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Abstract

In this project we study the exponential convergence of Markov processes to

quasi-stationary distributions (QSDs) with applications. Quasi-stationary

distributions are useful when it comes to understanding the behavior of

stochastic processes which appear to be persistent over a long time period

before reaching extinction. A review of the concept of stationarity and er-

godicity is given. Next quasi-stationarity is defined. A simple example that

illustrates quasi-stationarity is considered- specifically the example of the fi-

nite state case. Finally, we choose a Corona Virus model, convert it to a

birth and death process, then show that it converges to a particular QSD

exponentially, we also choose the compartment of infected persons from the

model and show that it is a branching process that also converges to a QSD

over time.
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Chapter 1

INTRODUCTION

Many models are used in stochastic analysis to study systems that change

states many times per second. On rare occasions, the time scale of such steps

is measured in hours or days. We are interested in the scenario where the

time steps are measured in several hundreds, thousands or even a million

times over periods extending to months, years and more. For us to under-

stand how these systems work, we have to study their long time behaviour.

These bring us to the concepts of stationarity, stationary distributions, lim-

iting distributions and quasi-stationary distributions. We will discuss these

concepts with regard to Markov processes, which are stochastic processes

that exhibit the Markov property. The Markov property is also called the

memoryless property in literature. It simply implies that the evolution of a

process in the future depends only on the present state and does not depend

on the past.
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In this paragraph we introduce the notations used throughout this study.

Let Z+ = {0, 1, 2, ....} be the set of non-negative integers, N+ = {1, 2, ...} be

the set of positive integers and R+ = [0,∞) be the set of non-negative real

numbers. Also, we let {Xt}t∈Z+ denote a countable-state Markov chain with

transition kernel P on a state space (E,B(E)), where B(E) represents the

σ-algebra. Pi and Ei denotes the probability and the expectation of the chain

respectively, where P t(i, j) = Pi(Xt = j) = Ei(1Xt = j). The Markov chain

is under the condition that its initial state X0 = i and 1A is the indicator

function set of set A. We also consider a σ-finite measure on B(E) with the

property

{π(A)} = πP (A) ≜
∫
πd(i)P (i, A), A ∈ B(E), (1.1)

which is called invariant.

1.1 Stationarity and Stationary Distributions

According to Kaspi et al in [11] a discrete-time stochastic process {Xt}n∈N is

stationary if for any time points t1, ..., tn and anym ≥ 0, the joint distribution

of (Xt1 , ..., Xtn) is the same as the joint distribution of (Xt1+m, ..., Xtn+m).

Therefore ‘stationarity’ refers to ‘stationary in time’. In particular, for a

stationary process, the distribution of Xt is the same for all n. What makes
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Markov chains peculiar is that we can often make them stationary. This

leads us to the concept of stationary distributions. If a Markov chain is

stationary, then we call the common distribution of all the Xt the stationary

distribution of the Markov chain. The stationary distribution of the process

Xt is a probability distribution that remains unchanged in the Markov chain

as time progresses. It is often represented as a row vector π whose entries

are probabilities that sum up to one, and given the transition matrix P , it

satisfies

π = πP. (1.2)

Looking at this equation, we can say, π is invariant by the matrix P [13].

Ergodic Markov chains have a unique stationary distribution. Absorbing

Markov chains also have stationary distributions with non-zero elements only

in the absorbing states.

Recalling some concepts of linear algebra, we notice that πP = π is identical

to the column vector equation Mν = λν for eigenvalues and eigenvectors,

with λ equals one. In fact by transposing the matrices,

(πP )T = πT =⇒ P TπT = πT .

This means the transposed transition matrix P T has eigenvectors with eigen-
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value 1 that are stationary distributions expressed as column vectors. Hence

if the eigenvectors of P T are known, consequently so are the stationary dis-

tributions of the Markov chain with transition matrix P . This is because

the stationary distribution is a left eigenvector (rather than the typical right

eigenvector) of the transition matrix. If there are multiple eigenvectors re-

lated to an eigenvalue of 1, then each of such eigenvectors results in an as-

sociated stationary distributions. This, however, only occurs for a reducible

Markov chain.

1.1.1 Relation to Limiting Distributions

The notion of limiting distributions attempts to describe the process {Xt}t∈R+ ,

it explains the behavior of the process after a long time. For the limiting

distribution to exist, the following limit must exist for any state i and j

Li,j = lim
n→∞

P(Xt = j|X0 = i). (1.3)

Additionally, for any i, the following sum must be equal to 1,

∑
j∈E

lim
n→∞

P(Xt = j|X0 = i). (1.4)

This makes certain that the numbers we get constitutes a probability distri-

bution. When these two conditions are met, then the limiting distribution of
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a Markov chain with X0 = i is the probability distribution given by equation

(1.2). For any time-homogeneous Markov chain that is aperiodic and irre-

ducible, limn→∞ P n converges to a matrix with all rows identical and equal

to π. This is not the case with all stationary distributions though. There-

fore not all stationary distributions are limiting distributions. However for

time homogeneous Markov chains, any limiting distribution is a stationary

distribution.

1.2 Quasi-Stationary Distributions

Getting to the core intention of this study, we now discuss the concept of

quasi-stationary Markov processes. The works of Yaglom [22] as well as

Darroch and Seneta [6] on Galton-Watson processes give us insight on quasi-

stationary processes. We begin by defining a quasi-stationary distribution as

given by Champagnat et al in [4]. Let {Xt}t∈R+ be a discrete or continuous

time homogeneous Markov process with state space E ∪ {∂} which is ab-

sorbed at ∂ /∈ E, where (E,B(E)) is a measurable space. A quasi-stationary

distribution is a probability measure υQSD on E such that

PυQSD
(Xt ∈ A|t < τ∂) = υQSD(A), ∀t ∈ R+, A ∈ B(E), (1.5)

where τ∂ = inf{t ∈ R+, Xt = ∂} is the absorption time of {Xt}t∈R+ . The
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following is a necessary and sufficient condition for the probability measure

υQSD on E to be a quasi-stationary distribution; there exists a probability

measure µ on E such that

υQSD(A) = lim
t→∞

Pµ(Xt ∈ A|t < τ∂),∀A ∈ B(E). (1.6)

Given a quasi-stationary distribution υQSD, there is a set of probability mea-

sures on µ such that (1.5) holds, it is called the domain of attraction of υQSD.

