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ABSTRACT 

 

The research aims at defining and analyzing an energy solution that incorporates 

renewable energy, thereby giving rise to improving energy security and providing grid 

stability for the grid networks located in urban residential areas. The urbanization growth 

in Botswana coincides with the increase in electricity consumption. The electricity load 

demand in the country outlasts the local supply and thereby the need for importing 

electricity from the Southern Africa Power Pool (SAPP). To address grid stability and 

reliable power supply issues, the research aims to design a microgrid system for an urban 

settlement by matching the electric load demand with solar photovoltaic (PV) generation 

in a residential district. The initial stages of the research include measuring electrical loads 

in a single household for a certain period. The energy data collected from residential 

homes were subjected to a smart metering examination. The analysis revealed high 

variability in the daily energy usage of the household. The dataset was tabulated through 

the two seasons experienced in Botswana, summer, and winter. Following a study using 

clustering techniques, three clusters with outliers’ data identified the optimum monthly 

energy use with the lowest Mean Squared Error (MSE) after ten iterations. The peak 

hourly profiles from the metered residential household were used to represent a 

cumulative 250-kW planned power solar PV microgrid system. The design and simulation 

were conducted on the simulation environment MATLAB/Simulink with real-time daily 

irradiation and temperature profiles from the metered household location. 

Proportional Integral Derivative (PID) controllers could achieve a desired DC microgrid 

voltage throughout the day. The boost converter through a signal from the Maximal Power 

Point Tracking (MPPT) could achieve the maximum voltage of the solar PV module. For 

energy management optimization, Fuzzy Logic Control (FLC) was incorporated for the 

grid-connected microgrid with battery support. The FLC simulation analysis 

demonstrated that the battery offered energy stability inside the microgrid system during 

the shift from island mode to a grid-connected mode of operation. The economic study 

was conducted in HOMERPro, and it revealed the levelized cost of electricity at USD 

10.90/ kWh. The nature of the solar PV microgrid design revealed the system's lifetime 

cost savings worth USD 99,248.6. A microgrid system is a subpart of a smart grid; thus, 
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the proposed system aids in achieving the quick restoration of electricity when a power 

outage occurs while also enhancing local energy resiliency.  
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1 CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

 

The following chapter defines the research goal, objectives, scope and provides an 

overview of the entire thesis structure. The thesis style described at the end of the chapter 

allows for reflection on material as a whole covered by the author. 

 

1.2 Introduction 

 

Rapid urbanization severely limits cities' environments and architecture, particularly in 

developing countries (Donahue 2019). Countries' energy security is enhanced by the 

resilience and effectiveness of local energy-generating structures and distribution 

systems. Botswana's urbanization is accelerating, and the increased electricity demands 

that come with it put a strain on the country's fragile electricity grid. Implementing an 

energy solution for urban dwellers would alleviate the energy supply issues that would 

arise due to increasing urbanization in a growing city like Gaborone. ‘Mini-grids and 

microgrids are prospective renewable energy solutions capable of providing the most 

inexpensive production cost for three-quarters of all the connections necessary in Sub-

Sahara Africa,' according to the (IEA 2014). The solutions serve as a foundation for 

integrating Renewable Energy Technologies (RETs) that promote local energy generation 

from low-carbon sources. The utilization of renewables, particularly solar energy, to meet 

local electrical load demands in cities via microgrids offers hope for the divisive issue of 

central transmission distribution (Halu et al. 2016). Botswana enjoys a high sun intensity 

throughout the year, making solar photovoltaics a viable energy source. An energy 

analysis of residential building usage provides the sizing and design information 

necessary for constructing solar PV-based microgrid systems.  

 

 



CHAPTER 1: INTRODUCTION 2        

 

1.3 Background to the problem 

 

Botswana's existing power grid is incapable of providing the country's electricity load 

requirement. To meet the country's electrical consumption, the government must purchase 

electricity from the Southern Africa Power Pool (SAPP) (Botswana Power Corporation 

(BPC) 2019). Botswana is classified as an upper-middle-income country, but it has several 

obstacles, including a lack of infrastructure and poor production and skills (Essah and 

Ofetotse 2014). Electricity consumption has been steadily increasing in the past two 

decades, as indicated in Figure 1.1. 

 

 

Figure 1.1: The electricity consumption in Botswana between the years 1990 and 2016. 

SOURCE: (IEA 2019) 

The capital city's rapid urbanization necessitates an increase in electrical supplies. The 

country has been subjected to load shedding systems since 2013. The load-shedding 

schemes are a result of the continued rise in energy usage in domestic areas. Statistics 

reveal that from the overall energy consumption in Botswana, domestic energy usage 

accounts for slightly above one-third (Ofetotse, E., Essah, E. and Yao 2015).  
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1.4 Problem statement 

 

The reliability of energy delivery to consumers is affected by the stability of the utility 

system. Electricity supply unreliability will primarily affect residential consumers in 

urban areas. Due to many electrical appliances and structures in use every day of the year, 

metropolitan areas have high electricity consumption. According to the World Energy 

Balances 2019, residential power usage climbed from 42 kilotonnes of oil equivalent 

(KToe) in 2004 to 88 KToe in 2017 (IEA 2019). Energy provision from solar 

photovoltaics presents an innovative method to alleviate the electricity need mainly 

among people living in residential areas. The cost-effectiveness of a microgrid, which 

incorporates solar photovoltaics primarily for residential spaces, appears to be profitable 

and valuable to consumers. 

 

1.5 Research Aim 

 

The aim of the research is stated as follows: 

⮚ The sizing and design of a community solar PV microgrid system through analysis 

of residential energy usage 

 

1.6 Research Scope 

 

An assessment on the rooftop solar PV system (microgrid) design for an urban settlement 

will be conducted whereby people will be sharing electrical loads through the system. The 

system to be designed will be connected to the grid. The research begins with the 

measurement of the electricity load in an exemplary building over a period. Afterward, a 

solar PV system will be designed and simulated for a single household. After that, a solar 

PV microgrid system will be modeled and simulated for the urban residential quarter (25 

residential houses with similar load profiles). The control and energy management 

approach used will assure optimal energy generation by the solar PV system, resulting in 
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lower monthly electricity expenditures. An overview will be undertaken to emphasize the 

need for microgrid systems through a brief economic assessment. 

 

1.7 Research Objectives  

 

The research objectives of the project are articulated as follows: 

 

 To measure the annual electricity usage in a residential household in Botswana. 

 To execute smart meter data analytics for the identification of energy usage 

behavior characteristics. 

 To design a grid-connected rooftop solar PV system for the house in 

experimentation.  

 To model and simulate a solar PV microgrid system in both stand-alone and grid-

connected mode. 

 To carry out optimization analysis and evaluate the solar PV microgrid system's 

economic viability. 

 

1.8 Research Questions 

 

Several questions were prepared to kick-start the idea generation, planning, and execution. 

The research questions present an overview or guide to the utilization of distributed 

energy generation resources such as solar in microgrids for urban areas: 

⇒ How are electrical loads characterized for large area settlements such as urban 

areas? 

⇒ What are the technological trends of controller capabilities in microgrids? 

⇒ How can solar PV generation be integrated within a microgrid? 

⇒ Which type of inverter control is best suited for urban solar PV microgrids? 

⇒ Are energy storage systems necessary for the optimum operation of solar PV 

microgrids? 

⇒ How is the load-based solar PV system for a typical residential household in 

Botswana designed and dimensioned? 
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⇒ What control schemes are necessary for the management of power flow within a 

microgrid system? 

⇒ What are the optimization techniques to improve the performance of microgrids? 

⇒ What are the economic ramifications for a design of a solar PV microgrid in 

communities in Botswana? 
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1.9 Research work plan 

 

 

 

Figure 1.2: Research work plan 
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The research work plan in Figure 1.2 was divided into three sub-projects and their 

respective work packages.  

 

I. Sub-project 1: Electricity load profiling for classified urban household in 

Botswana 

This part of the research includes activities related to smart meters and the analysis of 

energy consumption data in a residential household. Smart meters were installed in a 

residential household for a period of 12 months to record energy consumption. Data 

analysis techniques were then used to the data collected by smart meters.  

II. Sub-project 2: Design of solar PV system for single household on PVSyst 

Subproject 2 involves using smart meter data analytics to design and size a residential 

solar PV system. The design and simulation of the solar PV system was performed in the 

PVSyst simulation environment.  

III. Sub-project 3: Design and simulation of the solar PV microgrid system 

This component of the research involved modeling and simulating the solar PV microgrid 

using MATLAB and HOMERPro software environments. The MATLAB environment 

was used for most of the design modeling of the microgrid and its components. Activities 

such as microgrid design and simulation in both island and grid-connected modes of 

operation were completed. Simulation in HOMERPro provided the economic analysis of 

the microgrid system. 

1.10 Research design and methodology 

 

The author provides an overview of the project's research strategy, technique, 

methodology, data gathering methods, research process, and restrictions. 
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1.10.1 Research method - Quantitative 

 

A quantitative study will be conducted through energy usage analysis to meet the research 

objectives. The energy analysis will also be utilized to size a community solar PV 

microgrid system. 

 

1.10.2 Data gathering 

 

The investigation begins with the collection of data from a single residential household. 

The following methodologies and research procedures will be used to obtain primary data. 

 

i. Observation and questionnaire: gather electrical loads data from house owners in 

the identified good household in the urban settlement.  

ii. Experimentation /Monitoring: the measurement of electrical loads in households 

and the creation of a load profile. 

iii. Interviews through various communication media as well as personal contact. 

 

1.10.3 Research Process 

 

Below is a workflow schematic linking the research methods by the sub-projects detailed 

in the Research work plan. Figure 1.3 provides a schematic description of the research 

workflow. 
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Figure 1.3: Workflow schematic of the research design 

 The workflow schematic depicted in Figure 1.3 represents the sequential flow of work 

activities done towards the success of the research. The activities in the load profiling 

section describe work duties such as questionnaires, smart meter experimentation, and 

developing daily energy load profiles. The next section of the workflow flowchart 

involves the development of load models through the analysis of smart metering data. 

Data analytics techniques include clustering, time series and regression. The smart meter 

analysis data provides information on the design and size of the community solar 

photovoltaic microgrid system. Following that, modeling, and simulation analyses of the 

microgrid system were carried out in a simulation environment. 

 

1.11 Project management 

 

1.1 Overview 

 

The chapter comprises the authors' planning and works via a timeline to achieve the 

research objectives.  
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1.2 Project milestones  

 

Below are the critical project milestones of the research in order of execution:  

I. Research proposal (May 2019 – July 2019) 

II. Literature review (August 2019 – April 2020) 

III. Research methodology design (May 2020 – July 2020) 

IV. Electricity load profiling in a residential household in Botswana (August 2020 – 

August 2021) 

V. Simulation of solar PV system for a single home in PVSyst (September 2020) 

VI. Smart meter data analytics (August 2021 – September 2021) 

VII. Design and simulation of solar PV microgrid system on MATLAB (May 2021 – 

September 2021) 

VIII. Simulation of a microgrid on HOMER (September 2021) 

IX. Economic analysis of the microgrid system (September 2021) 
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1.3 Gantt chart 

 

Figure 1.4: Gantt chart for the research 
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1.4  Budget 

 

Table 1.1: Proposed budget for the research project 

Item Estimated Cost 

6.1 Labor related Costs (specify) P 0 

6.2 Consumables (General Expenses) (specify) 

- Trip 1: Refreshments and water during a visit to BHC Gaborone 

- Trip 2: Refreshments and water during a visit to the Ministry of 

Lands & Housing 

 

P 200 

P 200 

6.3 Travel (Internal & External) (specify, if applicable) 

- Day Trip 1: Botswana Housing Corporation (BHC) Gaborone 

- Day Trip 2: Ministry of Land & Housing, Gaborone 

- Flight expenses to Dubai, United Arab Emirates (Round trip) 

- Accommodation expenses in Dubai ( P 700/night) – 2 nights 

P 250 

P 250 

P 7 000 

P 1 400 

6.4 Workshops & Conference Expenses (not more than 15% of total cost) 

- ICMRES 2021: 15. International Conference on Microgrids and 

Renewable Energy Systems. January 28-29, 2021 

Dubai, United Arab Emirates 

 

Registration  

(P 3 400) 

6.5 Equipment/Asset Expenditure (specify) 

 

- iCarbon Energy Management package x2: To be used for energy 

analysis in residential home  

 

P 17 200 

TOTAL P 29 900 
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1.5  Communication  

 

o Meetings with supervisor and co-supervisor once a week  

o Email  

o Instant Messaging  

 

1.6 Support staff  

 

The primary work of the research will be undertaken by the author specifically with the 

assistance of Supervisor Professor Ravi Samikannu and previous supervisor Dr. Tobias 

Bader.  The Faculty of Engineering and Technology will assist with software tools and 

packages. The services provided by the library, such as e-learning the school offers, also 

have played an instrumental role in the research. In addition, the internet through search 

engines such as Google Scholar and SciVal assisted in the study. 

 

1.7 Conclusion 

 

This chapter details all the activities planned for the success of the research project. It 

details the objectives and scope of the research project. 
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2 CHAPTER 2: LITERATURE REVIEW 

 

2.1 Overview 

 

A literature assessment of the structure and functioning of solar PV microgrids is 

presented in this chapter. It contains an overview of the individual components and the 

control strategies utilized for power management flow within the microgrid system. It 

concludes with the challenges and future work on solar PV-based microgrid systems.  

