by classes of

{1,z14,z18,b4,b2
4,b8,b3

4,b4b8,b8b2
4,b

4
4, [2b8b2

4 +b4
4] = [b2

8],b4z14,b2
4z14,b8z14,b3

4z14,

b4b8z14,b8b2
4z14,b4

4z14, [b5
4] = [−2b3

4b8] = [b2
8b4], [b6

4] = [b2
4b2

8] = [b3
8],b

2
8z14,b5

4z14,b6
4z14,

b4z18,b2
4z18,b8z18,b3

4z18,b4b8z18,b8b2
4z18,b4

4z18,b2
8z18,b5

4z18,b6
4z18,

(4b4b8 +4b3
4)z14,(6b8b2

4 +b2
8)z18,(2b2

4−2b8)z14,(2b3
4 +2b4b8)z18}.

Definition 4.1.7. Let L be a Lie algebra. The centre Z(L) is defined by

Z(L) = {x ∈ L : [x,y] = 0,∀y ∈ L}.

In (Gatsinzi, 2016, Theorem 13), it is shown that, if X is a simply connected ho-

mogeneous space of which π∗(X)⊗Q is finite dimensional, then the graded Lie algebra

sH∗(XS1
;Q) is not nilpotent. In addition, we establish the following result.

Theorem 4.1.8. If X is a simply connected formal homogeneous space of which π∗(X)⊗Q

is finite dimensional, then the centre of sH∗(XS1
;Q) is non trivial.
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Proof. Let X be a homogeneous space of which (∧V,d) = (∧(V0 ⊕V1),d) is its mini-

mal Sullivan model, where V is finite dimensional and dV0 = 0, dV1 ⊆ ∧V0. Denote by

< v1,v2, . . . ,vn > the vector space generated by a finite basis {vi} of V. Write V even
0 =Q<

p1, . . . , pq >= P, V odd
0 = Q < w1, . . . ,wr >= W, and V odd

1 = Q < y1, . . . ,yp >= Y, so that

(∧(V0⊕V1),d)
∼=→ (∧(P⊕Y ),d)⊗ (∧W,0), and dP = 0, dY ⊆∧P. The associated minimal

Sullivan model (∧V,d) is called a pure Sullivan algebra. Homogeneous spaces are pure.

Moreover, since X is a formal homogeneous space, then p = q, and we have

H∗(∧V,d) =
∧(p1, . . . , pp)

(α1, . . . ,αp)
⊗∧(wi, . . . ,wr),

where (α1, . . . ,αp) is a regular sequence in ∧P. Hence, X as a formal homogeneous space

admits a minimal Sullivan model of the form A= (∧V,d) = (∧(P⊕Y ),d)⊗(∧W,0), where

dP = 0, dyk = αk. Further, there is filtration (see (Gatsinzi, 2016)) on (A⊗∧s−1V ∗,d)

which yields a spectral sequence of Gerstenhaber algebras for which E1 = H∗(A)⊗∧Z,

where Z = Z0⊕ Z1, and Z0 = s−1V ∗1 , Z1 = s−1V ∗0 . Let L = s−1 DerA. Given a ∈ ∧0
AL =

A, θ1,θ2 ∈ DerA, and for x,β ∈ L, and using

[θ1,aθ2] = θ1(a)θ2 +(−1)|a||θ1|a[θ1,θ2] (3)

we have

{x,a}=−(−1)|a|(sx)(a). (4)
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Hence

{x,aβ}= {x,a}β+(−1)|a|(|x|+1)a{x,β}, (5)

(see (Gatsinzi, 2017)). Moreover∧AL and (A⊗∧(Z0⊕Z1),d) are isomorphic as differential

Gerstenhaber algebras. It is sufficient to check that ∧Z0 is abelian in (H∗(A)⊗∧Z,d). It

follows from equation (4), that for all zi,z j ∈ Z0 we have

{zi,z j}=−(−1)|zi|s(zi)(z j) = 0.

Furthermore, using (5), for all ai ̸= 0 ∈ H∗(A), vi ̸= 0 ∈ H∗(A⊗∧(Z0⊕Z1)) and zi ∈ Z0,

one gets

{aizi,vi}= ai{zi,vi}+(−1)|ai|(|vi|+1)zi{ai,vi},

= 0, as{vi,zi}= {ai,vi}= 0, using (4).

Also, using (4), if xi ̸= 0 is a cocycle in H∗(A)⊗∧+(Z0⊕Z1), then {Z0,xi} = 0. Hence

∧Z0 is abelian. Thus, the algebra ∧Z0 is in the centre of sH∗(XS1
;Q).

Remark 4.1.9. The formality condition on X is necessary for ∧Z0 to be in the centre of

sH∗(XS1
;Q). We consider the minimal Sullivan model of the non formal homogeneous
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space X = Sp(6)/SU(6) which is given by

A = (∧(x6,x10,b15,b19,b23),d),dxi = 0,db15 = x6x10,db19 = x2
10,db23 = x4

6.

The rational cohomology is given by classes of

{1,x6,x10,x2
6,x

3
6,x6b19− x10b15,x2

6b19− x6x10b15,

x3
6b15− x10b23,x3

6b19− x2
6x10b15,x4

6b19− x3
6x10b15}.

The loop space homology of X = Sp(6)/SU(6) is computed from the complex

(A⊗∧(z14,z18,z22,b5,b9),d),dzi = 0,db5 = x10z14 +4x3
6z22,db9 = x6z14 +2x10z18,

which is isomorphic to (A⊗(Z0⊕Z1),d), where dZ0 = 0,dZ1⊆A⊗Z0. It contains H∗(X)⊗

∧(z14,z18,z22)/I where is I is the ideal generated by {db5,db9}. In some lower degrees,

the loop space homology is given by classes of

{1,z14,z18,z22,x6,x10,x2
6,x

3
6,

x6b19− x10b15,x2
6b19− x6x10b15,

x3
6b15− x10b23,x3

6b19− x2
6x10b15,x4

6b19− x3
6x10b15,
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x6z14,x6z18,x6z22,x10z14,x10z18,x10z22,x2
6z14,

x2
6z18,x2

6z22,x3
6z14,x3

6z18,x3
6z22,x10z14,4x3

6z22,x6z14,2x10z18,

x6b5− (z14b15 +4z22b23),x10b5− (z14b19 +4x2
6z22b15),

x10b9− (z14b15 +2z18b19)}.

Then for zi ∈ Z0, xi ̸= 0 ∈ H∗(A⊗∧(Z0⊕Z1),d). The non zero brackets for k ≥ 1 include

{z14,(x6b19− x10b15)zk
i }= x10zk

i ,{z14,(x3
6b15− x10b23)zk

i }=−x3
6zk

i ,

{z18,(x6b19− x10b15)zk
i }=−x6zk

i ,{z18,(x2
6b19− x6x10b15)zk

i }=−x2
6zk

i ,

{z18,(x3
6b19− x2

6x10b15)zk
i }=−x3

6zk
i ,{z22,(x3

6b15− x10b23)zk
i }= x10zk

i .

Hence ∧Z0 is not in the centre of (H∗(A⊗∧(Z0⊕Z1)),d).

Definition 4.1.10. (Kirillov, 2008, §5.4) Let L be a Lie algebra. Set L(0) := L and, for k≥ 1,

define the k-th derived algebra of L as L(k) := [L(k−1),L(k−1)]. Then L is called solvable if

L(k) = 0 for some k.

Proposition 4.1.11. Let L = (∧(w1, . . . ,wr)⊗∧(z1, . . . ,zr),d = 0) ⊆ (H∗(A)⊗∧Z,d),

where |wi| is odd, and zi = s−1w∗i . Then L is solvable.
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Proof. Let a,b ∈ L. Then we have

{a,b}= ∑
i
(−1)|a|

∂2

∂wi∂zi
(ab).

Hence, if a ∈ ∧k(w1, . . . ,wr)⊗∧(z1, . . . ,zr), and b ∈ ∧l(w1, . . . ,wr)⊗∧(z1, . . . ,zr), with

k+ l ≤ r. Then, {a,b} ⊆ ∧k+l−1(w1, . . . ,wr)⊗∧(z1, . . . ,zr). Thus,

L(1) = {L,L} ⊆ ∧≤r−1(w1, . . . ,wr)⊗∧(z1, . . . ,zr),

L(2) = {L(1),L(1)} ⊆ ∧≤r−2(w1, . . . ,wr)⊗∧(z1, . . . ,zr),

L(3) = {L(2),L(2)} ⊆ ∧≤r−3(w1, . . . ,wr)⊗∧(z1, . . . ,zr).