This set is never empty since it contains at least υQSD, and may contain an

infinitely many elements.When the limit in (1.6) exists for any µ = ∂i, i ∈ E,

and does not depend on the initial position i, then υQSD is either called the

Yaglom limit or the minimal quasi-stationary distribution.

Thus the minimal quasi-stationary distribution, if it exists, is the unique

quasi-stationary distribution whose domain of attraction contains {∂i, i ∈

E}. It is well known that when υQSD is a quasi-stationary distribution, there

exists λ0 ∈ R+, such that for all t ∈ R+,

PυQSD
(t < τ∂) = e−λ0t and eλ0tυQSDP = υQSD. (1.7)

The absorption times and the absorption position are independent under

PvQSD
. The independence of absorption times and absorption position leads

to the concept of quasi-stationary distribution having a wide range of appli-

cations.
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1.3 Ergodicity

Ergodicity is an important concept that we also have to review as we dis-

cuss the quasi-stationarity of Markov processes. There are several types of

ergodicity, before we discuss them, we present a formal definition of ergodic-

ity.Markov’s theorem states that a Markov chain {Xt}t∈Z+ is ergodic if there

is a positive probability to pass from any state, say i ∈ E to any other state,

say ·, P (i, ·) > 0. In the subsection below we review some types of ergodicity.

1.3.1 Some Types of Ergodicity

Uniform Ergodicity

Uniform Ergodicity means that there exists positive constants ρ < 1 and

C < 1 such that, for all i ∈ E,

∥eiP (i, ·)t − π(·)∥ ≤ Cρn, t ∈ Z+, (1.8)

where ei is the probability measure concentrated at i.

Ordinary Ergodicity

The chain {Xt}t∈Z+ is referred to as ordinary ergodic (or just ergodic) if for

all i, k ∈ E,

7



P t(i, k) → π(k) as t→ ∞, (1.9)

where the σ-finite measure π is the invariant limit distribution of the chain.

Geometric Ergodicity

If the t-step probability measures, P t, converge in total variation norm to

the stationary probability measure π at rate rt (for some r ≥ 1), that is

lim
t→∞

rt∥P t(i, k)− π(k)∥ = 0, for π almost everywhere, (1.10)

then according to [10] the Markov chain is said to be geometrically ergodic.

Sub-Geometric Ergodicity

In this case, the convergence in (1.10) happens at rate r(t), which is slower,

therefore we have

lim
t→∞

r(t)∥P t(i, k)− π(k)∥ = 0, for π almost everywhere. (1.11)

When this convergence is true for suitably defined rates r(t) which are slower

than the geometric one, then the Markov chain is called sub-geometrically

convergent.
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1.3.2 Aims and Objectives

The objective of this study is to provide a sufficient theoretical framework

that can help us study the time evolution and behavior of a death and death

process. We then apply this to epidemiology. To achieve this we:

1. choose a deterministic Corona Virus (Covid-19) model.

2. convert it to a birth and death process.

3. show that it converges to a birth and death process.

This paper is organized as follows: Chapter 2 explores the necessary and

sufficient condition for the uniform exponential convergence from various

literature. Chapter 3 entails the main results. A deterministic model is

chosen, converted to a stochastic model, then we show that it converges to

a quasi-stationary distribution. In chapter 4 we simulate and discuss the

behavior of our stochastic model as well as deterministic model. We also

compare and contrast the two models. Finally, in the last chapter, we provide

scientific conclusions with regard to the findings of this work.
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Chapter 2

LITERATURE REVIEW

2.1 Necessary and Sufficient Condition for the

Uniform Exponential Convergence to a

Quasi-Stationary Distribution

Champagnat et al in [4] provided a necessary and sufficient condition on

{Xt}t∈Z+ for the existence of a probability measure υ on E and constants C,

γ > 0 such that

∥ Pµ(Xt ∈ A|t < τ∂)− υQSD(·) ∥TV≤ Ce−γt, ∀µ ∈ B(E) t ≥ 0, (2.1)
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where ∥ · ∥TV is the total variation norm. This immediately implies that

υQSD(·) is the unique quasi-stationary distribution of {Xt}t∈Z+ and that (1.6)

holds for any initial probability measure µ. The necessary and sufficient

condition for (2.1) is given by the existence of a probability measure υ on E

and of constants t0, c1,c2 > 0 such that

Pi(Xt0 ∈ ·|t0 < τ∂) ≥ c1v(·), (2.2)

and

Pυ(t < τ∂) ≥ c2Pi(t < τ∂). (2.3)

The preceding statement is the converse of the theorem given by [4]. The

theorem is as follows:

Theorem 2.1.1 (see [4]). Assume (2.2) and (2.3) then there exist a proba-

bility measure vQSD on E such that for any initial distribution µ ∈ M1(E)

∥ Pµ(Xt ∈ ·|t < τ∂)− vQSD(·) ∥TV≤ 2(1− c1c2)
⌊t/t0⌋, (2.4)

where ⌊·⌋ is the integer part function and ∥ · ∥TV is the total variation norm.

M1(E) is the set of probability measures on E.