 

2.2 Introduction 

 

Microgrids are characterized as small to medium-scale solutions that include Distributed 

Generation (DG), electrical loads, control, and energy management components (Ustun, 

Ozansoy, and Zayegh 2011). Renewable and nonrenewable energy resources are used in 

DG units. Integrating Renewable Energy Resources (RES), such as solar energy, in 

microgrids promotes environmental sustainability by producing minimal carbon 

emissions (Basak et al. 2012; F. Wang, Zhu, and Yan 2018). Community solar microgrids 

are described as ten or more residential households alongside the local businesses to attain 

the microgrid system's affordability and resilience traits (Qazi 2017). Community 

microgrids in cities have been reported in the literature to make electricity more affordable 

to individual customers through the shared usage of RES (Palaniappan et al. 2017). The 

affordability of solar PV systems has made renewable energy resources more appealing 

to integration in microgrid systems. The decrease in solar PV module costs is based on 

technological improvement, and authors' (Mayer et al. 2015) forecast that PV module 

costs will fall from USD 0.61 per Wp to USD 0.16 per Wp between 2015 and 2050. Solar 

energy is an intermittent energy source, and thereby remote microgrid systems are 

equipped with Energy Storage Systems (ESS), which keeps the flow of electricity to 

power consumers uninterrupted. A control and energy management strategy accomplishes 

the communication between the components of a microgrid system. Some of the control 

schemes for microgrid systems include hierarchical and droop control (Meng et al. 2016; 

Planas et al. 2013; Tayab et al. 2017). 
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2.3 Microgrid architecture  

 

A microgrid is defined as an electrically bounded section of the transmission distribution 

network that brings together local distributed generation sources, energy storage devices, 

and regulated electrical loads to produce a self-sufficient energy system (Cagnano, Tuglie, 

and Mancarella 2020). A microgrid system comprises three major sections; generation, 

loads, and controls, and these three operate inside a specialized regulated structure in 

conjunction with the utility grid (Donahue 2019). The Point of Common Coupling (PCC) 

is a transformer feature that connects the microgrid to the primary grid. 

 

2.3.1 Microgrid topology 

 

Three types of microgrid topologies may be identified based on the operating frequency 

of power generation (Hossain et al. 2019). 

 

2.3.1.1 DC Microgrid System 

 

DC microgrids are characterized by low to medium-voltage DC distribution networks. A 

DC transmission bus line connects DG units with DC power output to the other 

components of the microgrid (Fusheng, Ruisheng, and Fengquan 2016). The inception of 

low voltage DC microgrids is increasingly more common when the bulk of the load 

demand is from receptive electronic devices (Salomonsson, Söder, and Sannino 2009). 

Microgrid systems with medium voltage direct current (MVDC) are frequently used for 

heavy industrial loads that support offshore oil and gas drilling (Kounev et al. 2014; Reed 

et al. 2012). A DC-DC converter is utilized to regulate the DC voltage output of a solar 

PV system. Because some electrical appliances are powered by an AC power supply, a 

DC/AC converter is necessary for the system depicted in Figure 2.1 (Justo et al. 2013). 

The ESS will store any excess power in the DC bus line. Figure 2.1 shows a typical 

microgrid system structure. 
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                                                              DC bus 

 

 

 

 

Figure 2.1: A microgrid system with both DC and AC loads. (Justo et al. 2013) 

Because of the absence of converter requirements, DC microgrid systems are preferable 

over AC microgrid systems. Because energy losses occur at each conversion phase, the 

AC microgrid system has more energy losses than the DC microgrid system (Hossain et 

al. 2019; Shuai et al. 2018).  

 

2.3.1.2 AC Microgrid System 

 

A Low to Medium Voltage AC transmission network is part of an AC Microgrid system 

(LVAC). DG units that produce AC power link directly to the transmission line, whereas 

DG units with DC power are connected to the transmission line through a DC/AC 

converter(Hossain et al. 2019; Justo et al. 2013). DG units for the AC microgrid system 

include wave turbines, hydropower, and wind energy conversion system (WECS) (Baran 

and Mahajan 2003). AC/DC inverters convert AC power to a DC source to power DC and 

ESS loads. The use of an AC/DC inverter presents several issues, including infringement 

protection, communication, and microgrid operation (Phurailatpam, Rajpurohit, and 

Pindoriya 2011). 
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2.3.1.3 Hybrid AC/DC microgrid systems 

 

Various AC and DC energy sources and multiple loads are connected to the corresponding 

AC and DC networks in a hybrid AC/DC microgrid system setup (Liu, Wang, and Loh 

2011). The bidirectional inverter serves the role of facilitating the power supply between 

both buses as per the energy requirements of the microgrid system (Jain and Raju 2013). 

System components such as the ESS and DC loads communicate over the system's DC 

bus to facilitate power delivery. The hybrid system can achieve low conversion losses 

because the microgrid's separate components are individually linked to their power 

sources. (Hasan and Arif 2018). Figure 2.2 depicts the configuration of a hybrid AC/DC 

microgrid system. 

 

 

 

Figure 2.2: Structure of a hybrid AC/DC microgrid system (Jain and Raju 2013) 

 

 

 

 

 

 

 

       DC microgrid                                                                                AC microgrid 

 

 

 

 

 

 

 

 

                                 DC bus                                           AC bus 

DC distributed 
generation units 

DC loads through 
DC/DC converter 

ESS through 
DC/DC converter 

AC distributed generation 
units 

Flywheel AC storage and AC 
loads through AC/AC converter 

Utility grid through 
transformer 

Bi-directional 
AC/DC main 

converter through 
transformer 



CHAPTER 2: LITERATURE REVIEW 18        

 

2.3.2 Community solar microgrids  

 

Community solar microgrids can be found in either urban or remote settings. The creation 

of community solar microgrids in urban regions has more significant advantages than in 

remote areas due to the numerous benefits derived from energy exchanges with the utility 

grid (Faure et al. 2017). Benefits of grid-connected microgrids include improved power 

quality and reduced transmission power losses, thereby improving system finances (Da 

Marcello et al. 2017). In addition, urban microgrid systems serve as a foundation for smart 

grid technologies such as monitoring and control, essential for improving the electrical 

power grid's reliability (Howell et al. 2017). According to a 2017 survey conducted by the 

Italian Agency for New Technologies, Energy, and Sustainable Economic Development 

(ENEA), over 70 operational microgrid systems are established in urban areas worldwide 

(Faure et al. 2017). Load management is crucial in prioritizing load power-sharing 

between critical and low-priority loads. Power-sharing and self-sufficiency are two 

notable characteristics of community solar microgrids in urban areas. 

 

2.3.2.1 Power-sharing 

 

Power-sharing in a microgrid system allows individual customers in a community solar 

microgrid to utilize power from the solar PV system, thus saving money from their 

monthly electricity bill purchases (Palaniappan et al. 2017). Customers in a community 

solar microgrid may include local businesses, schools, hospitals, and residential 

households. For example, in Boston, Massachusetts (USA), several solar community 

microgrids are divided by district zones in the city. The community solar microgrids have 

been set up in locations with critical loads found in hospitals, emergency housing, and 

supermarkets, improving the utility grid network. The community solar microgrid 

establishment resulted in cost savings between $692 and $180,000 annually for the 

customers in Boston (Morgan et al. 2016). A campus community solar microgrid study 

by (Gašparović et al. 2016) investigated two microgrid community cases at the University 

of Split (Croatia) to identify optimum scenarios for the economic share of electrical loads 

in the settlement. The results from the study revealed that electricity purchases from the 
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national electricity grid were offset by 17% through the campus microgrid system. 

Another example of power-sharing among residential households in an urban microgrid 

system is reported in a DC community solar microgrid in the city of Wisconsin, 

Milwaukee. The DC community microgrid is made up of nine homes that are linked by a 

380 Vdc transmission line. A solar PV system as the main DG unit, a Home Energy 

Management System (HEMS), and a Microgrid Energy Management System make up the 

microgrid system. Customers in the community solar microgrid take advantage of the 

HEMS and MEMS service platforms that are linked to the internet cloud to maximize cost 

reductions in their households (Palaniappan et al. 2017). Smart peak shaving in an urban 

community network through Demand Side Management (DSM) enables customers to 

make significant cost savings in their annual electricity purchases from the electric utility 

grid (Faure et al. 2017). 

 

2.3.2.2 Self-sufficiency 

 

The ability to detach from the utility grid and function in an island mode is another feature 

of urban microgrids. The microgrid system can operate in the island mode, such as a 

power outage or when the DG unit can provide exclusively continuous power to the 

electrical loads without support from the utility grid. According to (Wanitschke, Pieniak, 

and Schaller 2017), “Time-based autarky is defined as the degree of self-sufficiency of 

the microgrid as assessed by the total duration during which no power is taken or fed into 

the overlying energy grid-level.” A key aspect of self-sufficiency in a microgrid system 

is the availability of an ESS. Examples of urban microgrid systems reported in the 

literature are listed in Table 2.1. 
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Table 2.1: Examples of urban microgrid systems 

Components DG units’ capacity Performance 

Hybrid microgrid for 

residential application 

(Bifaretti et al. 2017) 

Solar PV: 3 kWp,  

PEM fuel cell: 1.2 kW 

Battery capacity:8 kWh 

Maximum electronic load: 5 

kW 

The fuel cell, with grid assistance, was 

able to meet load surges in the early 

morning and late afternoon. The 

simulations show a maximum solar PV 

output of 1.5 kW between 11 a.m. and 

2 p.m., with extra electricity sent into 

the grid. 

Grid-connected 

microgrid system (Da 

Marcello et al. 2017) 

Solar PV: 11.76 kW 

Fuel cell: 10 kW, 

Battery: 500Ah 

During island mode, the battery meets 

the energy demands of the load from the 

grid. Once the grid is restored, the 

battery is charged within 4 seconds. 

Campus University 

microgrid system 

(Borer 2013) 

Gas turbine generator: 15 

MW 

Solar PV: 4.5 MWp 

The maximum gas-turbine power and 

solar PV generation recorded every day 

were 16 MW and 4 MW, respectively. 

Grid-connected 

residential solar PV 

with battery backup. 

(Saxena et al. 2017) 

Planned solar PV power: 5 

kW 

Simulation results reveal a 3 kW peak 

power at 700 W/m2 and 4.4 kW peak 

power at 1000 W/m2.  
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2.4 Solar PV microgrids modeling and simulation 

 

This chapter goes through the components used to simulate solar PV microgrids in both 

grid-connected and island modes of operation. DC/DC converter, inverter, solar PV 

modules, ESS, and electrical loads are all components of solar PV microgrids. The review 

encapsulates the developed solar PV modules and their performance under various 

software environments. The DC/DC converter performs the function of converting the 

DC voltage source to another DC voltage source of a different magnitude. The DC/AC 

inverter converts a DC voltage source to an AC voltage source and synchronizes the AC 

output to the utility grid (Yang et al. 2019). The usage of an inverter in a microgrid system 

results in drawbacks such as harmonics and voltage imbalances, to mention a few. The 

inverters are equipped with Pulse Width Modulation (PWM) to maintain stability in the 

output waveforms. An ESS is required to ensure the efficient operation of a solar PV 

microgrid by reducing the intermittent and variable solar PV production (D. W. Gao 

2015a). There are two types of ESS designs for community solar microgrids: aggregate 

and distribution.  The use of a Battery Energy Storage System (BESS), a kind of ESS, in 

community solar microgrid systems has been widely described in the literature. Of the 

various BESS models, the lithium-ion battery models have displayed a higher efficiency 

than lead-acid and nickel-cadmium battery models (Breeze 2018; Kularatna 2015; Vetter 

and Rohr 2014). 

 

2.4.1 Modeling of solar PV modules 

 

A solar PV module is made up of several PV cells that are joined together. A solar PV 

array comprises modules connected in series or parallel (Villalva, Gazoli, and Filho 2009). 

A typical solar cell model is illustrated in Figure 2.3 as a single diode model that 

represents an ideal PV cell's equivalent circuit (Adhikari and Li 2014). The concept of a 

practical single solar cell is shown in Figure 2.3. 
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Figure 2.3: Design of a solar cell using an equivalent circuit (Adhikari and Li 2014) 

Rs represents the series resistance in the circuit diagram above, whereas 𝑅sh represents the 

shunt resistance, which has an inverse relationship with the leakage current. The diode 

current and shunt leakage current, respectively, are represented by 𝐼D  and 𝐼sh (Prakash 

and Singh 2016). MATLAB/Simulink, Personal Simulation Program with Integrated 

Circuit Emphasis (PSpice), and PSCAD, to name a few, have all been used to create and 

integrate various solar PV modules (Ahlawat, Gupta, and Gupta 2017; Nguyen and 

Nguyen 2015). The Simscape toolbox in the MATLAB/Simulink environment provides 

a constructed solar PV module designed according to Equation 3.16. The model's 

principal characteristic is that it is easy to use and utilizes simulations to determine the 

PV module's radiation and temperature (Khalil and Ateea 2015). The PSpice software 

environment now contains PV modules created using a single PV cell and allows for PV 

module analysis by running simulations under various partially shadowed circumstances 

(PSC). The PSpice environment enables performance study for a PV module under PSC 

by adjusting the current source (Jiang et al. 2011). Table 2.2 summarizes the PV array 

modules produced in various software environments. It captures the performance of 

several PV module kinds and designs at different temperatures and irradiation levels. 

Table 2.2 represents various PV array model designs in different software environments. 
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Table 2.2: Solar PV array models performance  

Solar PV module 

type 

Capacity Performance 

Single diode model 

(SDM) in 

MATLAB/Simulink 

(Dey et al. 2016) 

50 Wp solar module 

performance under 

various irradiance and 

temperature values 

The simulation shows that the solar PV module 

generated a 46 W peak at 15o C. Still, it 

developed a peak of 46 W at 35o C, thereby 

revealing that the PV module performance does 

not positively correlate with temperature. 

Hybrid model on 

MATLAB/ PSpice 

environment (Jiang et 

al. 2011) 

The solar cell at 

irradiance values (0.4 

kW/m2 – 1.0 kW/m2) in 

increments of 0.2 

kW/m2 

The solar PV module hybrid model produced 70 

Wp under uniform shaded conditions (USC) 

and 76 Wp under partially shaded conditions 

(PSC). 