Continuing iterating this process yields L(r) = {L(r−1),L(r−1)} ⊆ ∧(z1, . . . ,zr), which im-

plies that L(r+1) = {L(r),L(r)}= 0, and L is solvable.

In conclusion, we have the following result.

Corollary 4.1.12. If X is a simply connected formal homogeneous space of which π∗(X)⊗

Q is finite dimensional, then

(1) sH∗(XS1
;Q) is not nilpotent,

(2) the centre of sH∗(XS1
;Q) is non trivial.
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4.2 On the unit sphere tangent bundles over complex Grassmannians

Let Gk,n(C) denote the Grassmann manifold of k-dimensional vector subspaces of Cn. In

(Banyaga et al., 2018), it was shown that the total space of the unit sphere tangent bundle

over the complex projective space CP(n) = G1,n(C) is formal. As Gk,n(C) ∼= Gn−k,n(C),

we will assume k ≤ n/2. In this section, we show that the total space of the unit sphere

tangent bundle over Gk,n(C) is not formal, for 2≤ k ≤ n/2.

The complex Grassmannian Gk,n(C) is a homogeneous space as Gk,n(C)∼=U(n)/(U(k)×

U(n− k)) for 1 ≤ k < n, where U(n) is the unitary group. It is a symplectic manifold

of dimension 2m, where m = k(n− k). The method to compute a Sullivan model of the

homogeneous space Gk,n(C) is given in details in (Greub, Halperin, & Vanstone, 1976;

Murillo, 1999). Let S2m−1→ E
p→Gk,n(C) be the unit sphere tangent bundle and (∧V,d) a

Sullivan model of Gk,n(C). A relative minimal model of p is given by

(∧V,d)
ι

↣ (∧V ⊗∧x2m−1,d′)→ (∧x2m−1,0),

with d′v= dv for v∈V and d′x2m−1 = z, as [z] is the Euler class of the tangent bundle (Félix

et al., 2008a, Page 82). Moreover, if [ω] ∈H2m(∧V,d) is the fundamental class of Gk,n(C),

then [z] = χ(Gk,n(C)) · [ω], where χ(Gk,n(C)) is the Euler characteristic of Gk,n(C) (see
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(Bott & Tu, 1982, Proposition 11.24)). As χ(Gk,n(C)) ̸= 0, there is a quasi-isomorphism

(∧V ⊗∧x2m−1,d′)→ (∧V ⊗∧x2m−1,D),

where Dv = dv for v ∈V and Dx2m−1 = ω.

Remark 4.2.1. For the general case, a Sullivan model of Gk,n(C) for 1≤ k < n is given by

(see (Murillo, 1999))

(∧(b2,b4, . . . ,b2k,x2,x4, . . . ,x2(n−k),y1,y3, . . . ,y2n−1),d) (6)

with

dbi = 0 = dx j, dy2p−1 = ∑
p1+p2=p

b2p1 · x2p2 , 1≤ p≤ n.

Lemma 4.2.2. Where 2≤ k ≤ n/2, the minimal Sullivan model of Gk,n(C) is given by

(∧(b2, . . . ,b2k,y2(n−k)+1, . . . ,y2n−1),d), dy2n−1 = b2kr

where r ̸∈ (b2k).

Proof. Consider a Sullivan model of Gn,k(C) from (6)

(∧(b2,b4, . . . ,b2k,x2,x4, . . . ,x2(n−k),y1,y3, . . . ,y2n−1),d).
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Then

dy1 = b2 + x2, dy3 = b4 + x4 +b2x2, . . . ,dy2n−1 = b2kx2(n−k).

The model is not minimal as the linear part is not zero. To find its minimal Sullivan model,

we make a change of variable t2 = b2 + x2 and replace x2 by t2−b2 wherever it appears in

the differential. This gives an isomorphic Sullivan algebra

(∧(b2, t2,b4, . . . ,b2k,x4, . . . ,x2(n−k),y1,y3, . . . ,y2n−1),d)

where

dy1 = t2, dy3 = b4 + x4 +b2(t2−b2), . . . ,dy2n−1 = b2kx2(n−k).

As the ideal generated by y1 and t2 is acyclic, the above Sullivan algebra is quasi-isomorphic

to

(∧(b2,b4, . . . ,b2k,x4, . . . ,x2(n−k),y3, . . . ,y2n−1),d)

where

dy3 = b4 + x4−b2
2, . . . ,dy2n−1 = b2kx2(n−k).
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One continues in this fashion to get the minimal Sullivan model

(∧(b2, . . . ,b2k,y2(n−k)+1, . . . ,y2n−1),d)

with

dy2n−1 = b2kr

where r ∈ ∧(b2, . . . ,b2k) and [r] ̸= 0 in H∗(Gk,n(C),Q) as |r| = 2(n− k) and there is no

coboundary of degree less than 2(n− k). In particular, [r] ̸= [b2k].

Theorem 4.2.3. If 2 ≤ k ≤ n/2 and m = k(n− k), then the total space of the unit sphere

tangent bundle

S2m−1→ E→ Gk,n(C)

is not formal.

Proof. The minimal Sullivan model of Gk,n(C) is given by

(∧V,d) = (∧(b2, . . . ,b2k,y2(n−k)+1, . . . ,y2n−1),d) and (∧x2m−1,0) is the model of S2m−1.

Let [b∗2k] in H2(n−k)(∧V,d) be the Poincaré dual of [b2k] in H∗(Gk,n(C),Q) and ω= [b2kb∗2k]

the fundamental class of Gk,n(C). Since the Euler characteristic of Gk,n(C), χ(Gk,n(C)) ̸=

0, a relative minimal model for the unit sphere tangent bundle S2m−1 → E → Gk,n(C) is

given by

(∧V,d)
ι

↣ (∧V ⊗∧x2m−1,D)→ (∧x2m−1,0),
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with Dv= dv for v∈V and Dx2m−1 =ω. By Lemma 4.2.2, there is [r]∈H2n−2k(Gk,n(C),Q)

the class of smallest degree such that H∗(ι)([b2k]) ·H∗(ι)([r]) = 0 in H∗(E;Q), where

r ̸∈ (b2k). We show that the triple Massey product ⟨H∗(ι)([b∗2k]),H
∗(ι)([b2k]),H∗(ι)([r])⟩

in H∗(E;Q) is not trivial. It is represented by the cocycle

rx2m−1−b∗2ky2n−1.

To show that it is not a coboundary, we use an argument in the Leray-Serre spectral se-

quence for the unit sphere tangent bundle S2m−1 → E → Gk,n(C). In (Félix et al., 2001,

Chapter 18), the Leray-Serre spectral sequence is obtained by filtering (∧V ⊗∧x2m−1,D)

by the degree of ∧V ; that is,

F p(∧V ⊗∧x2m−1) = (∧V )≥p⊗∧x2m−1, p = 0,1,2, . . .

and the associated bigraded module is given by

E p,q
0 = (∧V )≥p⊗∧x2m−1/(∧V )≥(p+1)⊗∧x2m−1

∼= (∧V )p⊗∧x2m−1.

Moreover, d0 : E p,q
0 → E p,q+1

0 is zero and d1 : (∧V )p⊗∧x2m−1 → (∧V )p+1⊗∧x2m−1 is

d ⊗ 1. Therefore, E p,∗
2 = H p(∧V,d)⊗∧x2m−1. Thus, [rx2m−1 − b∗2ky2n−1] ∼= [rx2m−1] at
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E2(n−k),q
2 and we have E2 = E3 = · · ·= E2m. In particular, E2(n−k),2m−1

2m
∼= H2(n−k)(∧V,d)⊗

Q < x2m−1 > . Moreover, d2m : E2(n−k),2m−1
2m → E2(n−k)+2m,0

2m is zero, for degree reasons.

Hence, the element rx2m−1 ∈ E2(n−k),2m−1
2m is a d2m-cocycle. Moreover, it cannot be a d2m-

coboundary because E2(n−k)−2m,4m−2
2m = 0. Hence the class [rx2m−1] is not zero at E2m+1 =

E∞. This is a non zero triple Massey product in H∗(E;Q). Therefore, E is not formal.