11



In this case, for all probability measures on µ1 and µ2 on E, and for all t > 0,

∥Pµ1(Xt ∈ ·|t < τ∂)− Pµ2(Xt ∈ ·|t < τ∂)∥TV ≤ 2(1− c1c2)
⌊t/t0⌋

c2(µ1) ∨ c2(µ2)
∥µ1 − µ2∥TV ,

(2.5)

hence c2(µ) is a positive constant that only depends on µ. The following

consequences also follow from conditions (2.2) and (2.3):

Proposition 2.1.2 ( see [5]). Assume that condition (2.2) and (2.3) holds

true. Then there exists a non-negative function η on E ∪ {∂}, positive on E

and vanishing on ∂, defined by

η(i) = lim
t→∞

Pi(t < τ∂)

PVQSD
(t < τ∂)

= lim
t→+∞

eγ0tPi(t < τ∂), (2.6)

where the convergence holds for the uniform norm on E∪{∂} and υQSD(η) =

1. More precisely there exists a positive constant a1 such that

|eγ0tPi(t < τ∂)− η(i)| ≤ a1e
γ0tPi(t < τ∂)(1− c1c2)

t/t0 . (2.7)

Furthermore the function η is bounded, belongs to the domain of infinitesimal

generator L of the semi-group (Pt)t≥0 on (Bb(E ∪ {∂}), ∥ · ∥∞}) and

Lη = −λη.

12



In the irreducible case, exponential ergodicity is known to be related to a

spectral gap property. These results imply a similar property under condi-

tions (2.2) and (2.3) for the infinitesimal generator L of the semi-group on

(Bb(E ∪ {∂}), ∥ · ∥∞}).

Proposition 2.1.3 ( [5]). Let condition (2.2) and (2.3) hold. If f ∈ (Bb(E∪

{∂}) is a right eigenfunction for L for an eigenvalue λ, then either

1. λ = 0 and f is constant,

2. λ = −λ0 and f = vQSD(f)η,

3. λ ≤ −λ0 − γ, vQSD(f) = 0 and f(∂) = 0.

Finally we state an original result that has to do with a more refined speed of

convergence of the conditional distribution of the process towards its quasi-

stationary distribution.

Proposition 2.1.4. Suppose that condition (2.2) and (2.3) holds. Then

there exists a constant C > 0 such that,

∥Pµ(Xt ∈ ·|t < τ∂)− υQSD(·)∥TV ≤ C

(
1− c2

v(η)

∥η∥∞

)t/t0

. (2.8)

The sketch of the proof for the sufficient condition is provided at the Ap-

pendix.

13



2.2 The finite state space case

The aim of this section is to give an application of Theorem (2.1.1) in a sim-

ple situation, recovering this classical result by [20] with additional explicit

bounds on the rate of convergence. Let {Xt}t∈Z+ be a discrete time Markov

process on a finite space E ∪ ∂, where ∂ /∈ E is absorbing.

We say Z is irreducible and aperiodic if there exists t0 ∈ N such that , for all

i, j ∈ E, Pi(Xt0 = j) > 0. There exist two positive constants such that the

exponential convergence in (2.5) holds true, with γ being the second spectral

gap of the transition matrix.

The following convergence result is not focused toward optimality, but rather

aims at illustrating how to check conditions (2.2) and (2.3) in a simple case.

We observe that, associated with proposition 2.1.3, it provides an explicit

lower bound for the second spectral gap of the matrix P.

Proposition 2.2.1 ([20]). Let {Xt}t∈N be an irreducible and aperiodic Markov

chain on a finite state space E with the transition matrix (Pi,j)i,j∈E.Let t0 ∈ N

be such that P t0 has positive entries and set

c1 =
∑
j∈E

inf
i∈E

P t0
i,j∑

k∈E P
t0
i,k

and c2 = inf
i,j∈E

P t0
i,j∑

k∈E P
t0
i,k

.

Then {Xt}t∈N satisfies condition with the constants c1, c2 and t0.

14



Since the aim of this section is to illustrate the application of Theorem (2.1.1),

we detail the elementary proof of the above proposition.

Proof. We define the probability measure v on E by

v({j}) = inf
i∈E

P t0
i,j

c1
∑

k∈E P
to
i,k

,∀j ∈ E.

We have for all i, j ∈ E,

Pi(Xt0|t0 < τ∂) =
P

t0
i,j∑

k∈E P
to
i,k

≥ c1v({j}),

which entails condition (2.2). Now, for all i ∈ E and all n ≥ 2,

Pv(n < τ∂) ≥ v({i})Pi(n < τ∂) ≥ c2Pi(n < τ∂),

which implies condition (2.3).

15



Chapter 3

MAIN RESULTS

The study of quasi-stationary distributions and their convergence has a myr-

iad of applications [4]. Nevertheless, in this chapter we limit ourselves to

their applications to birth and death processes. To achieve our goal we em-

ploy the SIQ epidemic model example formulated by Din et al in [7]. We

note that the chosen model is a deterministic model which we convert to

a stochastic model. We then show that the resulting model converges to a

quasi-stationary distribution.

3.1 The SIQ Deterministic Model

As aforementioned Din et al [7] proposed a model in 2020 which investigates

the dynamic behavior of the novel Corona Virus (Covid-19). It is a conta-

gious disease which is mostly human-to-human transmitted. According to
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[18], Covid-19 was declared a pandemic and has affected over 170 countries

in the world. Din et al proposed a susceptible-infectious-quarantined de-

terministic model with fixed proportions. This model is adapted from SIR

models introduced by Kermack and McKendrick and are described in [12].

The population N(t) at time t was divided into three groups: susceptible

individuals S(t), infected individuals I(t) and quarantined individuals Q(t).

The following assumptions were considered prior to formulating the model:

I. All parameters are non-negative.

II. The susceptible agents goes to the infection classes and there is a con-

stant inflow into the susceptible population.

III. Initially infected or suspected people move to the quarantine class and

confirmed cases from quarantine come back to the infected compart-

ment.