Multi-dimension 

diode PV module on 

the 

MATLAB/Simulink 

environment (Soon 

and Low 2015) 

Solar PV module under 

STC 

 

When compared to the SDM, utilizing the 

double-diode model (DDM) enhances 

modeling accuracy. The proposed model 

simulation findings allow for the addition of 

diodes in series without impacting PV peak 

generation. 

Comparison of DDM 

(Model 1), iterative 

Newton-Raphson 

model (model 2), and 

proposed model 

(model 3) on 

MATLAB 

(Bhuvaneswari and 

Annamalai 2011) 

Solar PV module with 

capacity 50 Wp under 

STC 

The PV curves of the three models under real-

world testing settings (500 kW/m2) delivered 

model 1 and model with the highest peak power 

of 25 Wp, while model 2 produced 23 Wp. 
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2.4.2 Battery Energy Storage System (BESS) modeling 

 

The BESS is responsible for reducing power supply variability between electrical loads 

and generation units (Abdi, Mohammadi-ivatloo, and Javadi 2017; Alzahrani et al. 2017; 

D. W. Gao 2015a). A BESS is vital for urban microgrid systems to provide power to loads 

during the island mode. A BESS is required for urban microgrid systems to provide 

electricity to loads during the island mode. The BESS communicates with the DC/DC 

converter, DC/AC inverter, DC link capacitor, and the community solar PV microgrid 

system (Farrokhabadi et al. 2018). The buck-boost converter is a DC/DC converter 

topology utilized for urban microgrids to enable the charge and discharge of the BESS 

(Farrokhabadi et al. 2018; D. W. Gao 2015b; Nisha Kondrath 2018). The ESS can operate 

as the electrical load or generator through charging and discharging. ESS configurations 

exist in two states, namely distributed and aggregated ESS. When compared to distributed 

ESS, aggregated ESS is better suitable for microgrids because it efficiently suppresses 

power fluctuation in the microgrid system (D. W. Gao 2015a; Kook et al. 2006; Li and 

Joós 2007). The BESS manages energy in the microgrid system by performing load 

leveling and peak load shifting (Xia et al. 2015). Local voltage support, grid contingency 

assistance, and load shifting are ancillary services that the ESS provides to the microgrid 

system. (Farrokhabadi et al. 2018). The BESS models utilize the commonly established 

electrochemical batteries or regulated voltage sources (Tremblay, Dessaint, and Dekkiche 

2007). BESS models can respond to the control system instructions and activate the 

reserve in approximately 20 milliseconds (Adrees, Andami, and Milanovic 2016). BESS 

capacity and lifetime are affected by variables such as depth of discharge (DOD), rate of 

discharge, and temperature. Equation 2.1 illustrates the capacity of a battery expression 

(Alzahrani et al. 2017): 

 

 
𝐵௖௔௣௔௖௜௧௬ =  

𝐸௟௢௔ௗ ∗  𝐷௢௙௙

𝐷𝑂𝐷௠௔௫ ∗  𝑛௧௘௠௣
 

2.1 

 

𝐸௟௢௔ௗ is the load supplied to the microgrid system during periods of low electrical power 

supply by the DG unit in ampere-hours, 𝐷௢௙௙ is the number of days the microgrid is 
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operating in island mode, 𝐷𝑂𝐷௠௔௫  is the depth of discharge at maximum level and 𝑛௧௘௠௣ 

represents the temperature correction factor. Lithium-ion batteries are the most commonly 

used battery type for community solar PV microgrids because of their unique 

characteristics, including high energy density, low weight, and long life duration (Breeze 

2018; Kularatna 2015). Table 2.3 presents an overview of the battery types and 

applications reported in the literature. 
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Table 2.3: Overview of BESS models 

Applications Battery types Overview 

Grid-connected 

solar PV system 

with battery 

support for 

residential usage in 

Dymola software 

environment (Vetter 

and Rohr 2014) 

Performance 

comparison of lead-

acid battery with a 

lithium-ion battery 

Battery capacity: 6.3 

kWh 

According to the simulation results, 

replacing a lead-acid battery with a 

lithium-ion battery improves 

functional capacity by up to 90%. 

Residential battery 

storage connected 

to the grid (Bila, 

Opathella, and 

Venkatesh 2016) 

Lithium-ion battery 

(3.88 kWh) 

75 Ah 

The battery's cycle efficiency for 

charging and discharging is 91 percent 

and 87.5 percent, respectively. 

Modeling design of 

off-grid microgrid 

system (Moncecchi 

et al. 2018) 

Comparison of lead-

acid and lithium-ion 

battery (94.5 kWh and 

49.1 kWh) 

The simulation cost analysis of the two 

batteries showed that the lead-acid 

batteries were replaced three times 

throughout the study period. In 

contrast, the lithium-ion battery was 

replaced just once. 

 

Lithium-ion batteries are commonly used in solar community solar microgrids because 

they have an 80% Depth of Discharge (DoD) compared to lead-acid batteries' 50% DoD 

(Vetter and Rohr 2014).  
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2.4.3 Inverter modeling 

 

Energy conversion is required for a microgrid system to allow power flow exchanges 

between individual components (Shintre and Mulla 2016). In terms of power supply, 

inverters are divided into current source inverters (CSI) and voltage source inverters 

(VSIs). A VSI and CSI circuits are classified based on their DC input type, either voltage 

source or current source(D. W. Gao 2015b; D. Z. Gao and Sun 2016). Three-phase VSI 

features three inverter legs and is typically used in medium to high power (>5 kW). 

(Kharjule 2015; Siwakoti, Forouzesh, and Pham 2018). The inverter is designed with three 

half-bridge inverters that are coupled in a parallel manner. The three inverters have a 120-

degree phase difference, and their combination produces a three-phase voltage source 

(Manias 2017). The power transfers between microgrid systems and the utility grid via a 

bidirectional inverter/rectifier are dictated by the microgrid system's power requirements 

(Debela, Ensermu, and Bhattacharya 2017).  A solar PV-BES microgrid system can 

integrate a multifunctional VSI to regulate the waveforms of parameters such as voltage, 

harmonic content, and frequency (Narayanan, Seema, and Singh 2018). The current and 

voltage waveforms of harmonics are characterized by distortion and divergence from 

sinusoidal output waveforms (Gray and Morsi 2015). Control and modulation techniques 

are used to ensure proper inverter operation and to eliminate harmonics in the system. 

 

Techniques like the PWM and stepped-wave inverter are used to control three-phase VSI. 

Because of its capacity to work at lower frequencies, PWM is the most widely used 

technique for suppressing harmonics in machines with a history of more than fifty years 

(Aguilera et al. 2018). The amplitude output voltage of the VSI can be controlled using 

PWM inverters. The inverter undergoes multiple switching at a steady DC input voltage, 

and the inverter obtains fewer harmonics (Kim 2017). Single PWM, Multiple PWM, and 

Sinusoidal Pulse Width Modulation (SPWM) are the three most prevalent control 

mechanisms for PWM inverters. Because of its apparent use in industrial applications, the 

SPWM is the most commonly utilized modulation (Kim 2017). Every half cycle, there is 

one pulse for single PWM control. By altering the width of the single pulse, the voltage 

generated can be changed (Aguilera et al. 2018; Kharjule 2015). 
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2.4.3.1 SPWM Inverter 

 

The SPWM approach can modulate voltage for each cycle (Kim 2017). The technique 

generates many pulses for each half-cycle. The duration of each pulse varies as per the 

sine wave scale. The sinusoidal waveform is created by comparing two waveforms: a 

triangle wave (carrier wave) and a control wave (control wave) (sinusoidal). The high-

frequency carrier signal (vc) and the sinusoidal AC voltage reference signal (vref) pass via 

a comparison device. The intersection of the two movements indicates the inverter's 

switching states (D. Z. Gao and Sun 2016; Manias 2017). Figure 2.4  depicts the operation 

of the SPWM technique. 

 

 

Figure 2.4: Operation of the SPWM technique  (Kim 2017) 

It is visible that when vref > vc, the pole voltage (Vdc /2) is at its maximum, and when vref 

< vc, the pole voltage is at its minimum (-Vdc / 2). Linear modulation can only be achieved 

when the amplitude of vref remains below the peak of the vc i.e., vref ≤ Vdc /2 (Aguilera et 

al. 2018). Changing the modulation waveform allows you to control the amplitude and 

frequency of the output. The modulation index MI denotes the relationship between the 

carrier and modulating waves (Equation 2.2).  
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 MI =  
vref

Vdc
2ൗ

  2.2 

 

The linear modulation index range (MI) is between 0 and  1 when vref ≤  Vdc/2 (Kim 2017). 

The inverter can generate an output voltage that is proportionate to the reference voltage 

(Kharjule 2015). Grid-forming and grid-following inverters are two types of inverters 

used in electricity systems. Grid-forming inverters can operate as voltage sources to lower 

output impedance in output voltage waveforms because of their design (Ashabani and 

Mohamed 2014). Grid-feeding/following inverters serve as current sources to control the 

output current waveforms' impedance (Unruh et al. 2020).  

Table 2.4 presents the developed inverter models and their applications. 
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Table 2.4: Inverter models 

Inverter type Usage Overview 

Grid forming converter 
(GFC) in an island AC 
microgrid system (E Silva, 
Luiz, and De Matos 2014) 

Reduction of the 
energy generated in the 
microgrid system to 
safeguard the ESS 

By switching the GFC frequency, the battery 
bank voltage was maintained at 280 V as the 
generation gradually decreased. 

Bi-directional converters in 
a hybrid microgrid system 
(Debela, Ensermu, and 
Bhattacharya 2017) 

Energy management in 
the microgrid system 

The employment of the SPWM inverter 
resulted in a 300 V peak on the AC power 
supply, resulting in conversion efficiency of 
95% in steady-state. 

Parallel converters in an 
autonomous microgrid 
system (Vazquez et al. 
2012) 

Estimation of the 
correct number of 
inverters for improving 
power output. 

The predicted three inverters could deliver 
110V at a frequency of 60 Hz by balancing 
current and regulating the output voltage. 

Hybrid current-controlled 
VSI and voltage-controlled 
VSI in an autonomous 
microgrid (Ashabani and 
Mohamed 2014). 

Usage of controlled 
droop method to enable 
the smart power 
distribution in the 
microgrid. 

(a) Grid-connected: Models A (current-
dropping voltage-controlled VSI) 
and C (power-dropping voltage-
controlled VSI) gave reaction times 
of 0.07 sec and 1.0 sec, respectively, 
indicating the system's capacity to 
monitor grid frequencies without 
Phase-Locked Loop (PLL) to 
synchronous machines. 

(b) Models A and C had a power-sharing 
and current-sharing inaccuracy of 0.5 
percent and 1.0 percent, respectively, 
when connected to an island. 

Multi-level inverter for 
solar PV-based grid-
connected inverter (Sarwar 
and Asghar 2011). 

Improvement of the 
wave shape and 
reduction of the total 
harmonic distortion 
(THD) in output 
voltage waveforms. 

THD was reduced by changing the switching 
angles of the multi-winding transformer. The 
THD measured at 110o was 22.9 percent, 
whereas the THD recorded at 125o was 
roughly 32 percent. 

Parallel-connected single-
phase PV-based inverter 
(Kulkarni and Nehete 
2014). 

Comparison of the 
simulated and 
measured output 
voltage of the inverter 
with a 500 W resistive 
load. 

The output voltage discrepancy between the 
simulated and measured values was about 
6%, with the system's THD reported at 1.25 
percent. 
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2.4.4 Electrical load modeling 

 

A load profile depicts energy use behavior in a residential household (Ihbal, Rajamani, 

and Jalboub 2011). The electrical loads of different residential families can be grouped to 

reflect a community's or district's profile. Due to many elements such as weather and 

dynamic human behaviors, creating load models is a massive undertaking. According to 

the authors, load models can be created by utilizing a constant electric impedance 

(Alzahrani et al. 2017). Load modeling aims to develop simple mathematical models that 

approximate load behavior (Arif et al. 2018). The objective of load modeling is to 

establish simple math modeling to approximate load conduct. Static and dynamic load 

models are the two types of load models. Due to the nature of modeling loads, the 

electrical loads in a residential house may be represented as static loads, as most of them 

do not exhibit highly non-linear behavior. A standard load modeling approach is 

measurement-based load modeling, which accumulates load data from data collection 

devices to generate load characteristics (Arif et al. 2018; M. Jin, Renmu, and Hill 2006). 

Component-based load modeling is another load modeling technique that derives energy 

information by evaluating the electrical load's composition (Ju et al. 2018). Residential 

electrical loads are aggregated using component-based load models. The household 

features in a residential household are inferred using energy usage data from smart meters 

(Fahim and Sillitti 2019). User behavior traits are represented by energy usage patterns 

(Collin et al. 2014; Mcloughlin, Duffy, and Conlon 2015). Authors (Labeeuw and 

Deconinck 2016) present a load model that generates load profiles using the clustering 

characterization technique. Clustering characterization is an independent technique for 

detecting various energy usage trends in large groups of residential users (L. Jin et al. 

2017). Authors (Tang et al. 2019) present a data-driven online aggregated load modeling 

approach to mimic the load of aggregated users. 
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2.4.4.1 Static load models 

 

Static load models depict active and reactive power in a microgrid system as a function 

of voltage and frequency fluctuations (Arif et al. 2018; EL-Shimy et al. 2018). The Zero-

Inflated Poisson (ZIP), exponential, and frequency-dependent models are some of the 

static load models developed. Among the many literature studies for measuring the static 

characteristics of electrical loads, the ZIP model is the most extensively utilized (Arif et 

al. 2018; Gu, Ai, and Wu 2005). The ZIP load model for active and reactive power is 

mathematically represented by Equation 2.3 and Equation 2.4. 