Remark 4.2.4. We recall here that Kähler manifolds are the best known example of sym-

plectic manifolds X = M2m. Therefore, one might conclude that the cocycle rx2m−1 −

b∗2ky2n−1 represents a non-zero cohomology class by considering the bigraded model

(∧(b2, . . . ,b2k,y2(n−k)+1, . . . ,y2n−1,x2m−1),d), where x2m−1 is the only generator of lower

degree 2 (see (Halperin & Stasheff, 1979, §3)). As rx2m−1−b∗2ky2n−1 is a sum of elements

of respective degrees lower than 2 and 1, it cannot be a coboundary. Hence, the same ap-

proach can be applied to show that the total space of the unit sphere tangent bundle over a

formal symplectic manifold X is not formal if H∗(X ;Q) is non-monogenic.

Example 4.2.5. The minimal Sullivan model of G2,4(C) is given by (∧(b2,b4,y5,y7),d),

where db2 = db4 = 0, dy5 =−b3
2 +2b2b4, dy7 = b4

2−3b2
2b4 +b2

4 as h j is the 2 j-th degree

term in the Taylor expansion of (1+b2+b4)
−1 (Hoffman, 1982; Charkaborty & Sankaran,

2014). With χ(G2,4(C)) = 5, the total space of the unit sphere bundle S7→ E → G2,4(C)

will have a relative minimal model of the form (∧(b2,b4,y5,y7,a7),D) with Dbi = 0, Dy5 =

b2(b2
2−2b4), Dy7 = b4

2−3b2
2b4 +b2

4 and Da7 = b4
2. Take a = H∗(ι)([b3

2]), b = H∗(ι)([b2])

and c = H∗(ι)([b2
2−2b4]) cohomology classes in H∗(E,Q). The products a ·b = b · c = 0.
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The triple Massey product set ⟨a,b,c⟩ is represented by the cocycle (b2
2− 2b4)a7− b3

2y5

of degree 11 which cannot be a coboundary for degree reasons. Thus, the triple Massey

product set ⟨a,b,c⟩ is non-trivial.

4.3 Hochschild cohomology of a Sullivan model of mapping spaces

Let φ : (∧V,d)→ (B,d) be a surjective morphism between commutative differential graded

algebras, where V is finite dimensional. We consider (B,d) as module over ∧V via the

action induced by the mapping φ. In this section, we show that the Hochschild cohomology

HH∗(∧V ;B) can be computed in terms of the graded vector space of positive φ-derivations.

We begin with the following results for φ-derivations.

Proposition 4.3.1. If φ : (∧V,d)→ (B,d) is a morphism of cdga’s, then Der(∧V,B;φ) is a

graded differential module over (∧V,d).

Proof. Let a ∈ ∧V and θ ∈ Der(∧V,B;φ). Define aθ by (aθ)(x) = φ(a)θ(x). This action

makes Der(∧V,B;φ) a graded module of ∧V. Then

(∂(aθ))(x) = d((aθ)(x))− (−1)|a|+|θ|aθ(dx)

= (da)θ(x)+(−1)|a|a(dθ(x))− (−1)|a|+|θ|aθ(dx)

= (da)θ(x)+(−1)|a|(adθ(x)− (−1)|θ|aθ(dx))

= (da)θ(x)+(−1)|a|a(∂θ)(x).
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Hence ∂(aθ) = (da)θ+(−1)|a|a(∂θ), that is, Der(∧V,B;φ) is graded differential module

over (∧V,d).

Proposition 4.3.2. (Gatsinzi, 2019) Let φ : (∧V,d)→ (B,d) be a surjective morphism be-

tween cdga’s where V is finite dimensional and I = Kerφ. Then Der(∧V,B;φ)∼= (∧V/I)⊗

V ∗.

On the other hand, consider the desuspension s−1θ∈ s−1 Der(∧V,B;φ). We note there is

an induced∧V -module structure on s−1 Der(∧V,B;φ) defined by a(s−1θ)= (−1)|a|s−1(aθ).

Proposition 4.3.3. Let φ : (∧V,d)→ (B,d) be a surjective morphism between cdga’s where

V is finite dimensional and I = Kerφ. Then s−1 Der(∧V,B;φ) ∼= (∧V/I)⊗ s−1V ∗ as ∧V -

modules.

Proof. If {v1, . . . ,vn} is a basis of V, then in Der(∧V,B;φ) we denote the derivation (vi,1)

by v∗i . As φ is surjective, there is ai ∈ ∧V such that φ(ai) = bi, where bi ∈ B. Let θ ∈

Der(∧V,B;φ). Then, θ = ∑aiv∗i . Therefore, Der(∧V,B;φ) is generated by V ∗. This gives

a surjective linear map ∧V ⊗V ∗ → Der(∧V,B;φ) of which the kernel is I ⊗V ∗. Hence

by the first isomorphism theorem Der(∧V,B;φ) ∼= (∧V/I)⊗V ∗. We have that, s−1θ =

∑(−1)|ai|ais−1v∗i . Therefore, s−1 Der(∧V,B;φ)∼= (∧V/I)⊗ s−1V ∗.

In (Gatsinzi, 2019, Lemma 15), it is shown that there is an isomorphism of differential

graded vector spaces Hom∧V (∧V ⊗ sV,B)∼= Der(∧V,B;φ). We recall the following result.
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Theorem 4.3.4. (Gatsinzi, 2019) Let f : X→Y be a map between simply connected spaces

having the rational homotopy type of a CW complex of finite type and φ : (∧V,d)→ (B,d)

a Sullivan model of f . Then there is a canonical injection

ι : π∗(Ωmap(X ,Y ; f ))⊗Q→ HH∗(∧V ;B).

Moreover, there is a natural isomorphism π∗(Ωmap(X ,Y ; f ))⊗Q→ HH∗(1)(∧V ;B).

Moreover, let φ : (∧V,d)→ (B,d) be a surjective morphism between cdga’s where V is

finite dimensional. Consider the commutative differential graded algebra

∧∧V s−1 Der(∧V,B;φ) = T∧V (s−1 Der(∧V,B;φ))/I

where I is the ideal generated by elements of the form x⊗ y− (−1)|x||y|y⊗ x for x,y ∈

T∧V (s−1 Der(∧V,B;φ)). The differential ∂′ on s−1 Der(∧V,B;φ) extends to the differential

d0 on

∧∧V s−1 Der(∧V,B;φ) = ∧V ⊕ s−1 Der(∧V,B;φ)⊕∧2
∧V s−1 Der(∧V,B;φ)⊕·· ·

by the Leibniz rule. Our aim is to relate the commutative graded algebra

H∗(∧∧V s−1 Der(∧V,B;φ),d0) to HH∗(∧V ;B). In particular, the following result extends

Theorem 4.3.4.
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Theorem 4.3.5. If φ : (∧V,d)→ (B,d) is a surjective morphism between cdga’s, where V is

finite dimensional, then there is an algebra isomorphism Ψ : (∧∧V s−1 Der(∧V,B;φ),d0)→

(Hom∧V (∧V ⊗∧sV,B),D).

The proof is given by the following Lemmas. Let φ : (∧V,d)→ (B,d) be a morphism

of cdga’s. Assume V is finite dimensional and let {vi, . . . ,vn}, be a homogeneous linear

basis of V. Define the map

ψ : (s−1 Der(∧V,B;φ),∂′)→ (Hom∧V (∧V ⊗ sV,B),D)

by ψ(s−1θ)(sv) = (−1)|θ|θ(v) for v ∈V.

Lemma 4.3.6. The map ψ commutes with differentials.

Proof. Let s−1θ ∈ s−1 Der(∧V,B;φ). Then ∂′(s−1θ) =−s−1∂θ and |∂θ|= |θ|−1. Hence

ψ(∂′s−1
θ)(sv) = ψ(−s−1

∂θ)(sv)

=−(−1)|θ|−1(∂θ)(v)

= (−1)|θ|(dθ(v)− (−1)|θ|θ(dv)).
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Moreover,

D(ψ(s−1
θ))(sv) = dψ(s−1

θ)(sv)+(−1)|θ|ψ(s−1
θ)(dsv)

= (−1)|θ|dθ(v)− (−1)|θ|ψ(s−1
θ)(Sdv)

= (−1)|θ|(dθ(v)− (−1)|θ|θ(dv)).