With regard to the above assumptions, the dynamics of Covid-19 are in the

form of three ordinary differential equations:

d

dt
S(t) = Λ− γS(t)I(t)− d0S(t).

d

dt
I(t) = γS(t)I(t)− (d0 + k + η)I(t) + σQ(t).

d

dt
Q(t) = ηI(t)− (d0 + µ+ σ)Q(t).

(3.1)

17



The model parameters with initial conditions S(0) = S0 > 0, I(0) = I0 ≥ 0

and Q(0) = Q0 ≥ 0 are explained as follows:

Λ : Recruitment rate.

γ : Disease transmission rate.

d0 : Natural death rate.

η : Rate of getting quarantined.

µ : Disease-related death rate in quarantined individuals.

σ : Rate at which quarantined people are getting infected.

k : Disease-related death rate in the infected group.

Theorem 3.1.1. The Model (3.1) in orthant R3
+ is invariant and its solution

with initial conditions S(0) = S0, I(0) = I0 and Q(0) = Q0 are positive and

bounded. Furthermore if T (0) ≤ Λ
d0
, then the problem as stated by Model (3.1)

and the initial conditions is a well defined dynamical system whose region is

given by:

∆ =

{
(S, I,Q) ∈ R3

+ : 0 < T ≤ Λ

d0

}
, (3.2)

which is biologically feasible. Moreover every solution in ∆ remains in ∆

for t ≥ 0. The proof for this theorem has been presented by Din et al [7] in

Section 3 of the article.

Remark. The above theorem implies the well possedness of the proposed

model.

18



3.2 Formulation of the SIQ Stochastic Model

Stochastic models are necessitated by the fact that unlike deterministic mod-

els, the number of individuals is discrete and this explains real world situ-

ations better. The issue with deterministic models is that the number of

individuals in a population is considered a continuous variable which is not

really the case in a practical setting. Furthermore, with stochastic models

we can explain such things as the probability of an outbreak, the final size

distribution of an epidemic, the expected duration of an epidemic, and most

importantly (as is our case here)- the quasi-stationary distribution of an epi-

demic.

Here, we consider a continuous time Markov Chain (CTMC)Xt = (St, It)t∈R+

on state space R2
+. Accessible states from Xt = (s, i) are

V(s,i) = {(s, i), (s+1, i), (s, i−1), (s−1, i), (s−1, i+1)}. Xt has an absorbing

set corresponding to the disease free equilibrium state E0 = {(s, i), s ≥ 0, i =

0}.

We set Qs,i = Λ+ γsi+ d0 + (d0 + k + η)i+ σ(N − i− s).

19



Pi,j =



Λ ; (k, j) = (s+ 1, i), s ≥ 0, i ≥ 0

γsi (k, j) = (s− 1, i+ 1), s ≥ 1, i ≥ 0

d0S (k, j) = (s− 1, i), s ≥ 1, i ≥ 0

(d0 + k + η)i (k, j) = (s, i− 1), s ≥ 0, i ≥ 1

σ(N − i− s) (k, j) = (s, i+ 1), s ≥ 0, i ≥ 0.

(3.3)

The transition probabilities of Xt = (St, It) are defined by:

P(s,i),(k,j) = {P (Xt+δT = (k, j)|Xt = (s, i))}.

We have ∀s ≥ 0,

P(s,i),(k,j) =



Q(s,i),(k,j)δt+o(δt0) if

(k, j) ∈ γ(s, i) ∀i > 0

1−Q(s,i)δt+ o(δt) if

(k, j) = (s, i) i > 0

P(s,o),(s,o)(δt) = 1 ∀i = 0.

(3.4)

The distribution if Xt is P (s, i)(t) = 0 if s < 0 or i < 0 and P(s,i)(t) =

P{Xt = (s, i)} if s ≥ 0, i ≥ 0. Thus the marginal distributions are;
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P{It = i} =
∑
s≥0

P(s,i)(t),

and

P{St = s} =
∑
i≥0

P(s,i)(t).

The Kolmogorov forward equation(from Equations (3.4)) are:

dP(s,i)

dt
= ∆[P(s−1,i) − P(s,i)] + γ[(s+ i)(i− 1)P(s+1,i+1) − siP(s,i)]

+d0[(s+ 1)P(s+1,i) − sP(s,i)] + (d0 + k + η[(i+ 1)P(s,i+1)−iP(s,i)
])

+σ[(N − s− i+ 1)]P(s,i−1) − (N − s− i)P(s,i)].

(3.5)

The following results will lead us to note that for the stochastic approach, the

number of infections will reach zero independent of the threshold R0 almost

surely. In other words, if R0 ≤ 1 then extinction occurs in finite mean time;

and if R0 > 1 the disease ultimately disappears in infinite mean time. We

therefore notice that the parameter R0, called the basic reproduction number,

can give us important insight in epidemiology as stated in [1].

Theorem 3.2.1. Let T0 = inf{t ≥ 0, I(t) = 0} with infϕ = +∞. Then for

all i ∈ N, Pi[T0 < +∞] = 1 and limt→+∞ Pi[I(t) = 0] = 1.

Proof. This result is a consequence of lemma 5 in [17] and the properties of

recurrent Markov chains with absorbing set of states that are non-empty. It

reveals the absorbent characteristic of the Markov chain.
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Theorem 3.2.2. Let T0 = inf{t ≥ 0, I(t) = 0} with infϕ = +∞ and

(S∗
0 = Λ

d0
, I∗0 = 0, Q∗

0 = 0). If R0 ≤ 1, then (1) E[T0] < +∞ and (2)

limt→+∞(S̄(t), Ī(t), Q̄(t)) = (S∗
0 , I

∗
0 , Q

∗
0).