 

 𝑃

𝑃௢
= [𝑃ଵ (

𝑉

𝑉଴
)ଶ +  𝑃ଶ

𝑉

𝑉௢
+  𝑄ଷ ] ( 1 +  𝐿஽௉ ∆𝑓) 

2.3 

 

 𝑄

𝑄௢
= [𝑄ଵ(

𝑉

𝑉௢
)ଶ + 𝑄ଶ

𝑉

𝑉௢
+ 𝑄ଷ ] ( 1 +  𝐿஽ொ  ∆𝑓 ) 

2.4 

 

The active and reactive power absorbed by the static load is represented by 𝑃 and 𝑄, 

respectively, 𝑉 is the terminal voltage of the electrical load, 𝑃ଵ ,𝑃ଶ, 𝑃ଷ and 𝑄ଵ, 𝑄ଶ, 𝑄ଷ 

indicate the voltage-dependent active and reactive power coefficients, respectively. 

Where Lୈ୔   stands for frequency-dependent active power coefficients, 𝐿஽ொ stands for 

frequency-dependent reactive power coefficients, ∆𝑓 stands for frequency variation, and 

subscript 𝑜 stands for standard value.  

2.4.4.2 Dynamic models 

 

The active and reactive powers in a microgrid system are represented as a function of 

voltage and time in dynamic load models (Arif et al. 2018). The exponential dynamic load 

model is a dynamic model for a residential dwelling (Yamashita et al. 2012). The 

induction motor (IM) model is distinguished by its time-based reaction to a voltage 

variation. The IM model is used for transient simulations due to the fast-changing nature 
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of dynamic loads (Abdelsalam et al. 2014; Yamashita et al. 2012). Table 2.5 shows a list 

of common electrical load components. 

 

Table 2.5: Modeling of load components  

Electrical Load 

component 

Model composition Simulation results 

(a) Incandescent 

model 

(b) Induction 

cooker model 

(Zhao et al. 

2010) 

(a) Hybrid constant 

impedance and 

current model (ZI) 

and stable 

impedance model 

(Z) 

(b) I model and ZI 

model 

(a) The ZI model accurately 

reflected the measurement curve. 

However, the Z model did not. 

(b) The I model could replicate the 

fluorescent active power's static 

properties. 

(c) The I and Z models could 

represent the induction cooker's 

active and reactive power 

characteristics, respectively. 

A 22 kilovolts 

electrical substation 

(Carneiro et al. 2017) 

An exponential model and 

ZIP model 

The simulation findings of the ZIP and 

exponential models were similar to the 

observed values of active power. 

However, the ZIP model did not 

appropriately represent values that were 

similar to the experimental reactive 

power. 

Modern household 

appliances test in a 

laboratory (Bokhari et 

al. 2014) 

Identification of ZIP load 

parameters through varying 

the voltage of the individual 

appliances 

The experiment results show that current 

instruments are injected with a power 

correction factor, allowing the 

formulation of a precise ZIP load model 

compared to measured power levels. 
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2.4.5 Challenges of solar community microgrids 

 

The three modes of operation for community microgrids provide technological problems 

when integrating solar PV as DG units. The difficulties encountered by solar community 

microgrids in urban areas are particularly pronounced when operating during on-grid 

states (Hossain et al. 2019; Qazi 2017). Through islanding, a balance between the 

generation and load must be kept to avoid faults in distribution transmission lines, which 

can be harmful to the individual components in the microgrid system (Faure et al. 2017). 

The technical challenges of microgrids include control, protection, and re-

synchronization, to mention a few. 

 

2.4.5.1 Microgrid stability 

 

Grid-connected microgrids are more prone to instability issues than island microgrids due 

to voltage and frequency synchronization with the primary utility grid. Conventional 

power stations in SSA are unidirectional, making them vulnerable to malfunctions 

resulting in power outages (Sampath, Prasad, and Samikannu 2018). As a result, improved 

control systems are necessary for the SSA area to ensure the integration of microgrids 

with utility grids. The link of the solar microgrids with the utility grid necessitates a 

control technique to avoid system voltage and frequency deviations from their setpoints  

(Kumar and Ravikumar 2016; Sivarasu, Chandira Sekaran, and Karthik 2015). 

 

2.4.5.2 Protection 

 

Analysis of the direction and amplitude of current flow in the system is complicated when 

micro-sources are integrated with a unidirectional power network. Because solar PV is a 

weather-dependent RET, it generates intermittent electricity throughout the day (Mariam, 

Basu, and Conlon 2016). Because the fault current path fluctuates depending on fault 

location, the unpredictability in current flow in the system causes protection devices in 

networks to malfunction (Hossain et al. 2019; Miveh et al. 2012). Authors (Salomonsson, 
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Söder, and Sannino 2009) propose a low-voltage DC microgrid safety system that 

combines fuses and circuit breakers to detach faults and minimize the impact of 

interruptions quickly. Control systems that can regulate and monitor energy flow while 

also protecting microgrid components are heavily reliant on the use of both grid-

connected and island microgrids(Hasan and Arif 2018). 

 

2.4.6 Future of solar community microgrids 

 

The global expansion growth of solar microgrids has improved due to the inception of 

techniques and methods that alleviate the intermittency issue of solar as an energy source 

(Qazi 2017). Various solar microgrid systems utilize an additional DG unit or an ESS to 

maintain the power balance supply in the microgrid system. A rapidly rising technique 

used in the optimization of a microgrid is machine learning. Machine learning through 

linear programming, effective energy management within the microgrid is accomplished 

through the scheduled economic dispatch and unit commitments of the microgrid 

components (Shrivastwa et al. 2019). Optimization models such as DER-CAM have been 

utilized to encompass mixed-integer linear programming (MILP) for microgrids with 

various energy types. Authors (Mashayekh et al. 2017), through MILP, use multi-

modeling nodes for optimal siting of electrical and heating/cooling networks. Through 

linear programming, the community's standard and forecast load profiles will aid in the 

microgrid system's adequate sizing and design techniques through control algorithms. 

Another machine learning technique for the optimization model of microgrid energy 

management is dynamic programming. Multi-parameter dynamic programming was 

utilized for optimization by addressing non-linear loads and power supply intermittency 

of DG units (X. Wang et al. 2020). Through technology advancement, projections indicate 

that by 2050, solar PV will be the cheapest source of power, with costs estimated at USD 

0.014- 0.05/ kWh (IRENA 2019a). Therefore, solar microgrids are promising energy 

solution avenues for developing countries considering the high Global Horizontal 

Irradiation (GHI) values received in certain countries (Yekini et al. 2013).  
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2.5 Observations and gaps from the literature after critical review 

 

Key observations and research gaps identified from the literature review include: 

 The low-cost nature of solar PV system has made them attractive for integration 

in low to medium scale energy solutions such as microgrids systems. 

 

 The microgrid system benefits consumers by reducing the costs of their monthly 

expenses through energy management systems (EMS). 

 

 The intermittent nature of solar PV creates harmonics in the voltage output 

waveforms which are corrected by control and modulation techniques. 

 

 Several studies have been conducted to evaluate the quality of energy in a 

microgrid based on the amount of total harmonic distortion (THD) in the supply 

voltage. 

 

 Few studies have examined the comparative performance between PID controllers 

and fuzzy logic control by THD evaluation. 

 

 Little work has been done on measurement-based load modeling of energy 

consumption for households in Botswana. 

 

 Few studies have been conducted on the design simulation of solar PV microgrids 

in Botswana. 
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2.6 Conclusion 

 

This chapter introduces a microgrid's general concept and working principles, especially 

solar PV community solar microgrids established in urban settlements. Solar PV 

microgrids in an urban settlement operate in two modes, namely grid-connected and island 

mode. Energy management in an urban microgrid settlement allows an individual 

customer to reap cost savings through the shared usage of RES integrated into their 

building. The droop control technique achieves effective management through voltage 

sag reduction that develops because of the intermittent nature of solar as a RES. The 

review then introspection on the historical modeling and simulation background of the 

individual components that make a microgrid system, especially solar-based. The 

performance assessment of the particular model components was reviewed under various 

software environments such as MATLAB/Simulink, PSCAD, and Pspice. For community 

solar microgrids, there are two forms of ESS configurations, namely aggregate and 

distribution. Battery Energy Storage System (BESS), a form of an ESS, has been widely 

reported in the literature for usage in community solar microgrid systems. Of the various 

BESS models, the lithium-ion battery models have displayed a higher efficiency than 

lead-acid and nickel-cadmium battery models. The integration of solar PV as a DG unit 

in community solar microgrids brings about technical challenges through the three modes 

of operation. The difficulties experienced by community solar microgrids in urban 

settlements are more prominent during the on-grid operation mode.  
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3 CHAPTER 3: RESEARCH DESIGN AND METHODOLOGY 

 

3.1 Overview 

 

The methodologies and strategies used to develop solar PV microgrids in urban environ

ments are presented in this chapter. It comprises residential load metering in a Botswana 

setting, followed by the smart meter data analysis. After that, the single household Grid-

connected solar PV system was designed in the simulation environment PVSyst. The solar 

PV system design in PVSyst then informs the creation of the solar PV community 

microgrid model in the software environment MATLAB/Simulink. The solar PV 

microgrid designs will be for the island and grid-connected mode for the settlement. 

 

3.2 Introduction 

 

The initial objectives of the research include the measurement of energy consumption in 

a typical urban household. Various techniques are utilized to identify residential load 

profile patterns through smart metering data. The measurement-based approach will be 

used for the load model design. The method retrieves load data from data acquisition 

equipment to deduce the electrical load characteristics in a residential home. A smart 

metering system will be utilized to extract the energy consumption information for the 

residential household in the experiment. A residential home grid-connected solar PV 

system will be sized and simulated as per the daily energy requirements of the family in 

experimentation in the software environment PVSyst. Descriptive and predictive analytics 

will be utilized to analyze the smart metering data through the programs Statistical 

Package for Social Sciences (SPSS) and the statistics toolbox in MATLAB. Techniques 

used to predict electricity usage include regression models, clustering techniques, 

Autoregressive Integrated Moving Average (ARIMA), and Support Vector Machines 

(SVM). The analytics are conducted to identify the best appropriate description of the 

load appliances in the residential household. The overview energy usage scenarios will 

aid the inception of demand-side management (DSM) schemes alongside implementing a 

solar PV microgrid system. 
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For this research, a grid-connected solar PV system will be designed for a single 

household with minimizing feed-in to the grid through PVSyst and MATLAB software 

environments. The smart metering data will then be utilized to forecast the demand for 

electrical appliances in the future. The medium-term (week to a year) forecasting will be 

applied through analytical programs such as SPSS and Microsoft excel.  Forecasting 

offers a snapshot of future energy use in the home, which is critical information for 

designing the community solar PV microgrid system. The MATLAB/Simulink 

application will be used to develop the community solar PV microgrid system. The energy 

management plan for the community solar PV microgrid is based on the descriptive and 

predictive analysis results. Through energy management in the community microgrid 

system, the load profile from the residential households will match the rooftop solar PV 

microgrid system. The energy consumption data for a quarter of households in an urban 

community will be synthesized through a MATLAB program. The model design of the 

community solar PV microgrid system will be carried out in MATLAB/Simulink. 

Residential households play a crucial role in the forthcoming electricity systems as they 

emerge to become a substantial chunk of Africa’s power generating power capacity. The 

design of a smart load management program is necessary for the effectiveness of a solar 

PV microgrid system in terms of energy production.  

 

3.3 Residential load metering and design 

 

Several methods and techniques characterize electrical energy usage in residential 

households (Issi and Kaplan 2018). The general techniques include the engineering 

method, statistical design, time-series, and clustering technique. The engineering method 

of characterization, also known as the bottom-up approach, is the most utilized to generate 

electricity consumption in a residential home. The system achieves electricity 

characterization in homes through function parameters such as occupancy and appliance 

ownership (Capasso et al. 1994). The statistical method accomplishes electricity 

characterization through figures and reports. Data estimations based on reports provide 

the time-use and quantity of energy usage in a residential home (Mcloughlin, Duffy, and 

Conlon 2015).  The time-series method is often used for households’ energy usage in 
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larger societies but is lesser in individual households (Mcloughlin, Duffy, and Conlon 

2013). The final characterization method, namely the clustering technique, identifies 

similar electricity usage patterns in residential communities. The technology is new and 

unsupervised, yet it detects different sorts of energy consumption behavior in big groups 

of residential users (L. Jin et al. 2017). The bottom-up approach was utilized for this 

research, considering that it will be used for an individual household. The clustering 

technique will be used for the analysis of the energy consumption of the community 

households.  

 

3.3.1 Proposed metering methodology 

 

The measurement period will run for 6-12 months to have a yearly overview of appliance 

usage in a residential home. Electric characteristics such as voltage, current, and power 

factors for electrical appliances will be identified through data recording. The medium 

and long-term monitoring period is to have a seasonal overview of load consumption 

throughout the year.  

 

3.3.1.1 Study area 

 

Botswana International University of Science & Technology (BIUST) 

BIUST Staff senior houses 

Palapye, Botswana 
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Figure 3.1: The electrical appliances layout of the building in the experiment 

Figure 3.1 represents the layout of the building. The residential building comprises one 

room downstairs, three rooms upstairs, a sitting room, a kitchen, three bathrooms, and 

toilets. There are multiple appliances in the building, but only the major appliances will 

be metered.  

3.3.1.2 Initial survey and questionnaire 

 

A preliminary study will be undertaken in the experimental household for a certain period 

to identify household occupancy patterns and appliance ownership. The study will include 

a survey and a questionnaire. A questionnaire sample to be administered to the people 

living in the household is listed in Table 3.1. 
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Table 3.1: Preliminary questionnaire to identify the energy consumption pattern in the 

household. 

Question # Description 

Q1 How many inhabitants are in the household? 

Q2 What is the employment status of the inhabitants in the household? 

Q3 How many rooms are in the household? 

Q4 What is the quantity and types of electrical appliances per room in the 

household? 

Q6 What is the energy use behavior on a weekday and weekends? 

  

 

The questionnaire provides the occupancy scenarios and energy usage behaviors in the 

household.  