Therefore

Dψ(s−1
θ) = ψ(∂′s−1

θ).

Thus, ψ commutes with differentials.

Further, we follow (Cattaneo & Felder, 2007, §4) and (Gatsinzi, 2010) for this con-

struction. The map

ψ : s−1 Der(∧V,B;φ)→ Hom∧V (∧V ⊗ sV,B)

can be canonically extended to

ψr : (∧r
∧V s−1 Der(∧V,B;φ),d0)→ (Hom∧V (∧V ⊗∧rsV,B),D)
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for r ≥ 1 by the formula

ψr(α1∧·· ·∧αr)(sx1∧·· ·∧ sxr) = ∑
σ∈Sr

ε(σ)ψ(α1)(sxσ(1)) · · ·ψ(αr)(sxσ(r)), (7)

where ε(σ) is the Koszul sign of the permutation σ ∈ Sr. Put ψ0 = 1∧V , ψ1 = ψ and define

Ψ : (∧∧V s−1 Der(∧V,B;φ),d0)→ (Hom∧V (∧V ⊗∧sV,B),D)

by Ψ =⊕r≥0ψr.

Lemma 4.3.7. The map Ψ is a morphism of graded algebras.

Proof. Recall that if V is a graded vector space, then ∧sV is a cocommutative coalgebra

under the comultiplication ∆ defined by

∆(sx1∧·· ·∧ sxr)

=
r

∑
p=0

1
p!(r− p)! ∑

σ∈Sr

ε(σ)sxσ(1)∧·· ·∧ sxσ(p)⊗ sxσ(p+1)∧·· ·∧ sxσ(r)

(Félix et al., 2001, §22). As B is a graded algebra with multiplication µ then for x,y ∈

Hom∧V (∧V ⊗∧sV,B) the product, x · y given by the composition ∧sV ∆→ ∧sV ⊗∧sV
x⊗y→

B⊗B
µ→B, endows the graded module Hom∧V (∧V⊗∧sV,B) a structure of a graded algebra

(see, (Félix et al., 2005)). For simplicity, let f = α1∧·· ·∧αp ∈ ∧p
∧V s−1 Der(∧V,

B;φ) and g = αp+1∧·· ·∧αr ∈ ∧r−p
∧V s−1 Der(∧V,B;φ) for αi ∈ s−1 Der(∧V,B;φ). To show
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that ψr is a morphism of graded algebras we only need to show that ψp( f )ψr−p(g) =

ψr( f g). Applying the multiplication µ via the composition µ ◦ (ψp( f )⊗ψr−p(g)) ◦∆ and

using (7) one gets

ψp( f )ψr−p(g)(sx1∧·· ·∧ sxr)

=
1

p!(r− p)! ∑
σ∈Sr

ε(σ)ψp( f )(sxσ(1)∧·· ·∧ sxσ(p))ψr−p(g)(sxσ(p+1)

∧·· ·∧ sxσ(r))

=
1

p!(r− p)!

[
∑

τ∈Sp

ε(σ)ε(τ)ψ(α1)(sxτ(σ(1))) · · ·ψ(αp)(sxτ(σ(p))) ·

∑
κ∈Sr−p

ε(σ)ε(κ)ψ(αp+1)(sxκ(σ(p+1))) · · ·ψ(αr)(sxκ(σ(r)))

]

=
1

p!(r− p)!

 ∑
τ∈Sp

κ∈Sr−p

ε(σ)ε(τ)ε(κ)ψ(α1)(sxτ(σ(1))) · · ·ψ(αp)(sxτ(σ(p)))

ψ(αp+1)(sxκ(σ(p+1))) · · ·ψ(αr)(sxκ(σ(r)))
]

= ∑
σ′∈Sr

ε(σ′)ψ(α1)(sxσ′(1)) · · ·ψ(αp)(sxσ′(p))ψ(αp+1)(sxσ′(p+1)) · · ·

ψ(αr)(sxσ′(r)), where σ
′ = (τ×κ)◦σ and τ×κ ∈ Sp×Sr−p ⊆ Sr.

= ψr( f g)(sx1∧·· ·∧ sxr).

Hence ψp( f )ψr−p(g) = ψr( f g). Thus, ψr is a morphism of graded algebras.

Lemma 4.3.8. The map ψr commutes with differentials.

Proof. Denote by f = α1 ∧ ·· · ∧ αr ∈ ∧r
∧V s−1 Der(∧V,B;φ) for αi ∈ s−1 Der(∧V,B;φ).
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Then

d0 f = ∑
i
(−1)|ηi|α1∧·· ·∧∂

′
αi∧·· ·∧αr

where |ηi|= ∑k<i |αk|. Let ξi = ∑
i−1
k=1 |sxσ(k)|. Then,

ψr(d0 f )(sx1∧·· ·∧ sxr)

= ψr

(
∑

i
(−1)|ηi|α1∧·· ·∧∂

′
αi∧·· ·∧αr

)
(sx1∧·· ·∧ sxr)

= ∑
i
(−1)|ηi|ψr(α1∧·· ·∧∂

′
αi∧·· ·∧αr)(sx1∧·· ·∧ sxr)

= ∑
i
(−1)|ηi| ∑

σ∈Sr

ε(σ)(−1)ξiψ(α1)(sxσ(1)) · · ·ψ(∂′αi)(sxσ(i)) · · ·ψ(αr)(sxσ(r))

= ∑
i
(−1)|ηi| ∑

σ∈Sr

ε(σ)(−1)ξiψ(α1)(sxσ(1)) · · ·
[
Dψ(αi)(sxσ(i))

]
· · ·ψ(αr)(sxσ(r))

= ∑
i
(−1)|ηi| ∑

σ∈Sr

ε(σ)(−1)ξiψ(α1)(sxσ(1)) · · ·
[
d(ψ(αi)(sxσ(i)))+(−1)| f |

ψ(αi)(Dsxσ(i))
]
· · ·ψ(αr)(sxσ(r))

= ∑
i
(−1)|ηi| ∑

σ∈Sr

ε(σ)(−1)ξiψ(α1)(sxσ(1)) · · ·
[
d(ψ(αi)(sxσ(i)))− (−1)| f |

ψ(αi)(Sdxσ(i))
]
· · ·ψ(αr)(sxσ(r))

= ∑
i
(−1)|ηi| ∑

σ∈Sr

ε(σ)(−1)ξiψ(α1)(sxσ(1)) · · ·d(ψ(αi)(sxσ(i))) · · ·ψ(αr)

(sxσ(r))− (−1)| f |∑
i
(−1)|ηi| ∑

σ∈Sr

ε(σ)(−1)ξiψ(α1)(sxσ(1)) · · ·ψ(αi)(Sdxσ(i))

· · ·ψ(αr)(sxσ(r)).

73



Moreover,

D(ψr( f )(sx1∧·· ·∧ sxr))

= d

(
∑

σ∈Sr

ε(σ)ψ(α1)(sxσ(1)) · · ·ψ(αr)(sxσ(r))

)
+(−1)| f |ψr( f )(D(sx1∧·· ·∧ sxr))

= ∑
i
(−1)|ηi| ∑

σ∈Sr

ε(σ)(−1)ξiψ(α1)(sxσ(1)) · · ·d(ψ(αi)(sxσ(i))) · · ·ψ(αr)

(sxσ(r))− (−1)| f |∑
i
(−1)|ηi| ∑

σ∈Sr

ε(σ)(−1)ξiψ(α1)(sxσ(1)) · · ·ψ(αi)(Sdxσ(i))

· · ·ψ(αr)(sxσ(r)).

Therefore

ψr(d0 f ) = D(ψr( f )).

We deduce that ψr commutes with differentials.

Lemma 4.3.9. If φ : (∧V,d)→ (B,d) is a surjective morphism between cdga’s where V is

finite dimensional, then

ψr : (∧r
∧V s−1 Der(∧V,B;φ),d0)→ (Hom∧V (∧V ⊗∧rsV,B),D)

is bijective.