Proof. The first result is a consequent of the positive recurrence we get from

lemma 5 in [17]. The second result follows from the absorbent nature of the

Markov chain, and once in the absorbing state, the correlation of S(t) against

I(t) is identically zero. As a result, the deterministic equations and the

mathematical expectation equations have equal equilibrium points, asymp-

totically.

Theorem 3.2.3. Let T0 = inf{t ≥ 0, I(t) = 0}, infϕ = +∞ and (S∗
e =

Λ
d0R0

, I∗e = d0
γ
(R0 − 1), Q∗

e =
d0η
bγ
(R0 − 1)). If R0 > 1, then (1) E[T0] = +∞

and (2) limt→+∞(S̄(t), Ī(t), Q̄(t)) = (S∗
e , I

∗
e , Q

∗
e).

Proof. Asymptotically, there are two equilibrium points, and essentially E(T ) =

∞ in the case R > 1, otherwise the two equilibrium points would be confused

by the uniqueness of the stationary measure.This proves the first assertion.

The second assertion proof is similar to that of the second assertion of The-

orem 3.2.2.

The instant of absorption takes place after a relatively long time, however

before it happens the process passes through a quasi-stationary state. In

order to comprehend this phenomenon, we study the long time behavior of

this process conditioned on non-extinction.
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It is well known that if the set of transient states is finite and irreducible

then the quasi-stationary distribution exists. Contrarily, if this set is infinite

then the existence of the quasi-stationary distribution is not guaranteed, also

if it does exist, it is usually difficult to find it explicitly. Hence we naturally

consider iterative methods or asymptotic solutions by diffusion processes for

the quasi-stationary distribution.

Theorem 3.2.4. Let (vQSD)(s,i) be the quasi-stationary distribution of the

process (Xt)t≥1 and (vQSD)(i) =
∑

s≥0(vQSD)(s,i) the marginal distribution of

the number I∗ of the infected in a quasi-stationary system. If R0 < 1 for all

i ≥ 1, then (VQSD)(i) ≈ (1−R0)R
i−1
0 .

Proof. For all i, j ≥ 1 setting:


Pi(i, j,∆t) = P(I(t+∆t) = j|S(t) = s, I(t) = i).

Px(i, j, t,∆t) = P(I(t+∆t) = j|I(t) = i),

(3.6)

we have;

PI(i, j, t,∆) =
∑
s≥0

P(S(t) = s)Ps(i, j,∆t), (3.7)

and according to the process definition (Xt)t>0,
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Ps(i, j,∆t) =



γsi∆t+ o(∆) if j = i+ 1

(d0 + k + η)i if j = i− 1

1− [γsi+ (d0 + k + η)i]∆t+ o(∆t) if j = 1,

(3.8)

we deduce that;

PI(i, j, t,∆t) =



(d0 + k + n)i∆t+ o(∆t) if j = i+ 1

1− [γiS̄(t) + (d0 + k + η)i]∆t+ o(∆t) if j = i− 1

1− [γiS̄(t) + (d0 + k + η)i]∆t+ o(∆t) if j = i.

(3.9)

As in the case of disease free equilibrium, limt→+∞ S̄(t) = S∗
0 = Λ

d0
. We have

(from equation (3.9));

PI(i, j, t,∆t) =



γiS∗
0∆t+ o(∆t) if j = i+ 1

(d0 + k + η)i∆t+ o(∆t) if j = i− 1

1− [γiS∗
0 + (d0 + k + η)i]∆t+ o(∆t) if j = i,

(3.10)

thus asymptotically the process I(t) is a linear birth-death process with in-

finitesimal generator:
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qi,j =


λi if j = i+ 1

dIi if j = i− 1,

(3.11)

where λ = γΛ
d0

and dI = (d0 + k + n). In this case, if λ < dI , it is well

known that there is a unique quasi-stationary for the process which follows

the geometric law with parameter 1 − λ
dI

= 1 − R0. Hence if R0 < 1 for all

i ≥ 1, we obtain;

(vQSD)(i) ≈ (1−R0)R
i−1
0 or (vQSD)(i) =

∑
s≥0

(vQSD)(i,j). (3.12)

Remark. Under the condition R0 ≤ 1, the irreducible Markov chain (Xt)t>0

is positive recurrent. Then a unique invariant probability π exists and

π(s, i) =
1

E(s,i)(τs,i)
,

where τs,i = inf t > 0|Xt = (s, i). thus the theorem simply states that for all

i ≥ 1, π =
∑

s≥0 π(s, i) ≈ (1−R0)R
i−1
0 if R0 < 1.
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3.3 Branching Process

From the previous section, we notice that the parameter R0 plays an impor-

tant role in epidemic modelling. We use it to understand the dynamics of

an infection in both deterministic and stochastic models. According to [3]

a suitable branching process can estimate the early stages of an epidemic.

In such a case, giving birth implies infecting someone while death is implied

by an actual death or recovery. In the same manner, R0 corresponds to the

mean.

We provide a brief review of branching processes. A branching process is

a stochastic process which consists of random variables indexed by natural

numbers. Initially, the intent of branching processes was to model a popula-

tion in which each individual in generation n produces some random number

of individuals in generation n+1. Suppose an organism has a random number

of offspring, say ‘j’ before it dies. Let,

P (Xn = j) = pj, for j = 1, 2, ... (3.13)

where pj ≥ 0 and
∑∞

j=0 pj = 1. Xn denotes the population size. We assume

that all individuals reproduce independently of each other and the family

sizes of each individual are independent and identically distributed. Then

the process {Xn}, where Xn is the population size of the nth-generation ,
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is a Markov chain of a special structure called a branching process. The

most important application in the theory of branching processes is finding

the probability of ultimate extinction.