3.3.1.3 Metering equipment 

 

The metering equipment for the measurement period is the Smart Gateway (Energy 

Management & IoT Gateway). The system is an intelligent energy system capable of 

monitoring, controlling, and optimizing energy usage in the household via an app or 

online dashboard (CarbonTRACK 2019). Smart meters can detect electrical home 

appliances consumption, and dependent on the end-usage application, they can be utilized 

for various analysis methods and procedures under forecasts (Yildiz et al. 2017). The 

techniques used for load forecasting include regression analysis, exponential smoothing, 

and weighted iteration (Wen et al. 2018). A significant function of forecasting is to 

promote power generation planning for an electric power system.  
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The functional capabilities of the Smart Gateway include but are not limited to 

(CarbonTRACK 2019): 

 

- Management of peak loads for an entire house 

- Creation and management of digital essential loads panel 

- Remote control and monitoring of all electrical appliances in the home 

- Support of green circuit feature to maximize solar usage 

- Electrical phase monitoring (3 phase, four-wire) 

 

Figure 3.2 represents the energy measurement equipment utilized in the research for data 

collection. 

 

(a)                       (b)  

Figure 3.2: The energy measuring equipment. (a) The CT200i smart gateway and (b) 

Zigbee smart plug 

The Smart Gateway is set up near the distribution board to connect four monitoring 

current clamps. The clamps can be for the four major electrical energy consumers: air 

conditioner, fridge, water heater, and lights. For additional current monitoring in more 

appliances, the carbon TRACK Smart plug can be utilized. The smart plug possesses IoT 

monitoring and control for electrical appliances. The smart plug is connected in-between 

the socket and the electrical appliances power cable. It monitors electricity consumption 

in intervals of 15 minutes (CarbonTRACK 2019). Electrical appliances are remotely 

controlled from your phone via Wi-Fi connectivity.  
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3.3.1.4 Metering physical design 

 

The experimental household consists of a variety of electrical appliances. The overall 

electricity usage in the home will also be monitored. Below is the list of the practical 

instruments that will be energy monitored.  

 

- Washing machine 

- Fridge 

- Lights 

- 4x Air conditioners 

- Miscellaneous appliances 

 

Based on the available appliances in the household, two smart gateway devices will be 

required, along with two smart plugs. Below is a schematic diagram that indicates the 

physical layout of the installation of the metering equipment in the household. Figure 3.3 

represents the installation schematic for the energy measurement equipment, and Figure 

3.4 illustrates the electrical distribution board of the building in experimentation. 

 

 

Figure 3.3: The installation schematic of the energy measuring equipment in the house in 

the experiment. 
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Figure 3.4: The distribution board (DB) of the house in the experiment and electrical 

appliances list. 

3.3.1.5 Data collection 

 

The energy consumption data is stored in an online dashboard. The installation company 

provides an application service provider (ASPs) for the data consumption information of 

the building in the experiment. Every 15 mins the electricity consumption information is 

recorded and stored online. Figure 3.5 illustrates a snapshot of the online dashboard where 

the energies are recorded for future usage. 

 

 

Figure 3.5: Snapshot of the online dashboard and storage center 
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The parameters that will be measured include electricity usage (kWh), Peak power (kW), 

power factor, power (kW), apparent power (VA), and Auxiliary values (voltage, grid 

frequency, and signal strength).  

3.4 Descriptive and predictive analytics 

 

The smart meter devices will be logging energy consumption in the experimental 

household every 15 minutes throughout the day. The 15-minute energies will reveal the 

peaks and valleys linked with the daily activity of the inhabitants. Data science allows for 

the analysis of the data for the household to show the inhabitant’s characteristics and 

energy-saving opportunities. The software environment utilized for data science in the 

research includes SPSS, Microsoft excel, and Statistics & Machine learning toolbar in 

MATLAB with computational resources of intel Core i5 laptop with a RAM of 12 GB. 

Figure 3.6 depicts the various applications and techniques in smart meter data analytics. 

 

 

Figure 3.6: Various applications and techniques of smart meter data. SOURCE: 

(Yamashita et al. 2012) 

Predictive analytics, prescriptive analytics, and descriptive analytics are the three types of 

data analytics. Descriptive analytics shows the structure and character of the data set, 

whereas predictive analytics uses previous data to forecast the nature of the data in the 

future. The central tendency and dispersion will be measured as part of the descriptive 
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analysis. The predictive analysis includes forecasting, regression, and clustering (Deb et 

al. 2017). The time series analysis will be utilized for building energy consumption 

forecasting. The daily load profiles of a residential household are characterized by high 

energy usage variability. Based on occupation and energy usage behavior, the peaks and 

valleys in the load profile may differ from that of another day. Graphs of daily load 

profiles will be generated along with the median and quartiles load profiles. The Pearson 

correlation (r) and Euclidean distance (d) will be utilized to identify a relationship to 

analyze the time-series relation of the daily load profiles. Equation 3.1 and equation 3.2 

represent the mathematical expressions for Pearson correlation and Euclidean distance, 

respectively.  

 
𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝑟) =  

∑ ൫𝐿஺,௜ − 𝐿஺
തതത൯(𝐿஻,௜ − 𝐿஻

തതത)௠
௜ୀଵ

ඨ∑ ൫𝐿஺,௜ − 𝐿஺
തതത൯ ට∑ (𝐿஻,௜ − 𝐿஻

തതത)ଶ௠
௜ୀଵ

௠
௜ୀଵ

 

 

3.1 

 

 

 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑑) = ඥ(𝐿஺,௜ − 𝐿஻,௜)
ଶ 

 

3.2 

 

Where m represents the number of 15-minute periods in the day, A and B represent the 

daily period symbols, 𝐿஺,௜ represents the load at the ith 15-minute period of the day and 𝐿஺
തതത 

represents the average load for day A. A Pearson correlation (𝑟) of ≥ 0.5 indicates a good 

relationship, while a Pearson correlation (𝑟) of ≤ 0.5 indicates a poor relation. The 

Euclidean distance is a feature of energy distance that comprises the variance between 

distribution and probability (Rizzo and Székely 2016). 

 

3.4.1 Regression analysis to identify load model parameters. 

 

The parameters of the ZIP model ( 𝑍௣ ,𝐼௉ , 𝑃௉ and 𝑍௤ , 𝐼௤, 𝑃௤) are identified by the least-

squares method/ algorithm (Sadeghi and Abdollahi Sarvi 2009; Zhao et al. 2010). The 

least-squares (LS) method is an analytical algorithm that combines a set of measurements 
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to derive approximations of the parameters which specify the curve that best identifies 

with the data (Nixon and Aguado 2013). The LS method can be expressed by Equation 

3.3 and Equation 3.4: 

 
𝑚𝑖𝑛௣ ෍( 𝑦௡ − 𝑝𝑥௡)ଶ

ே

௡ୀଵ

 

 

3.3 

 

Where 𝑦௡ represents the group of measurements and 𝑥௡ represents the various parameter 

values.  

 
𝜋 =  ෍(𝑍௣ (

𝑉௜

𝑉௢
)ଶ +  𝐼௣(

𝑉௜

𝑉௢
)

ே

௡ୀଵ

+ 𝑃௣ ൬
𝑃௜

𝑃௢
൰)ଶ 

 

3.4 

 

Where 𝑉௜ and 𝑃௜ are the input voltage and power consumption. Where 𝑉௢ and  𝑃௢ are the 

nominal values of voltage and power. Through the LS algorithm then identifies the three 

parameters through derivation. Finally, the ZIP coefficients are calculated using the 

reverse matrix of the electrical parameters from the house in the experiment. An X-Y 

scatter chart illustrates the link between power usage and voltage. Through the analytical 

algorithms, predicted energy consumption will be compared to the actual energy 

consumption. Below is an example of an incandescent model. The ZIP load demand of an 

incandescent model was identified as hybrid constant impedance and current model (ZI) 

through mathematical expression in  Equation 3.5 and Equation 3.6, respectively. 

 
𝑃௓ூ =  𝑃௢ [ 0.6 (

𝑉

𝑉௢
)ଶ + 0.4 ൬

𝑉

𝑉௢
൰] 

 

3.5 

 

And the constant impedance model (Z model) is: 

 
𝑃௭ =  𝑃ை  (

𝑉

𝑉௢
)ଶ 

 

3.6 

 

From  Equations 3.5 and 3.6, the coefficient parameters 𝑍௣ ,𝐼௉ , 𝑃௉ were found to be 0.6, 

0.4, and 0, respectively. Figure 3.7 represents a diagram of the comparisons between the 

actual energy usage and the predicted energy usage of the incandescent model. 
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Figure 3.7: A comparison of the simulation results of incandescent models and the 

measurement curve. SOURCE:(Zhao et al. 2010) 

The measurement curve and the ZI model curve are similar, indicating that the model 

accurately depicts the electrical appliance's energy usage behavior. The regression 

analysis reveals the best-case load model to represent the typical load profile of the 

electrical appliances in the residential household. 

 

3.4.2 Time series analysis 

 

The high variability of daily energy usage makes it very complex to accurately model and 

simulate the energy consumption data of residential households. Machine learning 

techniques utilizes previously recorded data to predict future energy usage (Deb et al. 

2017; Gulin et al. 2014). Time series forecasting is critical to the assessment of building 

performance optimization. The three main components of time series analysis include: 
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i. Trend 

 

The trend method composes a linear increase or decreases behavior of the series over time 

without accounting for seasonality and anomalies.  

ii. Seasonality 

 

A seasonal pattern in time series is dependent on factors such as day of week or month. 

However, seasonality patterns compose of a consistent and predictable frequency.  

iii. Residuality 

 

This time series pattern can depict either the trend or seasonality design or both. Data 

variables experience an increase and decrease without any fixed frequency.  

Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Autoregressive 

Integrated Moving Average (ARIMA) are some of the most well-known machine learning 

methods for time series forecasting (Kuster, Rezgui, and Mourshed 2017). The ANN 

algorithm is a frequently used technique for predicting short, medium, and long term. The 

ANN techniques employ a multi-layer neural network with a modified backpropagation 

learning algorithm(Deb et al. 2017; Kuster, Rezgui, and Mourshed 2017). The ARIMA 

algorithm is a linear equation in which the predictors are the dependent variable's lags and 

the prediction error (Chou and Tran 2018). The ARIMA model can be mathematically 

expressed in Equation 3.7. 

 𝑌௧ = 𝑐 +  ∅𝑌௧ିଵ + ∅𝑌௧ିଶ … +  𝜖௧ 3.7 

 

Where 𝑌௧ represents the dependent variable, 𝑐 represents a constant, ∅ represents the 

magnitude of the autocorrelation and 𝜖௧ represents the error. Based on its own historical 

values, the ARIMA model forecasts a time series. A form of ARIMA, Seasonal 

Autoregressive Integrated Moving Average (SARIMA), uses a seasonal trend pattern in 

linear forecasting (Chou and Tran 2018). The SARIMA method can be expressed 

mathematically in Equation 3.8. 
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 𝑌௧ = 𝑐 +  ∅𝑌௧ି௦ +  𝜖௧ 

 

3.8 

 

Where subscript 𝑠 represents the number of lags comprising of one full period of 

seasonality. The SARIMA model comprises of a linear combination of seasonal past 

values and forecast errors  (Deb et al. 2017). SVM is another time series method consisting 

of  a hybrid of the Support Vector Regression (SVR) and the SVM, which uses element 

boundary variables to address function fitting problems (Zhang et al. 2019).  

3.4.3 Load forecast through regression analysis 

 

For load forecasting analysis of the experimental household, the linear regression 

techniques, namely the least-squares method (LSD), will be utilized. In addition, the 

short-term forecasting technique will be used to predict the energy usage of appliances in 

the residential home. The LSD technique calculates model regression coefficients that 

reduce the sum of square error between anticipated and actual observations from data 

collection (Fumo and Rafe Biswas 2015). Following the identification of load prediction 

models for a single-family, statistical programs such as SPSS and MATLAB will develop 

load models for additional 24 residential families to represent an urban neighborhood. 

Through the LSD, a relationship between the voltage and power in the ZIP load model 

will be analyzed. The power (P) will act as the independent variable through the analysis, 

and the voltage (V) will serve as the dependent variable.   

 

3.4.3.1 Linear regression 

 

Simple linear regression is characterized by a random variable (𝑦) that can be modeled as 

a linear function of another random variable (𝑥) (Fumo and Rafe Biswas 2015; Y. Wang 

et al. 2019). The relationship between the variables is expressed in Equation 3.9: 

 

 𝑦 =  𝛽௢ +  𝛽ଵ𝑥 +  𝜀 

 

3.9 
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The response and predictor variables are denoted by 𝑦 and 𝑥 respectively. The regression 

coefficients are 𝛽௢ and 𝛽ଵ and 𝜀 is the error that accounts for the discrepancy between the 

forecasted and observed data. 

3.4.3.2 Quality of model 

 

Through the smart metering data, a linear model is generated for electricity usage in the 

household. A coefficient of determination (𝑅ଶ) is utilized to analyze the effectiveness of 

the linear model (Fumo and Rafe Biswas 2015; Di Leo et al. 2020). R2 is expressed 

mathematically in Equation 3.10 by: 

 

 
𝑅ଶ = 1 −

∑( 𝑦௜ − 𝑦పෝ)ଶ

∑(𝑦௜ − 𝑦పഥ)ଶ
 

 

3.10 

 

Where ( 𝑦௜ − 𝑦పෝ)ଶ represent the sum of the squared errors and (𝑦௜ − 𝑦పഥ)ଶ represent the 

total sum of squares.  𝑅ଶ is a number between 0 and 1. The closer 𝑅ଶ is to 1, the more 

accurately the model indicates that the predictor variables account for a large portion of 

the variability in response variables. Another way to validate a prediction model's 

performance is through the Root Mean Square Error (𝑅𝑆𝑀𝐸), which is expressed 

mathematically in Equation 3.11 (Zhang et al. 2019).  