Proof. Let {v1, . . . ,vn} be a basis of V. Consider the φ-derivation θi =(vi,1)∈Der(∧V,B;φ)

and the corresponding θ̄i = s−1θi ∈ s−1 Der(∧V,B;φ). Assume {svi1 ∧ . . .∧ svir} is a basis

of ∧rsV for i1 ≤ i2 ≤ ·· · ≤ ir and r ≥ 1. We denote by ∑(svi1 ∧ ·· · ∧ svir ,bi1 . . .ir) the
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element f ∈ Hom∧V (∧V ⊗∧rsV,B) such that f (svi1 ∧ ·· · ∧ svir) = bi1 . . .ir and zero on

other elements of the basis of ∧rsV. As φ is surjective, there exists ai1 . . .ir ∈ ∧V such that

φ(ai1 . . .ir) = bi1 . . .ir . Let θ̄ = ∑i1...ir ai1 . . .ir · θ̄i1 ∧·· ·∧ θ̄ir ∈ ∧r
∧V s−1 Der(∧V,B;φ). Define

γr : (Hom∧V (∧V ⊗∧rsV,B),D)→ (∧r
∧V s−1 Der(∧V,B;φ),d0)

by γr( f ) = ∑ai1 . . .ir · θ̄i1 ∧ ·· · ∧ θ̄ir . It is easily verified that both compositions of ψr and

γr equal to the identities. Hence, γr is the inverse of ψr, and we deduce that each ψr is

bijective, for each r ≥ 1.

As an application of Theorem 4.3.5, we show that Hochschild cohomology algebra of

a surjective Sullivan model φ : (∧V,d)→ (B,d) of a based map f : X → Y between simply

connected finite CW-complexes contains a polynomial algebra.

Definition 4.3.10. (Lupton & Smith, 2007) Given a commutative differential graded alge-

bra map φ : (∧V,d)→ (B,d), post-composition by the augmentation ε : B→Q gives a map

of chain complexes ε∗ : Der(∧V,B;φ)→ Der(∧V,Q;ε) given by ε∗(ϕ)(v) = ε(ϕ(v)) for

ϕ ∈ Der(∧V,B;φ). We define the evaluation subgroups of φ by Gn(∧V,B;φ) = Im{H(ε∗) :

Hn(Der(∧V,B;φ))→ Hn(Der(∧V,Q;ε))}.

Moreover, if φ is a Sullivan model of a based map f : X→Y between simply connected

finite CW-complexes, then Gn(∧V,B;φ)∼= π∗(ev)⊗Q, where ev : map(X ,Y ; f )→ Y is the

evaluation at the base point (Félix et al., 2001; Lupton & Smith, 2007).
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The following result extends (Gatsinzi, 2010, Theorem 11).

Theorem 4.3.11. If φ : (∧V,d)→ (B,d) is a surjective Sullivan model of a based map

f : X → Y between simply connected finite CW-complexes, then the commutative graded

algebra HH∗(∧V ;B) contains a polynomial algebra as a graded sub algebra.

Proof. Let (∧V,d) = (∧(v1, . . . ,vn),d) be a minimal Sullivan model with |v1| ≤ |v2| ≤

· · · ≤ |vn|. In Der(∧V,B;φ), let v∗i = (vi,1). Since Y is a finite CW-complex, then |vn|

is odd (Félix et al., 2001, §29). Thus, in this case v∗n is odd and a simple calculation

shows that ∂v∗n = 0. Further, v∗n cannot be a boundary for degree reasons. Hence [v∗n]

represents a non zero homology class in H∗(Der(∧V,B;φ)) and H(ε∗)([v∗n]) ̸= 0. More-

over, let s−1v∗n ∈ s−1 Der(∧V,B;φ). Then [s−1v∗n] represents a non zero homology class

in H∗(s−1 Der(∧V,B;φ)). Further, let θ1 = ψ(s−1v∗n) ∈ Hom∧V (∧V ⊗ sV,B). Define θk ∈

Hom∧V (∧V ⊗∧ksV,B) by θk(svn∧ ·· · ∧ svn) = 1 and zero on other elements of a basis of

∧k(sV ). Then, we claim by contradiction that [θk] ∈ Hom∧V (∧V ⊗∧ksV,B) is a non zero

cohomology class. Assume there exists γk ∈ Hom∧V (∧V ⊗∧ksV,B) such that Dγk = θk.

Hence,

θk(svn)
k = Dγk(svn)

k

= dγk(svn)
k− (−1)|γk|γk(D(svn)

k) = 1.
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Moreover, dγk(svn)
k ∈ B≥2. If dv ̸= 0, then dv ∈ ∧≥2V. Hence, S(dv) ∈ ∧+V ⊗ sV. There-

fore, γkD(svn)
k = γk(−Sdvn∧ svn∧ ·· ·∧ svn)⊆ ∧+V ⊗∧k(sV ). Thus, γk(D(svn)

k) ∈ B≥2.

Hence a contradiction. Therefore, θk is a non zero cohomology class. Moreover, θk
1 =

k!θk ̸= 0. We deduce that HH∗(∧V ;B) contains a sub algebra Q[θ1] isomorphic to∧(s−1v∗n).

Remark 4.3.12. The proof of the above result could be adapted to show that HH∗(∧V ;B)

contains a polynomial algebra over s−1G∗(∧V,B;φ).

The following Example illustrates the result above.

Example 4.3.13. Consider the inclusion G2,4(C)↣G2,5(C) between complex Grassman-

nians. A Sullivan model of the inclusion is given by

φ : ∧V = (∧(a2,a4,a7,a9),d)→ (∧(b2,b4,b5,b7),d) = B,

where da2 = da4 = 0, da7 = a2
4−3a2

2a4 +a4
2,da9 = 4a3

2a4−3a2a2
4−a5

2, and db2 = db4 =

0, db5 = 2b2b4−b3
2,db7 = b2

4−3b2
2b4 +b4

2. Further, consider the ideal

I = (2b2b4−b3
2,b

2
4−3b2

2b4 +b4
2).

Then, H∗(B,d) = ∧(b2,b4)/I. Hence, there is a quasi-isomorphism

φ̄ : ∧V = (∧(a2,a4,a7,a9),d)→ H∗(B,d),
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where φ(a2) = b2,φ(a4) = b4,φ(a7) = 0 and φ(a9) = 0. Thus φ̄ is surjective. Moreover,

define θ7 = (a7,1),θ9 = (a9,1) ∈ Der(∧V,H∗(B); φ̄). One verifies that ∂θ7 = ∂θ9 = 0.

Thus, [θ7] and [θ9] are non zero cohomology classes in H∗(Der(∧V,H∗(B); φ̄)). A sim-

ple calculation shows that θ2 = (a2,1),θ4 = (a4,1) are not cocycles in Der(∧V,H∗(B); φ̄).

Let θ̄ = s−1θ7, then ψ(θ̄k) is a non zero cohomology class in Hom∧V (∧V ⊗∧ksV,B),

for all k ≥ 1. It cannot be coboundary because for βk ∈ Hom∧V (∧V ⊗∧ksV,B), then

Dβk(sa7∧·· ·∧ sa7) = ψ(θ̄k)(sa7∧·· ·∧ sa7) ∈ (sa7), where (sa7) is the ideal generated by

sa7. But ψ(θ̄k)(sa7∧·· ·∧sa7)= k!. In a similar way, (s−1θ9)
k ̸= 0. Therefore, HH∗(∧V ;B)

contains a polynomial algebra isomorphic to ∧(s−1θ7,s−1θ9)∼= ∧(s−1G∗(∧V,B;φ)).
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5 Main result

We begin this chapter by providing details on main result which extends (Gatsinzi, 2016).

A space X and its model (∧V,d) are called elliptic, if and only if V and H∗(∧V,d) are

both finite dimensional. Topologically, this means that both π∗(X)⊗Q and H∗(X ;Q) are

finite-dimensional Q-vector spaces (Félix et al., 2001, §32). For instance homogeneous

spaces are elliptic. Let X be an elliptic space. A space X is an n-stage Postnikov tower

and its minimal Sullivan model is given by (∧V,d) = (∧(V0⊕·· ·⊕Vn−1),d), where dVi ⊂

∧(V0⊕ ·· · ⊕Vi−1). Homogeneous spaces are elliptic 2-stage Postnikov towers. Our aim

is to study properties of the map induced in Hochschild cohomology by a Koszul Sullivan

model (KS-model for short) of a TNCZ fibration with base an elliptic 2-stage Postnikov

tower. Hence, our main result reads as follows.