The Mean, the Variance and Extinction Probabilities

To determine the mean and variance of a branching process we let µ =∑∞
j=0 jpj and σ

2 =
∑∞

j=0(j−µ)2pj denote the mean number and variance of

offspring of a single individual respectively. Then when X0 = 1, that is, if

there is initially only one individual, we have,

E(Xn) = µn and V ar(X) =


σ2µn

(
µn−1
µ−1

)
, µ ̸= 1

nσ2, µ = 1.

(3.14)

For the long term expected generation size,

lim
n→∞

E(Xn) = lim
n→∞

µn =



0, if µ < 1

1, if µ = 1

∞, if µ > 1.

(3.15)

From the above we extricate three possible scenarios;

• For µ < 1, the population dies out with an almost sure probability.

This means that for any probability distribution ψ, ∃n <∞ such that
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Pψ(Xn = 0) = 1, hence the expected extinction time is finite. This

scenario is called subcritical.

• The second scenario is called critical. For this one µ = 1. The pop-

ulation here dies out with probability one but this time around the

expected extinction time is infinite.

• The final scenario is called supercritical. Here we have µ > 1, and the

population has a positive probability of survival, hence this leads us to

having an infinite expected extinction time.

Remark. For the branching process model, we do not have the pj’s which are

used to calculate the expectation, therefore we will estimate µ with R0. The

population of infected person is always positive, therefore Xn takes values in

N+ = 1, 2, ... only.

The results below (Theorem 3.3.1) shows us that the distribution that defines

the infected persons does reach a quasi-stationary distribution for µ < 1. The

critical and supercritical scenarios do not have a quasi-stationary distribu-

tion.

According to the process definition, we consider a discrete time Markov chain

(DTMC) Xt = (It)t∈N defined on state space N = 0, 1, ... and with zero as an

absorbing state.

Theorem 3.3.1. Let VQSDi
be the quasi-stationary distribution of the process

{Xt}t≥1. If µ < 1, for all i ≥ 1, then VQSDi
= (1− µ)µi−1.
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The proof of the above theorem is similar to that of Theorem 3.2.4.
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Chapter 4

SIMULATIONS AND

DISCUSSIONS

In this chapter, we show forth the graphical representation of the simulations

that help us verify our analytical results. These simulations were carried out

using the Matlab software and the code used is provided in the Appendix

section. Table 4.1 below shows the values and sources of the parameters used

in the simulation. Some of the values where estimated whereas others where

taken from available sources.
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Parameter Value Source

Λ 0.03805333333 fitted

γ 0.0059334474 estimated

d0 0.007121000000 [15]

η 0.144211141 estimated

µ 0.007121000000 [15]

σ 0.0052281 estimated

k 0.027864676 estimated

Table 4.1: Values and Sources of Parameters used in the Simulation.

According to figure 4.1, for a population of 3000 people, with time measured

in monthly units, the ODE model suggests that the disease will become con-

tained after about 30-40 months. Initially, almost the whole population was

susceptible because Covid-19 is highly contagious and control measures were

not yet established. Because of this the susceptible population dropped dras-

tically while the infected persons population increased simultaneously in the

same manner. The transmission rate was high hence elevating the reproduc-

tion number R0.

The deterministic model assumes continuous time, hence the R0 determines

whether the disease will persist or not. If R0 > 1 persistance often occurs,

however for R0 < 1 the disease free state is reached and infection is lost as

time tends infinity.
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Figure 4.1: Deterministic Dynamics of Susceptible, Infected and Quarantined

Persons Populations.
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We notice that given similar initial conditions for a deterministic model, we

observe the same results. As for the stochastic model we notice an element of

randomness which better simulates the real world. Figure 4.2, for example,

depicts the extinction behavior that we usually observe in life. The stochas-

tic model also proved to be more appropriate for smaller populations( as

observed by [19] ), hence it worked well when we simulated with a starting

population of three hundred. The results agrees with the findings of Allen

and Burgin in [2] who conducted a study that analyzed ultimate disease ex-

tinction. They concluded that there exists a quasi-stationary probability dis-

tribution whose mean agrees with the deterministic endemic equilibrium for

R0 ≥ 1. This is observed in Figure 4.2, both the populations of Susceptible

and Infected persons reach a quasi-stationary state before being absorbed.

We used the Gillespie’s algorithm to compute the sample paths of these

processes. This algorithm is named after Daniel T. Gillespie’s works in [8]

and [9].
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Chapter 5

CONCLUSIONS

The modelling theory in Statistics provides an adequate theoretical frame-

work whenever we are faced with studying pandemics or epidemics. It allows

us to understand the time evolution and behaviour of disease outbreaks.

Consequently, we can come up with important predictions that are useful in

managing diseases of interest. As observed by Din and Algehyne in [21] this

includes determining how to effectively reduce rates of transmission, decreas-

ing the probability of infection contact with infected persons and reducing

the disease-death rate.

In this work we set out to show that the corona model of interest converges

to a quasi-stationary distribution after a long time. We considered a model

that analysed the susceptible and infected persons population. We also iso-

lated the infected persons population which depicted a branching process
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behavior. For both cases we showed that there is a convergence towards

quasi-stationarity under certain behavior. For the former model we showed

that if R0 is less than one then the number of susceptible and infected persons

will reduce to a certain point and fluctuate about it until it finally disappears.

For the latter model we used R0 to estimate the expected number of infec-

tions and proved that the number reduces to a certain point and depicts

pseudo-stationarity before finally going extinct.

For future works, we intend to introduce the vaccinations compartment in

the model. This is because according to [16] several vaccinations have been

introduced and were reported to be non-endangering, easily assimilated and

accepted by the body as well as able to trigger specific and necessary immune

responses in participants. Therefore it is necessary to expand the model into a

susceptible-vaccinated-infected and quarantined persons (SVIQ) model. The

model in equation (5.1) below is improved by including the reduced proba-

bility of the supply. The supply is affected by the effectiveness of the vacci-

nation. If the vaccination is effective then the number of susceptible persons

decrease as people gain immunity hence becoming no longer endangered to

infection.
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d

dt
S(t) = Λ(1− p)− γS(t)I(t)− d0S(t).

d

dt
I(t) = γS(t)I(t)− (d0 + k + η)I(t) + σQ(t).

d

dt
Q(t) = ηI(t)− (d0 + µ+ σ)Q(t).