 

 

𝑅𝑆𝑀𝐸 =  ඨ
∑ (𝑦௜ − 𝑦ො௜)

ଶே
௜ୀଵ

𝑁
 

 

3.11 

 

Where 𝑦௝ denotes the observed electricity consumption of the household j, 𝑦ො௜ denotes the 

forecast electricity consumption, and N is the number of observations. 
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3.4.4 Clustering analysis 

 

The clustering analysis involves the partitioning of a set of data objects into subsets. The 

purpose of clustering analysis is to perform load pattern grouping. Clustering analysis is 

a data mining approach used to assess residential household power use (Amri et al. 2016). 

The metering process's time-series power demand data will be used to group similar 

profiles into the same groups and determine the most common load profiles (Chicco 2012; 

Yildiz et al. 2017). The clustering approach identifies the key features of residential 

household consumption practices. The following is a systematic technique for 

characterizing electrical loads in an urban community using clustering (Mcloughlin, 

Duffy, and Conlon 2015). There are various clustering algorithms for multiple 

applications, but only the centroid clustering technique will be adopted for this research. 

The K-means algorithm, a centroid clustering technique, is capable of handling large sets 

of data, especially residential electricity consumption, compared to the other clustering 

algorithms (He et al. 2018). 

 

3.4.4.1 K-Means clustering method 

 

The K-means algorithm poses the capability to segment data into multiple clusters 

according to the similarity of the data. The K-means technique utilized the Euclidean 

distance formula to find the relationship between two objects (Khan, Jayaweera, and 

Alvarez-Alvarado 2018). Several steps are undertaken to analyze big data using the K-

mean algorithm, represented through a flow-chart in Figure 3.8. 
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Figure 3.8: Process flow-chart of the K-means clustering algorithm. (Nepal et al. 2019) 

The process flowchart will reveal the final clusters of the energy consumption data 

through a select number of iterations (He et al. 2018). The clustering algorithms execution 

will be conducted in the program SPSS. 

 

3.4.5 Data preparation 

 

The large dataset requires pre-processing to clean missing data and remove outliers for 

more accurate statistically significant data. The hourly dataset was cleaned through the 

MATLAB preprocessing algorithms. Figure 3.9 represents the flowchart for cleaning 

missing data. 
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Figure 3.9: Flowchart for cleaning missing data 

Missing smart metering data was corrected by linear interpolation in the MATLAB 

program. To eliminate processing mistakes and inadequate sampling in the hourly energy 

usage data, another data processing approach, outlier elimination, was used. Figure 3.10 

depicts the flow diagram for the removal of outlier data. 
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Figure 3.10: Process flow diagram for removing outlier data 

Outlier data was removed from the smart metering dataset to improve accuracy in 

statistical analysis. As indicative in Figure 3.10, the mean detection method with a 

threshold factor of 3 was chosen. The mean method defines outliers as items that are more 

than three standard deviations from the mean.  
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3.5 Design and sizing of grid-connected solar PV system  

 

The design of the single household grid-connected solar PV will be done in the simulation 

software PVSyst. The design of the solar PV systems is dependent on two major factors, 

namely the energy consumption and the solar radiation in a particular area. Figure 3.11 

represents the layout design of the grid-connected solar PV system for a single household. 

 

 

Figure 3.11: Grid-connected solar PV layout design. SOURCE: PVSyst 

The design procedures of the PV system include choosing the correct number, size, and 

type of PV modules and inverters (Kalogirou 2009). The PVSyst simulation environment 

was used to examine a solar PV system with a planned power of 10 kW. The system will 

be connected to the grid and without battery support. The self-consumption of the house 

was set as the average daily electricity usage. 

3.5.1 Site selection 

 

Gaborone is the capital city of Botswana. Palapye will be the case study for the research 

with coordinates 22.5515o south latitude and 27.1147o east longitude. Palapye, on average 

from 1994 to 2018, receives approximately 6.2 kWh/m2 of sunshine per day.  
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Figure 3.12: The average direct normal irradiation and PV power potential in Botswana. 

(Global Solar Atlas 2018) 

Figure 3.12 Indicates the direct normal average irradiation between 1994 and 2018, (b) 

indicates the photovoltaic power potential between 1994 and 2018. The country's 

southwest region receives the highest amount of solar radiation (7.4 – 7.8 kWh/ m2), with 

the lowest solar radiation figures (approximately 5.8 kWh/m2) experienced in the eastern 

region. The house in experimentation is in the east-central area with the solar radiation 

received set at 6.2 kWh/m2 (Global Solar Atlas 2018).  

 

3.5.2 Daily load demand 

 

A common daily load profile from the residential household in experimentation was 

utilized as the load demand for the simulation in PVSyst. The load profile was identified 

for simulation through the clustering analysis. Figure 3.13 illustrates the average daily 

electricity usage. 
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Figure 3.13: The average daily energy consumption for the house in the experiment. 

3.5.3 PV Module 

 

PV cells can have a single crystal, polycrystalline, or amorphous atomic structure. Mono-

crystalline cells were investigated for the design, with an efficiency of roughly 20% 

(Alnoosani et al. 2019; Harvey 2006). The solar panel's electrical data specification is 

shown in Table 3.2. 

 

Table 3.2: The PV module specifications  

Type Mono-crystalline 

No’s of modules 91 

Maximum power (Pmax) 110 W 

Voltage at maximum point (Vmpp (60 oC) 29.6 V 

Open circuit voltage (Voc (- 10 oC) 42.3 V 

Maximum Power Current (Impp) 21.1 A 

Short circuit current (ISC) 20.4 A 
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The PV module specifications were extracted from the database in the software program 

PVSyst. Temperature affects crystalline cells, so that a rise in module temperature 

decreases the electricity output by 0.04-0.9 % (Harvey 2006).  

3.5.4 Tilt and yield  

 

Different regions have an optimum tilt angle which ensures maximum energy output from 

the PV array. For this research, the fixed tilt angle comprises two tips, namely, the 

collector tilts angle 𝛽 and the collector azimuth angle Zs (Chinchilla et al. 2021; Nfaoui 

and El-Hami 2018). Latitude tilt is whereby the PV module tilt angle is equal to the local 

geographic latitude. For a country such as Botswana, the slight tilt angle is incorporated 

to maximize energy production in the summer months. The sun is higher in the sky, and 

there will be less shading between adjacent modules (Kalogirou 2009). The relationship 

between the optimum tilt angle for annual yield and the latitude angle (𝐿) is expressed 

mathematically in Equation 3.12. 

 

 𝛽 = 0.764 𝐿 + 2.14°, 𝑓𝑜𝑟 𝐿 ≤ 65 3.12 

 

For the village of Palapye, the latitude angle is 22.6o, and the optimum tilt angle for the 

PV module is 19o. and the direction of the azimuth is south (0o).  

3.5.5 Array specifications 

 

The number of parallel strings of the PV generator (𝑁௣௚) relation with the maximum 

current of the inverter (𝐼௠௣௣) and the maximum current under Standard Test Conditions 

at 1000 W/m2 is expressed by the Equation 3.13 (Kalogirou 2009). 

 

 𝑁௣௚  <
𝐼௠௔௫

𝐼௠௣௣
൘  

 

3.13 
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The number of PV modules in series (𝑁௦௚) relates to the power rating of the inverter (𝑃௢) 

and the number of parallel strings of the inverter (𝑁௣௚) by the mathematical expression in 

Equation 3.14. 

 
𝑁௦௚ =  

𝑃௢

𝑁௣௚
 

3.14 

 

The ten kWp planned solar PV system would require 13 PV modules connected in series 

on six parallel strings, resulting in approximately 78 modules. The area of the PV array is 

70 m2. Table 3.3 provides the list of the electrical array specifications. 

 

Table 3.3: PV array specifications for the solar PV system design 

Type Specifications 

Voltage at maximum point (Vmpp (60 oC) 385 V 

Open circuit voltage (Voc (- 10 oC) 460 V 

Maximum Power Current (Impp) 21.1 A 

Short circuit current (ISC) 20.4 A 

Plane irradiance  1103 W/m2 

Short circuit current (Isc) at standard test 

conditions (STC) 

20.4 A 

 

3.5.6 Inverters 

 

The inverter serves to convert DC-generated power to AC power type to provide electrical 

energy to the AC loads in the residential household. The efficiency of the inverter is reliant 

on the DC output voltage (Woyte and Goy 2017). The system in design is grid-connected; 

thereby, the nominal array power will be equal to the inverter size rating (Kalogirou 

2009). The relationship between the inverter and the grid is expressed mathematically by 

Equation 3.15. 
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 𝐸௚௥௜ௗ =  𝐸஺𝓃௜௡௩ 

 

3.15 

 

Where 𝐸௚௥௜ௗ  is the energy available to the grid, 𝐸஺  represents the energy available to the 

electrical loads and battery and 𝓃௜௡௩ represents the efficiency of the inverter. Table 3.4 

provides the list of the inverter characteristics of the solar PV system. 

 

Table 3.4: Inverter specifications for the solar PV system 

Type Parameters 

Inverter power 4.2 kW with 2 MPPT 

Operating voltage 125-500 V 

Input maximum voltage 700 V 

Number of inverters 2 

Efficiency 97% 

Grid frequencies 50/60 Hz 

 

The inverter is equipped with an MPPT to achieve the optimum PV generation on the 

modules.  

 

3.6 Design and model of a solar PV microgrid system  

 

This section of the research comprises the design and sizing of the solar PV microgrid 

system for a community of households in an urban settlement. The solar PV microgrid 

system includes four major components: the Solar PV system, Energy Storage System 

(ESS), bi-directional DC/DC converter, DC/AC inverter, DC, and AC loads. The 

community solar PV microgrid system design will be conducted on the MATLAB 

program, namely Simulink/ Simscape, by gathering components from the library block of 

Sim-power frameworks. The microgrid system exists in two primary states, namely, 

island and Grid-connected mode of operation.  
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3.6.1 Community load profile 

 

The load profiles of residential homes represent average energy use in Botswana's 

metropolitan residential districts. The primary residence, where the experiments were 

carried out, presented the researchers with basic energy use behavior patterns in urban 

residential settings. The community's load profile is a yearly load profile that runs from 

January to December. Throughout the year, the burden on the various dwellings 

fluctuates. Based on the cumulative energy consumption behavior of the consumers in the 

community settlement, the district load profile has peaks and troughs. The residential 

households' total maximum load demand will be approximated at 250 kW. The simulation 

conducted in MATLAB is for a single day; thereby, the peak-daily profiles from the 

residential household in the experiment were utilized as daily load profiles for 25 

residential homes in a community. The ten kWp for 25 residential families equates to a 

250-kWp planned solar PV power system. The three-phase load block from the Simscape 

library was utilized, and the model structure type selected was constant impedance. 

 

3.6.2 Solar PV system 

 

The generic mathematical model of an ideal PV cell is expressed in Equation 3.16: 

 

 
𝐼 =  𝐼௉௏ − 𝐼ை[ 𝑒𝑥𝑝  ( 

(𝑁ௌ 𝑘 𝑇 )𝑉 +  𝑅௦𝐼

 𝑞 𝛼
 ) −  1 ] − 

𝑉 +  𝑅௦𝐼

𝑅௦௛
 

3.16 

 

The current created by incoming light is represented by 𝐼௣௩, the diode saturation current 

is represented by 𝐼௢ and the series and equivalent shunt resistances of the array are 

depicted by 𝑅௦𝑎𝑛𝑑 𝑅௦௛. The ideality factor (𝛼) indicates the ideality factor, which is a 

constant that depends on the PV cell technology used by the manufacturer (Bellia 2014; 

Prakash and Singh 2016). Other parameters include 𝑁௦ which is the number of cells in 

series, 𝑘 is the Boltzmann’s constant (1.3806503 * 10-23 J/ K), T (K) which is the diode 

temperature, and 𝑄 which represents the charge of an electron (1.60217646 * 10-19 C). 
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Table 3.5 provides the module parameters for the PV panel (Solar Tech Energy ASC-6P-

72-300). 

Table 3.5: Solar PV Module parameters  

Parameters Values 

Maximum power (Pmax) 299.9835 W 

Voltage at maximum point (Vmpp (60 oC) 36.45 V 

Open circuit voltage (Voc (- 10 oC) 44.75 V 

Maximum Power Current (Impp) 8.23 A 

Short circuit current (ISC) 8.62 A 

Cell per module (Ncell) 72 

 

Table 3.6 presents the PV specifications for the 250 kW planned generation system 

Table 3.6: Photovoltaic specifications 

Modules

/string 

Strings

/array 

Number 

of arrays 

String 

voltage (V) 

15 4 13 546.75 

 

3.6.2.1 DC-DC Boost converter 

 

The community microgrid system's DG unit is an intermittent source that produces a 

highly variable output voltage, necessitating a DC/DC converter to reduce voltage ripples 

and function as a step-up or step-down voltage device depending on the energy demands 

of the loads. The converter connects the solar PV system to the DC microgrid system 

(Zammit et al. 2018). In addition, the boost converter may serve as a voltage booster for 

the DC bus (Farrokhabadi et al. 2018). Inductor, capacitors, and MOSFET devices with 

switching functions make up the converter, which controls the voltage flow according to 

the energy needs. Finally, the energy storage components are charged and discharged 
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using the bi-directional converter (Lee et al. 2011). The boost converter specs are listed 

in Table 3.7. 