Theorem 5.0.1. If F→E
p→X is a TNCZ fibration, where X is an elliptic 2-stage Postnikov

tower and f : (∧V,d)↣ (C,d) a KS-model of p, then the induced map in Hochschild

cohomology

HH∗( f ) : HH∗(∧V ;∧V )→ HH∗(∧V ;C)

is injective.
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5.1 Hochschild cohomology of certain Koszul Sullivan extensions

We present some results about Hochschild cohomology for the kind of commutative differ-

ential graded algebras that arise as minimal models in rational homotopy theory.

Let (∧V,0) be a Sullivan algebra where V is finite dimensional. We consider a KS-model

f : (∧V,0)↣ (∧V ⊗∧x2k+1,d) =C of commutative differential graded cochain algebras,

where dx2k+1 ∈ ∧V is non zero. It induces a homomorphism of Hochschild cochain com-

plexes

Φ : Hom∧V (∧V ⊗∧sV,∧V )→ Hom∧V (∧V ⊗∧sV,C).

If g ∈ Hom∧V (∧V ⊗∧sV,∧V ), then Φ(g) is the composition of ∧V -modules

(∧V ⊗∧sV,0)
g→ (∧V,0)

f
↣ (∧V ⊗∧x2k+1,d).

Moreover, for g ∈ Hom∧V (∧V ⊗∧sV,C)

(Dg)(sv) = dC ·g(sv)− (−1)|g|g(D(sv)),

= dCg(sv)− (−1)|g|g(−Sdv),

= dCg(sv)− (−1)|g|g(0),

= dCg(sv).
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Hence, g is a cocycle if and only if dC(g(sv)) = 0.

Theorem 5.1.1. Let f : (∧V,0)↣ (∧V ⊗∧x2k+1,d) =C be a KS-model, where dx2k+1 ∈

∧V is non zero. Then,

HH∗(∧V ;C)∼= Hom∧V (∧V ⊗∧sV,H∗(C)).

Proof. We consider the complex

Hom∧V (∧V ⊗∧sV,C).

Let g be a cocycle in Hom∧V (∧V ⊗∧sV,C). Given a homogeneous basis {wi} of ∧sV and

g(wi) = bi, we have that,

(Dg)(wi) = dCg(wi) = dC(bi) = 0.

Therefore, g is a cocycle if and only if each bi is a cocycle in C. We show that, g is not a

coboundary. We claim this by contradiction. Assume g is a coboundary, then there is a g1

such that Dg1 = g. Hence

(Dg1)(wi) = dCg1(wi) = g(wi) = bi.

Thus, bi is a coboundary, this is a contradiction. Hence, g is a coboundary if and only if
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each bi is a coboundary. Conversely, if bi ∈ C is a cocycle if and only if g is a cocycle.

Hence,

HH∗(∧V ;C)∼= Hom∧V (∧V ⊗∧sV,H∗(C)).

In particular,

HH∗(1)(∧V ;C)∼= Hom(sV,H∗(C)).

Theorem 5.1.2. Let f : (∧V,0)↣ (∧V ⊗∧x2k+1,d) be a KS-model, where dx2k+1 ∈ ∧V

is non zero. Then, the induced homomorphism of Hochschild cochain complexes Φ :

Hom∧V (∧V ⊗∧sV,∧V )→ Hom∧V (∧V ⊗∧sV,C) satisfies

kerH(Φ)∼= Hom∧V (∧V ⊗∧sV,P∩∧V )

where P is the subspace of coboundaries of C.

Proof. We consider

Φ : Hom∧V (∧V ⊗∧sV,∧V )→ Hom∧V (∧V ⊗∧sV,C).

Assume, Φ(g) = f ◦g is a coboundary in Hom∧V (∧V ⊗∧sV,C). That is, f ◦g = dg′ where
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g′ ∈ Hom∧V (∧V ⊗∧sV,C). Then for a homogeneous basis {wi} of ∧sV,

(Dg′)(wi) = dC(g′(wi)) = dC(αi),

where αi = g′(wi). Hence, ( f ◦ g)(wi) = dC(αi). Thus, f ◦ g ∈ Hom∧V (∧V ⊗∧sV,P∩

∧V ). Conversely, if f ◦ g ∈ Hom∧V (∧V ⊗∧sV,P∩∧V ), then H(Φ)([g]) = 0. Thus, [g] ∈

kerH(Φ) and

kerH(Φ)∼= Hom∧V (∧V ⊗∧sV,P∩∧V ).

Theorem 5.1.3. If f : (∧V,d)↣ (∧V,d)⊗ (∧W, d̄) = (C,d) is a trivial KS-model, where

W is finite dimensional, then

HH∗( f ) : HH∗(∧V ;∧V )→ HH∗(∧V ;C)

is injective.

Proof. Consider the induced map

Ψ : Hom∧V (∧V ⊗∧sV,∧V )→ Hom∧V (∧V ⊗∧sV,C).
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If g ∈ Hom∧V (∧V ⊗∧sV,∧V ), then Ψ(g) is the composition

(∧V ⊗∧sV,D)
g→ (∧V,d)

f
↣ (∧V,d)⊗ (∧W, d̄).

Let [g] ∈ kerHH∗( f ), we have that f ◦g ∈ Hom∧V (∧V ⊗∧sV,C) is a coboundary. That is,

there is g′ ∈Hom∧V (∧V ⊗∧sV,C) such that Dg′ = f ◦g. For a homogeneous basis {wi} of

∧sV we have (Dg′)(wi) = ( f ◦g)(wi).

Hence

(Dg′)(wi) = d(g′(wi))− (−1)|g
′|g′(D(wi))

= ( f ◦g)(wi).

We can decompose g′ as g′(wi) = ai⊗1+αn, where αn ∈ ∧V ⊗∧+W and ai ∈ ∧V. Hence

d(g′(wi)) = dai⊗1+dαn. Therefore,

dai⊗1+dαn− (−1)|g
′|g′(D(wi)) = ( f ◦g)(wi). (8)

Moreover, consider the projection

(∧V,d)⊗ (∧W, d̄)
p→ (∧V,d).
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Define

g′′ : (∧V ⊗∧sV,D)→ (∧V,d)

by g′′(wi) = (p◦g′)(wi) = ai. We show that (Dg′′)(wi) = g(wi).

(Dg′′)(wi) = d(g′′(wi))− (−1)|g
′′|g′′(D(wi)),

= d(p◦g′)(wi)− (−1)|g
′′|(p◦g′)(D(wi)),

= p( f ◦g)(wi), using (8),

= g(wi).

We have that, (Dg′′)(wi) = g(wi), which implies that g is a coboundary in Hom∧V (∧V ⊗

∧sV,∧V ). Therefore, [g] = 0. Hence, HH∗( f ) is injective.

5.2 Mapping spaces and fibrations over spheres

In this section, for simplicity, we consider a based map p : E → S2n, together with certain

fibrations over spheres, and show that they yield injective maps in Hochschild cohomology.

Let p : E → S2n be a based map and f : (∧V,d) = (∧(x2n,x4n−1),d)→ (B, d̄) a Sullivan

model of p. We study the following induced homomorphism of Hochschild cochain com-

plexes

Φ : Hom∧V (∧V ⊗ sV,∧V )→ Hom∧V (∧V ⊗ sV,B).
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We prove the following.

Theorem 5.2.1. Let p : E → S2n be a based map and f : (∧(x2n,x4n−1),d)→ (∧V, d̄) =

(B,d) a Sullivan model of p. Then

f∗ : Der∧(x2n,x4n−1)→ Der(∧(x2n,x4n−1),B; f )

is injective in homology.

Proof. Consider the minimal Sullivan model of S2n given by (∧(x2n,x4n−1),d) where dx2n =

0 and dx4n−1 = x2
2n. The Lie algebra (Der∧(x2n,x4n−1),δ) is generated (as a vector space)

by the derivations θ2n = (x2n,1), θ2n−1 = (x4n−1,x2n), θ4n−1 = (x4n−1,1). A straightfor-

ward calculation shows that the differential is given by δθ2n−1 = δθ4n−1 = 0, δθ2n =

2θ2n−1. Thus

H∗(Der∧(x2n,x4n−1),δ) =< [θ4n−1]> .