(5.1)

We also plan to include stochastic differential equation models for better

modelling and forecasts. This will offer a more competent platform for a

prediction setup as they incorporate the random nature of this outbreaks

better.
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APPENDIX

Sketch of the Proof for the Sufficient Condition

We want to sketch the proof of the direct implication: ”Condition (2.2) and

(2.3) =⇒ Convergence”, therefore we assume Z satisfies these conditions

with t0 = 1, the extension to any t0 follows. So we define for all 0 ≤ l ≤ t ≤ T ,

the linear operator KT
l,t by,

KT
l,tf(x) = Ex(f(Zt)|Zl = x, t < τ∂), ∀f ∈ B(E )b,

by the Markov property.

For any T > 0, the family (KT
l,t)0≤l≤t≤T is a Markov (time-in-homogeneous)

semi-group: we have, for all 0 ≤ u ≤ l ≤ t ≤ T and all f ∈ B(E )b,

KT
u,l(K

T
l,tf)(x) = KT

u,tf(x).

In essence this proof checks if the conservative semi-group satisfies a Doblin

condition(See step 1): for all T ≥ 1 and all 0 ≤ t ≤ T − 1, there exists a

probability measure υT−t on E such that, for all measurable sets A ⊂ E and

all x ∈ E,

KT
t,t+1(A) = Px(Z1 ∈ A|T − t < τ∂ ≥ c1c2vT−t(A). (5.2)
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After proving this, we deduce (in a similar way to the classical time-uniform

conservative case), a uniform mixing property for the conservative semi-

groups KT and then for the conditional distributions:

∥Pµ1(ZT ∈ ·|T < τ∂)− Pµ2(ZT ∈ ·|T < τ∂)∥TV ≤ 2(1− c1c2)
⌊T ⌋, ∀µ1, µ2 ∈ M.

(5.3)

This immediately implies that there is at most one quasi-stationary distribu-

tion and implies in particular that the sequence Pµ1(ZT ∈ ·|T < τ∂)T≥0 is a

Cauchy sequence and hence that it converges to some probability υQSD(Recall

that the set of probability measures endowed with the total variation norm

is complete). By Meleard and Villemonais in [14], υQSD is a quasi-stationary

distribution.

Step 1: Doblin condition

Let us show that, for all t ≥ 1, there exists a probability measure vt on E

such that the Doblin Condition holds true.First one can check that condition

(2.2) and Markov property imply that

Px(Z1 and t < τ∂) ≥ c1v(1A(·)P.(T − 1 < τ∂))Px(1 < τ∂).

Dividing both sides by Px(t < τ), we deduce that

Px(Z1|t < τ∂) ≥ c1v(1A(·)P.(T − 1 < τ∂)
Px(1 < τ∂)

Px(t < τ∂)
.
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But, again using the Markov property ,we have,

Px(t < τ∂) ≤ Px(1 < τ∂) sup
y∈E

Py(t− 1 < τ∂),

so that

Px(Z1 ∈ E|τ∂) ≥ c1
v(1A(·)P.(t− 1 < τ∂))

supy∈E Py(t− 1 < τ∂)
.

Now condition (2.3) implies that the non-negative measure

B 7→ v(1A(·)P.(t− 1 < τ∂))

supy∈E Py(t− 1 < τ∂)
,

has a total mass greater than c2. Therefore the Doblin condition holds with

the probability measure

vt : B 7→ v(1A(·)P.(t− 1 < τ∂))

Pv(t− 1 < τ∂)
.
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Step 2: exponential contraction for the conditional distributions

Using the semi-group property of (KT
l,t)l,t, we deduce that for any x, y ∈ E

and all 0 ≤ t ≤ T ,

∥δxKT
0,t − δyR

T
0,t∥TV ≤ 2(1− c1c2)

⌊t⌋.

By definition of KT
0,T , this inequality immediately implies that

∥Px(Zt ∈ ·|T < τ∂)− Py(Xt ∈ ·|T < τ∂) ∥≤ 2(1− c1c2)
⌊T ⌋.

Since, in general,Pµ(ZT ∈ ·|t < T∂) is not linear in µ, it is not immediate

that this equality extends to any pair of initial probability measures of µ1,

µ2 on E.However, this is easily overcome by the following computations. Let

µ1 be a probability measure on E and x ∈ E. We have

∥Pµ1(ZT ∈ ·|T < τ∂)− Px(ZT ∈ T < τ∂)∥TV

=
1

Pµ1(T < τ∂)
∥Pµ1(ZT ∈ ·)− Pµ1(T < τ∂)Px(ZT ∈ ·|T < τ∂)∥TV

≤ 1

Pµ1(T < τ∂)

∫
y∈E

∥Py(ZT ∈ ·)− Py(T < τ∂)Px(ZT ∈ ·|T < τ∂)∥TV dµ1(y)

≤ 1

Pµ1(T < τ∂)

∫
y∈E

Py(T < τ∂)∥Py(ZT ∈ ·|T < τ∂)− Px(ZT ∈ ·|T < τ∂)∥TV dµ1(y)

≤ 1

Pµ1(T < τ∂)

∫
y∈E

(T < τ∂)2(1− c1c2)
⌊T ⌋dµ1(y)

≤ 2(1− c1c2)
⌊T ⌋.
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The same computation, replacing δx by any probability measure, leads to

(2.10). Using the fact that M1(E) endowed with the total variation norm is

a complete space, this easily leads to (2.4).