Table 3.7: DC-DC converter parameters 

Boost converter parameters Value 

String Voltage (Vin)  546.75 V 

Output Voltage (Vo)  835V 

Switching Frequency (fs)  5 kHz 

Converter Power (P)  20 kW 

Inductor current peak to peak percentage 

ripple  

137.17 A 

Output voltage peak percentage ripple (ΔVo)  27.34 V 

Inductor Resistance (RL)  2.064e-04 Henry 

ESR of Capacitor (Rc)  1.00e-03 Farads 

Duty ratio (D) 0.3452 

 

3.6.2.2 Maximum PowerPoint tracking (MPPT) 

 

A control approach known as maximum power point tracking was devised to optimize 

output power generation. The primary purpose of the MPPT is to achieve proper operation 

of the PV module (Zainal, Yusoff, and Ajisman 2016). Figure 3.14 is a flowchart 

algorithm for MPPT control for a solar PV system. 
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Figure 3.14: Flowchart for the pert & turb MPPT algorithm. (Nedumgatt et al. 2011) 

The method involves a comparative analysis of the PV module voltage variation 

(Nedumgatt et al. 2011). The P & O MPPT algorithm begins with the measurement of the 

instantaneous voltage and current in the solar PV module as depicted in Figure 3.14. Then 

the instantaneous power change is evaluated using a decision tree to determine whether it 

is positive or negative. When the power change is positive and the voltage change is 
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positive, it means that the algorithm is approaching the MPPT, so a positive perturbation 

is needed. When the power change and the voltage change are both negative, it means that 

the algorithm is approaching the MPPT and therefore a positive perturbation is needed 

(Kordestani et al. 2018). When the power change is negative, but the voltage change is 

positive, a negative perturbation is required to approach MPPT. A disturbance is applied 

to the module voltage, and the resulting output power is compared to that of the initial 

disturbance cycle (Atallah, Abdelaziz, and Jumaah 2014). The perturbation's goal is to 

find power variations among the cycles. When the PV module's power increases due to a 

perturbation cycle, the cycle is preserved and repeated until the maximum power point is 

achieved. Further perturbation after Maximum Power Point (MPP) has been reached will 

result in a decrease in power. 

 

3.6.3 Island mode of operation 

 

This mode of operation comprises the solar PV system and the BESS as the only energy 

suppliers for the microgrid system. The required DC bus voltage is regulated through a 

PID controller that communicates with the BESS whether to feed voltage into the 

microgrid bus or charge depending on the solar PV system output.  Figure 3.15 provides 

the simulation design for 250 kW static load on Simulink. 

 

 

Figure 3.15: Island mode of operation MATLAB simulation design 
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The solar PV system block in Figure 3.15 comprises of a solar PV module with irradiance 

and temperature inputs. The DC bus voltage is then boosted to the desired bus voltage of 

835V via the MPPT and boost converter block. The BESS block comprises of lithium-ion 

batteries connected across the DC bus. The DC bus is then connected to the inverter block 

where the DC power is converted to AC type power. The AC power has harmonics in the 

output waveform which are reduced by the filter block. Subsequently, the transformer 

lowers the voltage to that acceptable to the electrical appliances of the residential 

community.  

 

The battery helps to balance electricity in a microgrid by acting as a load or generator 

during the charging and discharging phases. Lithium-Ion batteries are widely utilized in 

solar community microgrids. They display a higher depth of discharge (DoD) than other 

battery types such as lead-acid and nickel-hydride batteries (Bila, Opathella, and 

Venkatesh 2016; Farrokhabadi et al. 2018; Vetter and Rohr 2014). Factors such as DoD, 

state of charge (SOC), and temperature affect capacity and life (Alvarez et al. 2018). A 

buck-boost converter topology was utilized to serve the function roles of discharging and 

charging the BESS in the microgrid. Figure 3.16 is the BESS model design and control in 

MATLAB/Simulink. 
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Figure 3.16: BESS model design and control scheme 

The BESS comprises a lithium-ion battery model, a MOSFET driven circuit to enable the 

charging and discharge of the battery depending on the available power in the DC bus of 

the microgrid system. A voltage reference (v_ref) of 835 V is set as the DC bus voltage. 

It also comprises a control scheme that utilizes PI controllers and PWM DC-DC 

generators that incorporate the boost converter’s output and the desired load voltage level 

in the microgrid system. The actual voltage in the bus and the v_ref was compared, and 

the error signal was compensated by the PI controllers to generate a current reference 

(iB1_ref). The current reference is then compared to the current in the battery and the 

resulting error is compensated by the PI controller to generate a signal for the boost 

converter. The voltage is subsequently increased by the boost converter to the target bus 

voltage of 835 V. Table 3.8 presents the parameters of the lithium-ion battery. 
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Table 3.8: Parameters of the lithium-ion battery 

Description Value 

Initial SOC 50% 

Nominal voltage 550 V 

Rated capacity 200 Ah 

 

The battery was rated at 550 V due to the Vmpp of the solar PV module being stated at 

546 V; thereby, during periods of low solar radiation, the battery capacity will be able to 

meet the desired DC bus voltage of 835 V. The aggregate configuration for the battery 

packs will be utilized whereby all the lithium-ion battery units will be stored in a central 

location (D. W. Gao 2015b). The system design calculations dictate that approximately 

40% of the daily energy usage is utilized in the night; thus, estimates for a 100 kWh 

battery system were designed. Table 3.9 provides the battery array specifications. 

Table 3.9: The specifications of the BESS 

Number of 

batteries/ 

strings 

Number of 

strings/arrays 

Number 

of arrays 

String 

voltage 

(V) 

Energy stored 

/array (kWh) 

3 3 2 72 V 43.2 kWh 

 

3.6.4 Grid-connected mode of operation 

 

The grid-connected mode of operation comprises the island mode of operation 

components alongside the utility grid. An inverter was generated from an analog circuitry 

composed of a two-level converter consisting of switching devices that change the 

waveform of DC voltage to AC voltage. The converter is connected to an inductor-

capacitor-inductor (LCL) filter, removing harmonics in the output waveforms and 

yielding a pure sine wave (Pan et al. 2017). Figure 3.17 depicts the MATLAB design of 

the grid-connected mode of operation. 
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Figure 3.17: Grid-connected mode MATLAB simulation design 

The simulation design comprises of the solar PV system block connected to the boost and 

MPPT block. The boosted voltage in the DC bus is then converted into AC power type 

via the inverter block as depicted in Figure 3.17. The LCL filter block then filters out 

harmonics from the output voltage waveforms. The voltage is then stepped down in the 

transformer block before being directed to the community residential load. As the 

microgrid system is connected to the utility grid, the control system regulates the power 

flow based on the energy requirements. Figure 3.18 expands on the control mechanism of 

the grid-connected microgrid system. 

3.6.4.1 Inner control loop 

 

To synchronize the frequency and allow the desired currents to inject the requested levels 

of active and reactive power for specific measured grid voltages, a VSI control system 

between the inverter and the grid is required (Kabiri, Holmes, and McGrath 2013). 

Equation 3.17 can be used to express the grid-connected inverter's mathematical control 

model: 
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The grid voltage park conversion component is represented by eୢ and e୯. And the 

elements of the park transformation of the inverter output are represented by uୢ and u୯. 

The active and reactive transformation components of the inverter current are represented 

by iୢ and i୯ respectively.  ω and L represents the angular grid frequency and inductance 

between the grid-connected inverter and grid, respectively. A closed-loop current 

regulator powers a high-frequency PWM switching controller. A closed-loop current 

regulator drives a is powered by a closed-loop current regulator. The dq0 transformation 

control is utilized as it can operate near unity power factor to any magnitude of solar 

radiation (Abdalrahman, Zekry, and Alshazly 2012; Schonardie et al. 2012). Figure 3.18 

depicts the inner control loops for the three-phase VSI. 

 

 

 

Figure 3.18: Inner control loops for a three-phase VSI. 

The inner control loops comprise of current and voltage control strategies. PID and PLL 

controllers are included in the DQ control, and they are capable of regulating DC variables 

and extracting the phase angle of the grid voltage, respectively (Phuong, Dzung, and Huy 

2012). The primary purpose of the inverter side control is to extract the maximum amount 

of electricity from the solar PV system. The active and reactive inverter currents can be 

removed using the DQ transformation. The phase angle of the grid voltage (wt) and the 

inverter current were fed into a DQ transformation to generate the inverter current’s active 
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(I_d) and reactive (I_q) transformation components as depicted in Figure 3.18. An error 

signal is formed by comparing the desired reference voltage (Vbus_ref) with the voltage 

in the capacitor, and it is sent through the voltage controller to generate the reference 

current signal (iD ref). Following that, iD_ref is compared to I_d, and the resulting current 

error is adjusted for by PI controllers to generate a signal (d_m). To produce a reference 

current for the PWM generator, the corrected signals d_m and q_m are passed through an 

inverse DQ transformation together with the grid voltage's phase angle. The PWM 

generator controls the active and reactive current components that are provided to the 

utility grid (Abdalrahman, Zekry, and Alshazly 2012). Grid side control includes 

regulating the amount of power fed into the grid as well as grid synchronization. Table 

3.10 is the inverter specification. 

Table 3.10: Inverter specifications 

# of inverters 5 

Input voltage (Vi) 835 

Power rating (kW) 50 

Output voltage (Vac) 460 

Amplitude modulation (Ma) 0.9 

Frequency modulation index (Mf) 166.6666667 

 

3.6.4.2 LCL Filter design 

 

The LCL filters are widely favored to serve as the link between grid-connected inverters 

and the grid as they serve their primary purpose of removing harmonics in the output, 

presenting a resonant frequency while also providing a better fading of the ripple currents 

in the grid current (Judewicz et al. 2018; Sahoo et al. 2014). The maximum allowed total 

harmonic distortion (THD) from the grid side current should be within 5% according to 

IEEE-519 standard (Hamizah et al. 2014). Table 3.11 provides the parameters for the filter 

design. 
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Table 3.11: Filter design parameters 

Parameters Magnitude 

Resonant frequency (fres) 5000 Hz 

Grid current (Ig) 181.2 A 

Ripple grid current (Igsw) 0.544 A 

Inverter inductor (L1) 8.0825e-04 H 

Capacitor (C) 6.2679e-05 F 

Grid inductor (L2) 8.0825e-04 H 
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3.7 Conclusion 

 

The purpose of the research was to analyze residential load pattern flow through smart 

meter data analytics. A measurement device was installed in a residential household in a 

typical urban neighborhood to record the load usage for 12 months. The data collected 

was then subjected to descriptive and predictive analytics to find relations and draw 

conclusions from various parameters such as voltage, peak power, active and reactive 

power. Through the maximum peak load of 10 kW recorded in the residential household 

in experimentation, a grid-connected solar PV system was sized and designed through the 

application PV Syst. Afterward, a community PV microgrid system with a maximum 

demand load of 250 kW is designed on the program application, MATLAB/Simulink. The 

system design will be based on two operation states, namely grid-connected and island 

mode. Through the island mode of operation, the DG units and the battery will be serving 

as the primary energy suppliers in the DC microgrid system, with the DG unit as the 

primary supplier. The grid-connected mode will comprise three energy suppliers: the DG 

unit, battery, and utility grid. A three-phase closed-loop control will be utilized to regulate 

the DC grid bus voltage and dictate when to charge and discharge the BESS as per the 

energy requirements of the microgrid bus. The loop control system includes a primary 

control that utilizes droop and impedance loops that enables a parallel connection of VSIs 

that share active and reactive powers. The secondary control enables synchronization of 

voltage and frequency between the DGs unit, BESS, and the utility grid. The desired bus 

voltage was set at 835 V, and the control system enables the communication between the 

microgrid components to achieve the desired voltage bus level. The PWM control ensures 

the reduction of the voltage noise ripples in the output waveforms.  
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4 CHAPTER 4: RESULTS AND ANALYSIS 

 

4.1  Overview 

 

This chapter presents the energy metering assessment in a typical urban household and 

the simulation results of the single household solar PV and the community solar PV 

microgrid systems. It also provides an overview of the 12 months energy usage of the 

house in experimentation through data analytics. Descriptive and predictive analysis was 

conducted on the dataset, and load models of the typical urban household energy profile 

in Palapye, Botswana, were identified. 

 

4.2 Introduction 

 

Through linear regression analysis, the information from the metering enables the 

development of the electrical appliance forecast energy usage.  The energy demand 

forecast is necessary to generate demand-side management (DSM) techniques and 

alternative energy generation activities. Activities such as load scheduling and load 

management are essential to establishing an effective solar microgrid system. A time 

series analysis was also developed to predict energy usage in the household through smart 

metering data. Through synthetic load profile generation, the load profile of the 

community will be generated and subjected to data analytics to identify the load demand 

patterns. Twenty-five daily load profiles from the house in experimentation will be 

utilized to simulate a community of 25 residential households. A solar PV system for the 

home in the experiment was also designed with no battery support in the PVSyst 

environment. The average peak power demand was identified as 10 kW of which is 

frequently experienced in the morning. A grid-connected solar PV system of the nominal 

power of ten kWp was designed in a PV system, and the results are discussed below. The 

following work is developing a 250-kW community solar PV microgrid system executed 

in MATLAB/Simulink.  
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4.3 Metering results 

 

Through the online dashboard, the metering results were extracted and summarized in the 

Microsoft Excel program. Graphs and tables were formulated from the data. Monthly, 

weekly, daily, and hourly electricity consumption graphs were prepared.  

4.3.1 Overall load profiles 

 

The average daily electricity usage (kWh) of the house in experimentation is 27.39991 

kWh. The statistic is extracted from the period between August 2020 and August 2021. 

Below are the graphs for the 15-minute intervals, hourly and daily intervals. Figure 4.1 

provides a schematic diagram of the 15-minute interval energies record for the 21st of 

August 2020.  

 

Figure 4.1: The 15-minute energies 

From Figure 4.1, the peak energy demand occurs around 2300 hrs. The peaks and valleys 

across the day result from the instantaneous energy usage behavior of the inhabitants in 

the residential home. Therefore, the peak energy demand varies daily and depends on the 

inhabitants' energy usage behavior in the residential household. Figure 4.2 provides a 

weekly load profile for the house in experimentation. 
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Figure 4.2: Weekly energy consumption (kWh) 

The average weekly analysis reveals an average electricity usage of 27.28 kWh. From 

Figure 4.2, a steep rise was identified between week eight and week 13, indicating the 

increased Air Conditioner (AC) usage in the residential household. Another steep climb 

occurred between week 40 and week 45. The maximum and minimum weekly energy 

usage was recorded at 45.7 kWh and 15.84 kWh. Figure 4.3 and Figure 4.4 represent the 

daily electricity usage and peak power, respectively, for the residential household in 

experimentation. 
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Figure 4.3: Daily electricity usage (kWh) 

 

 

Figure 4.4: Daily peak power 
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From Figure 4.3 and Figure 4.4, it can be concluded that high peaks are experienced 

during the week, and low peaks occur during the weekends. The daily average electricity 

usage was 27.4 kWh from the experimental recordings, while the daily peak power usage 

was recorded at 5.575 kW. The maximum daily electricity usage and peak power was 

recorded at 73.797 kWh and 9.249 kW, respectively.  