Therefore, Hi(Der∧(x2n,x4n−1),δ) =Q for i = 4n−1 and vanishes in all other degrees. If

θ ∈ Der∧(x2n,x4n−1), then f∗(θ) is the composition ∧(x2n,x4n−1)
θ→ (∧(x2n,x4n−1),d)

f→

(∧V, d̄). So, f∗(θ4n−1) = (x4n−1,1) = α4n−1. Moreover, α4n−1 cannot be a boundary for

degree reasons. Hence H( f∗)([θ4n−1]) ̸= 0, which implies H( f∗) is injective.

Let (∧V,d) be a minimal model of X . If h : X → XQ is the rationalization of X , then

G∗(∧V )∼= G∗(XQ) (Félix et al., 2001, Proposition 29.8). In the proof of Theorem 5.2.1, it

shown that H∗(Der∧V )∼= G∗(S2n). Moreover, if n is odd, then H∗(Der∧V )∼= G∗(Sn).

86



Theorem 5.2.2. (D. Sullivan, 1977; Lupton & Smith, 2007) Let p : E → B be a map be-

tween simply connected CW-complexes of finite type and f : (∧V,d)→ (C, d̄) a Sullivan

model of p. Then there are natural isomorphisms

H∗(Der∧V )∼= π∗(aut1(B))⊗Q

H∗(Der(∧V,C; f ))∼= π∗(map(E,B; p))⊗Q,

where aut1(B) denotes the monoid of self homotopy equivalences of B which are homotopic

to the identity.

We deduce the following result.

Corollary 5.2.3. Let p : E → Sn be a based map. The map p∗ : aut1(Sn)→ map(E,Sn; p)

induces an injective map of rational homotopy groups

π∗(aut1(Sn))⊗Q→ π∗(map(E,Sn; p))⊗Q.

Proof. The proof follows immediately from Theorem 5.2.2 and Theorem 5.2.1.

Further, we remind here that in 1977, S. Halperin (Halperin, 1977) formulated a conjec-

ture saying that every fibration with fibre an elliptic space X with evenly graded cohomol-

ogy (equivalently, with positive Euler characteristic) is TNCZ. This conjecture has been

verified in the following cases: if H∗(X ,Q) has at most three generators (Lupton, 1990;
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Thomas, 1981), if X is a flag manifold and X = G/H is a homogeneous space, where G

and H have equal rank (Meier, 1981; Shiga & Tezuka, 1987). The following result uses

some of these ideas supported by an example.

Theorem 5.2.4. Given a TNCZ fibration X → E
p→ S2n with

f : (∧V,d) = (∧(x2n,x4n−1),d)↣ (∧(x2n,x4n−1)⊗∧W,D) = (C,d)

a KS-model of p, then the induced map in Hochschild cohomology

HH∗( f ) : HH∗(∧V ;∧V )→ HH∗(∧V ;C)

is injective.

Proof. Let (∧V,d)= (∧(x2n,x4n−1),dx2n = 0,dx4n−1 = x2
2n) be the minimal Sullivan model

of S2n. The complex (Hom∧V (∧V ⊗∧sV,∧V ),D) is isomorphic to

(∧V ⊗∧((sx4n−1)
∗,(sx2n)

∗),D(sx4n−1)
∗ = 0,D(sx2n)

∗ =−2x2n(sx4n−1)
∗),

where {(sx4n−1)
∗,(sx2n)

∗} is a basis of the dual vector space (sV )∗ = Hom(sV,Q). More-

over, define g ∈ Hom∧V (∧V ⊗∧sV,∧V ) by

g(sx2n) = x2n, g(sx4n−1) = 2x4n−1.
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A simple computation shows that g is a cocycle and [g] is non zero in HH∗(∧V ;∧V ).

Then, HH∗(∧V ;∧V ) is given by H∗(∧V,d)⊕∧+(sx4n−1)
∗⊕ < [g] > . Moreover, for i ≥

1, ((sx4n−1)
∗)i is represented by φi ∈ Hom∧V (∧V ⊗∧sV,∧V ) such that φi((sx4n−1)

i) = 1

and zero otherwise. We claim: HH∗([φi]) ̸= 0 in HH∗(∧V ;C). By contradiction, assume

there exists ξi ∈ Hom∧V (∧V ⊗∧sV,C) such that Dξi = φi. Hence

(Dξi)(sx4n−1) = Dξi(sx4n−1)− (−1)|ξi|ξi(dsx4n−1)

= Dξi(sx4n−1)− (−1)|ξi|ξi(2x2nsx2n)

= Dξi(sx4n−1)− (−1)|ξi|2x2nξi(sx2n) = 1.

But Dξi(sx4n−1)∈C≥2. In the same way, 2x2nξi(sx2n)∈C≥2, which is in contradiction with

(Dξi)(sx4n−1) = 1. Hence HH∗( f )([φi]) ̸= 0. Further, assume there is g′ ∈ Hom∧V (∧V ⊗

∧sV,C) such that Dg′ = f ◦g. But (Dg′)(sx2n) = Dg′(sx2n) = x2n. This implies there is y ∈

∧W such that dy= x2n which is a contradiction as the fibration is TNCZ. Thus, HH∗( f )([g])

̸= 0. Therefore, HH∗≥1( f ) is injective. Finally, HH∗(0)( f ) = H∗( f ) : H∗(∧V,d)→ H∗(C) is

injective as H∗(p) is injective.

Example 5.2.5. Consider the KS-model f :∧V =(∧(x2n,x4n−1),d)↣ (∧V⊗∧(x2,x2n−1),

Dx2 = 0,Dx2n−1 = xn
2 + x2n), where f (x2n) = x2n and f (x4n−1) = x4n−1. This is a model

of a fibration CP(n− 1)→ E → S2n. Moreover, H∗(CP(n− 1);Q) ∼= ∧x2/(xn−1
2 ). Thus,

the cohomology H∗(CP(n− 1);Q) is monogenic, i.e., it has a single even generator, so
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this fibration is TNCZ (see (Thomas, 1981)). Recall that,, HH∗(∧V ;∧V ) ∼= H∗(∧V,d)⊕

∧+(sx4n−1)
∗⊕ < x2n(sx2n)

∗−2x4n−1(sx4n−1)
∗ > . Moreover, HH∗( f )([((sx4n−1)

∗)i]) ̸= 0

and HH∗( f )([x2n(sx2n)
∗−2x4n−1(sx4n−1)

∗]) ̸= 0 for degree reasons. Further, H∗( f )([x2n])=

[xn
2] ̸= 0. Thus, HH∗( f ) is injective.

5.3 Proof of the main result

We remind here the main result.

Theorem 5.3.1. If F→E
p→X is a TNCZ fibration, where X is an elliptic 2-stage Postnikov

tower and f : (∧V,d)↣ (C,d) a KS-model of p, then the induced map in Hochschild

cohomology

HH∗( f ) : HH∗(∧V ;∧V )→ HH∗(∧V ;C)

is injective.

Proof. Let B be an elliptic 2-stage Postnikov tower of which the minimal Sullivan model

is given by (∧V,d) = (∧(V0⊕V1),d) with dV0 = 0 and dV1 ⊂ ∧V0. Then, HH∗(∧V ;∧V )

will be computed from a complex of the form

(Hom∧V (∧V ⊗∧sV,∧V ),D)∼= (∧V ⊗∧(Z0⊕Z1),d),

where Z0 = (sV1)
∗ = s−1V ∗1 , Z1 = (sV0)

∗ = s−1V ∗0 , and dZ0 = 0, dZ1 ⊆ ∧V ⊗ Z0. Let

C = ∧V ⊗∧W. In the same way, HH∗(∧V ;C) is computed by the complex (∧V ⊗∧W ⊗
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∧(Z0⊕Z1),d). The Hochschild complex inclusion C∗(∧V ;∧V )→C∗(∧V ;C) is modelled

by (∧V⊗∧(Z0⊕Z1),d)
φ→ (∧V⊗∧W⊗∧(Z0⊕Z1),d). Our goal is to show that HH∗( f )=

H∗(φ) is injective. We begin by filtering (∧V ⊗∧(Z0⊕Z1),d) with the wedge degree in

Z1. That is, Fp = (∧V ⊗∧Z0)⊗∧≤pZ1. We get an increasing filtration

F : F0 = ∧V ⊗∧Z0 ⊆ F1 ⊆ ·· · ⊆ Fp ⊆ Fp+1 ⊆ ·· · ⊆ ∧V ⊗∧Z0⊗∧Z1,

where dFp ⊆ Fp−1. This yields a spectral sequence such that

E0
p,∗ = (∧V ⊗∧Z0)⊗∧pZ1,

E1
p,∗ = H∗(∧V ⊗∧Z0)⊗∧pZ1 ∼= H∗(∧V )⊗∧Z0⊗∧pZ1.