MATLAB CODE FOR SIMULATIONS

Code for the Deterministic Model

f unc t i on dydt = s i q fun ( t , y , Lambda , gamma, d0 , k , eta , sigma ,mu, S i n i t , t f i n a l )

%ODE45 equat ions f o r the SIQ model

dydt = ze ro s (3 , 1 ) ;

dydt (1 ) = Lambda−gamma*y (1 ) *y (2)−d0*y (1) ;

dydt (2 ) = gamma*y (1) *y (2 )−(d0+k+eta ) *y (2 )+sigma*y (3) ;

dydt (3 ) = eta *y (2)−(d0+mu+sigma ) *y (3) ;
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%Here we make the d e t e rm i n i s t i c run o f the SIQ model odes from func t i on

%s i q fun

c l e a r a l l

s e t (0 , 'DefaultAxesFontSize ' , 18) ;

s e t ( gca , ' f o n t s i z e ' , 18) ;

Lambda=0.03805333333;

gamma=0.00594474;

d0=0.007121000000;

eta =0.144211141;

mu=0.007121000000;

sigma=0.0052281;

k=0.027864676;

N=1000;

S i n i t =3000;

t f i n a l =60; % the time in days

tspan = [0 t f i n a l ] ;

y0 = [ S i n i t 2 6 ] ;

[ t , y ] = ode45 (@(t , y ) s i q f un ( t , y , Lambda , gamma, d0 , k , eta , sigma ,mu, S i n i t ,

t f i n a l ) , tspan , y0 ) ;

f i g u r e (1 )

p l o t ( t , y ( : , 1 ) , 'b−' , t , y ( : , 2 ) , 'r−.' ) ; g r i d on ;

x l ab e l ( 'Time' ) ; y l ab e l ( 'Persons Count' ) ;

hold on

p lo t ( t , y ( : , 3 ) , 'g−' ) ; g r i d on ;

l egend ( ' Su s c ep t i b l e s ' , ' I n f e c t ed persons ' , 'Quarantined Persons ' ) ;

hold o f f
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Code for the Stochastic Model

% SIQ Dynamic Model

% Three Sample Paths and the Deterministic Solution

clear

set(0,'DefaultAxesFontSize ', 18);

set(gca ,'fontsize ' ,18);

Lambda =0.03805333333;

gamma =0.00594474;

d0 =0.007121000000;

eta =0.144211141;

mu =0.007121000000;

sigma =0.0052281;

l=0.027864676;

N=300;%population

init =1;

time =150; % the time

sim =3;

for k=1: sim

clear t S I Q
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t(1)=0;% the time at the beginning

I(1)=init; %initial number of infected persons

S(1)=N-init; %initial number of susceptible

persons

Q(1)=0; %initial number of quarantined persons

j=1;

while I(j) >0 && t(j)<time

a(j)=Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+l+eta)*I(

j)+(d0+mu+sigma)*Q(j);

a1(j)=Lambda/a(j);

a2(j)=( Lambda+gamma*S(j)*I(j))/a(j);

a3(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j))/a(j);

a4(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+l)*I(j)

)/a(j);

a5(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+l)*I(j)

+eta*I(j))/a(j);

a6(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+l)*I(j)

+eta*I(j)+sigma*Q(j))/a(j);

a7(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+l)*I(j)

+eta*I(j)+sigma*Q(j)+(d0+mu)*Q(j))/a(j);
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u1=rand; % uniform random number

u2=rand; % uniform random number

t(j+1)=t(j)-log(u1)./a(j);

if u2 <= a1(j) % for Lambda prob. is btwn 0 and

a1

S(j+1)=S(j)+1;

I(j+1)=I(j);

Q(j+1)=Q(j);

else if u2> a1(j) && u2 <= a2(j)% for the gamma*

S(j)*I(j) probability

S(j+1)=S(j) -1;

I(j+1)=I(j)+1;

Q(j+1)=Q(j)+1;

else if u2> a2(j) && u2 <= a3(j) % for the d0*S(

j) probability

S(j+1)=S(j) -1;

I(j+1)=I(j);

Q(j+1)=Q(j);

else if u2> a3(j) && u2 <= a4(j)% for the (d0+k)

*I(j) probability
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S(j+1)=S(j);

I(j+1)=I(j) -1;

Q(j+1)=Q(j);

else if u2> a4(j) && u2 <= a5(j) % for the eta*I

(j) probability

S(j+1)=S(j);

I(j+1)=I(j) -1;

Q(j+1)=Q(j)+1;

else if u2> a5(j) && u2 <= a6(j) % for the sigma

*Q(j) probability

S(j+1)=S(j);

I(j+1)=I(j)+1;

Q(j+1)=Q(j) -1;

else if u2> a6(j) && u2 <= a7(j) % for the (d0+

mu)*Q(j) probability

S(j+1)=S(j);

I(j+1)=I(j);

Q(j+1)=Q(j) -1;
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end

end

end

end

end

end

end

j=j+1;

a(j)=Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+k+eta)*I(

j)+(d0+mu+sigma)*Q(j);

a1(j)=Lambda/a(j);

a2(j)=( Lambda+gamma*S(j)*I(j))/a(j);

a3(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j))/a(j);

a4(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+k)*I(j)

)/a(j);

a5(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+k)*I(j)

+eta*I(j))/a(j);

a6(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+k)*I(j)

+eta*I(j)+sigma*Q(j))/a(j);

a7(j)=( Lambda+gamma*S(j)*I(j)+d0*S(j)+(d0+k)*I(j)

+eta*I(j)+sigma*Q(j)+(d0+mu)*Q(j))/a(j);

end
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plot(t,I,'r-','LineWidth ' ,2)

plot(t,S,'g-','LineWidth ' ,2)

xlabel('Time'); ylabel('Population ');

legend('Susceptible Persons ','Infected Persons ');

hold on

end
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