As (∧V,d) = (∧(V0⊕V1),d) with dV0 = 0 and dV1⊂∧V0, then the above spectral sequence

collapses at E2-level. The E1-term, together with differentials, is pictured below

E1
p,∗

d1 // E1
p−1,∗

H∗(∧V )⊗∧Z0⊗∧pZ1
d1 // H∗(∧V )⊗∧Z0⊗∧p−1Z1.

Likewise, we filter (∧V ⊗∧W ⊗∧(Z0⊕Z1),d) by the wedge degree in Z1, which gives rise

to a spectral sequence {Ēr}. Then φ : (∧V ⊗∧(Z0⊕Z1),d)→ (∧V ⊗∧W ⊗∧(Z0⊕Z1),d)
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induces a morphism of spectral sequences as shown below.

// E1
p,∗

φ1,p
��

d1 // E1
p−1,∗ · · ·

φ1,p−1
��

d1 // E1
1,∗

φ1,1
��

d1 // E1
0,∗

φ1,0
��

// Ē1
p,∗

d1 // Ē1
p−1,∗ · · ·

d1 // Ē1
1,∗

d1 // Ē1
0,∗.

Now, to show that HH∗( f ) is injective, it is enough to show that φ2,∗=H∗(φ1,∗) is injective.

Consider the following commutative diagram

// H∗(∧V )⊗∧Z0⊗∧p+1Z1
d1 //

φ1,p+1
��

d1 // H∗(∧V )⊗∧Z0⊗∧pZ1

φ1,p
��

//

// H∗(∧V ⊗∧W )⊗∧Z0⊗∧p+1Z1
d1 // H∗(∧V ⊗∧W )⊗∧Z0⊗∧pZ1 //

As H∗(p) is injective, then φ1,p is injective for each p. Let x ̸= 0 ∈ H∗(∧V ⊗∧Z0)⊗∧pZ1

be a d1-cocycle. We show by contradiction that H∗(φ1,p([x])) ̸= 0 in H∗(H∗(∧V ⊗∧W )⊗

∧Z0⊗∧pZ1,d1). Assume φ1,p(x) is a coboundary. Hence, there is y ∈ H∗(∧V ⊗∧Z0)⊗

∧p+1Z1 such that d1y= φ1,p(x). Let A= ImH∗(φ)⊆H∗(∧V⊗∧W ) and A′ its complement.

Then y = y1+y2, where y1 ∈ A⊗∧Z0⊗∧p+1Z1 and y2 ∈ A′⊗∧Z0⊗∧p+1Z1. As φ1,p(x) ∈

A⊗∧Z0 ⊗∧pZ1, and d1y2 ∈ A′ ⊗∧Z0 ⊗∧pZ1, then d1y2 = 0. Moreover, there is x1 ∈

H∗(∧V ⊗∧Z0)⊗∧p+1Z1 such that φ1,p+1(x1) = y1. As the diagram above commutes, one

gets

φ1,p(d1(x1)) = d1y1 = φ1,p(x).
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But φ1,p is injective, so we deduce that x = d1(x1). Hence H∗(φ1,p)([x]) ̸= 0. Therefore,

H∗(φ1,p) is injective.

As HH∗(∧V ;∧V ) and H∗(XS1
;Q) are isomorphic, where (∧V,d) is the minimal Sulli-

van model of X , we deduce the following result.

Corollary 5.3.2. If F → E
p→ X is a TNCZ fibration, where X is an elliptic 2-stage Post-

nikov tower and f : (∧V,d)↣ (C,d) a KS-model of p, then the natural graded linear map

HH∗( f ) : H∗(XS1
;Q)→ HH∗(∧V ;C)

is injective.

Example 5.3.3. Given the KS-model f : ∧V = (∧(x2,x5),d)↣ (∧V ⊗∧(y2,y3),

Dy2 = 0,Dy3 = x2
2−y2

2). It is a model of a fibration CP(1)→ E→CP(2) which is TNCZ,

as the cohomology H∗(CP(1);Q)∼= ∧y2/(y2
2) is monogenic (see (Thomas, 1981)). More-

over, H∗(CP(2);Q) ∼= H∗((∧x2/(x3
2)⊗∧(z4,z1),d),dz4 = 0, dz1 = 3x3

2z4. Here Z0 (resp.

Z1) is spanned by z4 = (sx5)
∗ (resp. z1 = (sx2)

∗). The non-zero homology classes are repre-

sented by {x j
2,x

i
2z1,xi

2z1zk
4, k ≥ 0, 0≤ j ≤ 1, 1≤ i≤ 2} (see, (Gatsinzi, 2016)). Moreover,

at the E1-level of the spectral sequence, we have
d1· · · → E1

p,∗
φ1,p→ Ē1

p,∗
d1→ ··· and φ1,p are

injective because the fibration is TNCZ. So, for every non zero homology class y ∈ E1
p,∗,

we have that H∗(φ1,p)([y]) ̸= 0 for degree reasons. Hence, HH∗( f ) is injective.
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5.4 Conclusion and Future Work

As we couldn’t find, to the best of our knowledge, the precise references in the literature

that extend some of the work of Banyaga et al. (2018) and Gatsinzi (2019, 2016), the focus

of this thesis research is to serve as an extension to the work of Banyaga et al. (2018) and

Gatsinzi (2019, 2016).

On the other hand, the study of Hochschild cohomology of C = (∧V,d)⊗ (∧W,d) is also

an interesting research subject and should have an application to rational homotopy theory

with a viewpoint to string topology. Here, we consider the following problem recom-

mended for future work. To introduce the difficulties once at a time, one should begin to

establish an explicit isomorphism between HH∗(C;C) and the product HH∗(∧V ;∧V )⊗

HH∗(∧W ;∧W ) as graded algebras, furthermore, as Gerstenhaber algebras (we could not

obtain a specific reference of this in the literature). Secondly, one should use what is

proved in (Gatsinzi, 2017) that for minimal Sullivan algebras, the cochain complex (∧V ⊗

∧s−1V ∗,d) computing Hochschild cohomology is a differential BV algebra which ex-

tends the Gerstenhaber structure. In particular, let (∧V,d) and (∧W,d) be two commu-

tative differential graded algebras, where V and W are finite-dimensional. Then (∧V,d)⊗

(∧W,d) = (∧(V ⊕W ),d) should have also a relative Sullivan model. Hence, one should

show that there is an isomorphism of differential BV algebras (∧V ⊗∧s−1V ∗,d)⊗ (∧W ⊗

∧s−1W ∗,d)∼= (∧(V ⊕W )⊗∧s−1(V ⊕W )∗,d).
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Burghelea, D., & Vigué-Poirrier, M. (1988). Cyclic homology of commutative algebras I.

95



In Algebraic topology—rational homotopy (Louvain-la-Neuve,1986), Lecture Notes

in Math. (Vol. 1318, pp. 51–72). Springer, Berlin.

Cattaneo, A., & Felder, G. (2007). Relative formality theorem and quantisation of

coisotropic submanifolds. Adv. Math, 208, 521-548.

Cattaneo, A., Fiorenza, D., & Longoni, R. (2005). On the Hochschild–Kostant–Rosenberg

map for graded manifolds. Int. Math. Res. Not, 2005, 3899-3918.

Charkaborty, P., & Sankaran, P. (2014). Maps between certain complex Grassmann mani-

folds. Topology and its applications, 170, 119-123.

Chas, M., & Sullivan, D. (1999). String topology. Preprint math GT/9911159.

Cohen, R., & Jones, J. (2002). A homotopy realisation of string topology. Ann. of Math,

324, 773-798.

Cohen, R., & Voronov, A. (2005). Notes on string topology. Preprint.
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