4.3.2 Seasonal analysis 

 

The yearly metered data was sampled through the year's four seasons, namely summer, 

autumn, spring, and winter. The y-axis is the electricity consumption in kW and the x-

axis is the days/ months of the respective seasons. In addition, daily usage graphs of peak 

days of the seasons experienced in Botswana were prepared. A semi-arid climate 

throughout the year characterizes Botswana’s weather; thus, it generally experiences 

summer and winter seasons. The summer period is from November to March and the 

winter period is from May to August. Figure 4.5 and Figure 4.6 depict the peak load 

profiles for summer and winter period, respectively. 

 

 

Figure 4.5: Peak hourly profiles during the summer period 
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Figure 4.6: Peak hourly profiles during the winter season 

The highest hourly peak electricity usage was recorded during the summer season, 

followed by the season winter. From Figure 4.5, the peak hourly usages are in the early 

mornings and late evenings. The winter season from Figure 4.6 indicates that the energy 

peaks occur late morning, early afternoon, and evening. Figure 4.7 provides a graphic 

description of the seasonal electricity usage by month in Botswana.  

 

 

Figure 4.7: Seasonal electricity usage by months 
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The dataset was analyzed, and it revealed the following: 

 The mean electricity consumption was recorded at 0.229563 kW in the summer 

season, with the maximum and minimum hourly usage at 1.87773 kW and 0.0144 

kW, respectively. The total electricity consumption recorded was 831.9379 kW. 

Descriptive statistics reveal that the standard deviation and variance of the hourly 

metered data were found to be 0.233701 and 0.054616.  

 In the winter season, the mean electricity was recorded at 0.281758 kW, with the 

maximum and minimum hourly usage was recorded at 2.88389 kW and 0.00975 

kW, respectively. The total electricity consumption recorded was 966.992 kW. 

Descriptive statistics reveal that the standard deviation and variance of the hourly 

metered data were found to be 0.297272 and 0.08837. 

The summer season was the highest amongst the other seasons regarding the total 

electricity usage per season in Botswana. High temperatures and rainfall characterize it, 

thus the increased use of air-conditioners during those months. In addition, the smart 

metering observation revealed a steep rise in the energy usage of air-conditioners during 

the summer period. 

4.3.3 Electrical appliance profiles 

 

The house in experimental study comprises a variety of electrical appliances. Still, due to 

budget constraints, energy measuring equipment was utilized for the significant energy-

consuming devices, including the six air conditioners, lights, fridges, and washing 

machines. Below are the energy consumption profiles of the appliances. 

4.3.3.1 Lights 

 

The load profile of the lights in the residential household illustrates peaks in the late night 

and early morning, and troughs occur during daylight hours. Figure 4.8 is the typical daily 

profile (11th of March 2021) for the lights in the residential household. 
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Figure 4.8: The energy load profile of the lights in the residential household 

The load profile of the lights in the household reveals high usage at night and early 

morning. The more effective use was identified at night and the least between 733am and 

1800pm due to daylight. 

 

4.3.3.2 Geyser 

 

The geyser is connected to a solar water heater with the electric heater as a backup. The 

usage in metering is electric hence the low electricity usage in the recording. Figure 4.9 

is the typical daily load profile for the electrical appliance geyser. 
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Figure 4.9: Typical load profile for the geyser 

When the energy from the sun is low, the geyser extracts electrical energy through the 

home electrical wiring. The peaks have been seldom identified during midnight. 

4.3.3.3 AC 1 (Sitting room) 

The AC is in the sitting room hence the low usage because of factors such as daylight 

heating. Figure 4.10 represents a typical daily load profile for the AC situated in the sitting 

room. 

 

Figure 4.10: Typical load profile of AC1 situated in the sitting room 
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The profile is for the date 26th of December 2020, which is a summer month, thereby 

justifying the increased energy usage in the afternoon and late in the night. 

 

4.3.3.4 AC 2 (Sitting room) 

 

 

Figure 4.11: Typical load profile for AC2 situated in the sitting room 

AC 2 is frequently utilized hence the continuous energy usage over time. The AC 

constitutes a significant percentage of the overall daily energy usage in the residential 

household. Figure 4.11 is a typical load profile for the date 12th of October 2020.  

4.3.3.5 AC 3 (Master bedroom) 

 

Figure 4.12 represents the daily load profile for the AC located in the master bedroom for 

the residential house in experimentation.  
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Figure 4.12: Typical energy load profile for AC3 situated in the Master bedroom 

The typical energy usage by AC3 is defined by more significant energy peaks in the late 

evening toward midnight and lesser, more consistent peaks during the early mornings. 

The energy load profile extracted is for the 27th of September 2020. 

4.3.3.6 Fridge and Washing machine 

 

The measuring equipment attached to the fridge and washing machine is the two wireless 

ZigBee smart plugs. The recorded energy consumption data available on the dashboard 

indicates the total. The refrigerator runs throughout the day and weekly, while the washing 

machine is used sparingly throughout the week. 
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Figure 4.13: Load profile for the fridge and washing machine 

The energy usage of the two appliances was combined in the output report. Figure 4.13 

shows that the high energy spikes result from the use of the washing machine. The 

constant load during all the hours of the day indicates the energy usage of the fridge.  

 

4.4 Descriptive and predictive analysis 

 

The smart metering data was fed through descriptive and predictive analytics software 

programs to identify energy relationships through data science. The data analysis 

techniques include correlation, regression, and time series. Another technique for 

analyzing household load profiles through an unsupervised technique is clustering, which 

makes subsets of similar daily load profile households (Yildiz et al., 2017).  

 

4.4.1 Clustering analysis 

 

The purpose of clustering analysis is to perform load pattern grouping. The clustering 

analysis is a data mining technique used to characterize electricity consumption in 
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residential households (Amri et al. 2016). For the clustering analysis, the dataset was 

subjected under the following scenarios in Table 4.1: 

 

Table 4.1: Methods of clustering classification 

Method Number of clusters, 

iterations 

Smallest 

MSE 

1. Iterate and classify with outliers 3,10 0.364 

2. Iterate and classify without outliers 3,10 0.383 

3. Iterate and classify with outliers 5,20 0.466 

4. Iterate and classify without outliers 5,20 0.421 

 

The dataset was fed through various k-means clustering methods to identify the best 

strategies that yielded the best load pattern grouping, representing a typical load of the 

house in the experiment. The hourly usage annual values were converted into variables 

for standardization before being fed into the clustering algorithm. The Z-score method of 

standardization involves subtracting the mean value for a field of values and dividing by 

the standard deviation. The Z-score indicates each score's position within the distribution 

of all scores. Method 4 yielded the best final cluster results in terms of the overall months 

of the year as the values were in the high positives. The other four methods yielded a 

similar MSE value with and without outliers. The optimum cluster number after various 

trails was identified to be three at an iteration figure of 10. The clusters displayed a good 

relationship between the 12 months of the year. Figure 4.14 depicts the final clustering 

centers of the monthly energy usage. 
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Figure 4.14: Final clustering centers of the monthly energy usage 

Cluster 1 revealed the positive Z-score on the energy usage of 11 months of the year 

instead of the month of March. Cluster 2 revealed relatively low Z-scores amongst the 

most months of the year instead of the month of March. A distribution scale revealed a 

raw score for the month of March in cluster 2 of 1.8, which is around two Standard 

Deviations (SD) above the mean. The high Z-score indicates a strong correlation in 

March's hourly energy consumption. The dataset for that month can be used for additional 

data analysis approaches because the high correlation displays the most consistent daily 

energy usage patterns and has the potential for very accurate analysis. The mean square 

error was least for March at 0.364 amongst all the other months of the year. Cluster 3 

reported negative Z-scores on hourly energy usage for the entire year. All the data for the 

months have significant value towards the cluster centers. The Euclidean distance 

between the three final cluster centers was minimal, thus displaying a high correlation 

between the individual data units. Figure 4.15 is a boxplot graph of the spread of cluster 

centers to the number of each cluster case. 
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Figure 4.15: Boxplot of the cluster centers to the number of each cluster number case 

From Figure 4.15, the outliers in cluster number case 1 were more prevalent than those 

followed by cluster 3 and, lastly, cluster 2. The similarity is low between the cluster 

number cases, and thereby the high cluster centers indicate high significance in the 

individual month’s energy usage.  

4.4.2 Time series analysis 

 

The dataset of the annual energy usage was fed through a time-series modeler in the 

program SPSS. Figure 4.16 is the total daily and predicted energy usage for the whole 

year. 
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Figure 4.16: Observed vs. predicted electricity consumption 

The dataset revealed a repeating cycle or trend in the daily electricity usage in the 

residential household. Analysis of the SPSS program revealed that the SARIMA model is 

the most accurate model for the dataset. The model statistics reveal that the RSME, 

MAPE, and R2 were found at 8.432, 23.338, and 0.515. Furthermore, the descriptive 

statistics of the observed data indicate that the mean, maximum and minimum include 

27.422 kWh, 73.80 kWh, and 6.08 kWh, respectively. On the other hand, the forecasted 

model statistics reveal the mean, top, and minimum energy usage as 27.34 kWh, 71.92 

kWh, and 12.24 kWh, respectively. Therefore, the difference between the observed and 

the forecasted mean electricity usage was determined at approximately 0.3%, which is 

infinitesimal.  

4.4.3 Linear regression 

 

The linear regression analysis was utilized to identify the relationship between the 

parameters such as electricity usage and peak energy usage. The total daily energy usage 

and the peak daily usage were fed through a regression modeler to identify a relationship 

between the two parameters. The daily peak power is the predictor value, and the daily 
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electricity usage is the response variable. Table 4.2 represents the polynomial degree and 

their respective goodness of fit. 

 

Table 4.2: Polynomial degree and goodness of fit 

Polynomial degree R-square RSME 

1 0.4427 8.33 

2 0.4498 8.288 

3 0.4847 8.032 

4 0.4856 8.036 

5 0.5005 7.93 

 

Linear model Poly5: 

 

 f(x) = p1*x^5 + p2*x^4 + p3*x^3 + p4*x^2 + p5*x + p6 4.1 

 

Coefficients (with 95% confidence bounds): 

       p1 =      0.2242 (0.08935, 0.359) 

       p2 =        -6.9 (-11.11, -2.694) 

       p3 =       82.27 (30.85, 133.7) 

       p4 =      -474.6 (-782, -167.2) 

       p5 =        1331 (433.5, 2230) 

       p6 =       -1441 (-2465, -417.4) 

 

Where p1, p2, p3, p4, p5, p6 represent the regression coefficients. From Table 4.2, it can 

be determined that the greater the polynomial degree, the greater the goodness of fit 

between the daily electricity usage and peak power. Figure 4.17 indicates a linear 

regression fit between electricity usage and peak power. 
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Figure 4.17: Linear prediction model utilizing electricity usage and peak power. 

The dataset was imported into the Regression Modeler tool in the MATLAB modeling 

environment. The results of the trained model in the regression modeler tool revealed that 

the linear predictor was the best accurate model for the dataset. From Figure 4.17, there 

is a positive correlation between the daily electricity usage and the daily peak power. A 

linear model was used to estimate the response graph of the association between power 

usage and peak. Therefore, the prediction model fit can be utilized to forecast electricity 

usage. Furthermore, the model fit results indicate an RSME of 8.3442, which is reasonably 

low, thus informing the model's accuracy. 

 

4.5 Single household PV system design on PVSyst 

 

A 10 kW nominal power solar PV system was designed on the simulation environment; 

PV Syst. Simulation results of daily and annual generation were extracted 
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4.5.1 Design layout 

 

The type of solar PV system is grid-connected with no battery support. The energy flow 

from the PV array travels through the inverter to the user, and excess power generated is 

stored in the utility grid for later usage. Figure 4.18 provides a system design schematic 

for a grid-connected solar PV system for a single household.  

 

 

Figure 4.18:System design of the solar PV system 

4.5.2 Energy yield production 

 

The simulation was computed on the platform PVsyst for the annual energy yield of the 

planned 10 kW solar PV system. The maximum peak power recorded in the residential 

household was 9.212 kW; thus, a 10-kW peak solar PV system was designed. Table 4.3 

represents the overall yearly PVSyst simulation results. 
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Table 4.3: PVSyst yearly simulation results 

 

From Table 4.3, it can be identified that the highest energy solar yield was recorded from 

the months January, October, November, and December, which coincides with the highest 

monthly Global horizontal irradiation (GHI). Figure 4.19 depicts the reference incident 

energy received on the solar collector plane. 
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Figure 4.19: Reference incident energy on the solar collector plane 

On a 10-kW solar PV system with scheduled electricity generation, the system produces 

an average monthly yield of 7.594 kWh/m2/day. The lowest outcomes were recorded 

during the winter months, when the monthly GHI was at its lowest. Of the solar PV 

system's normalized production (per installed kWp). The normalized energy production 

is depicted in Figure 4.20 (per installed kWp).  
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Figure 4.20: The normalized energy production (per installed kWp) 

The system generates 5.7 kWh/kWp/day of peak usable energy. The PV array and system 

losses accounted for 1.69 kWh/kWp/day and 0.2 kWh/kWp/day, respectively, of the 

energy losses. The summer months which experience a higher GHI generate the higher 

solar PV power as compared to the winter months which receive a lesser GHI. Figure 4.21 

represents the average monthly performance ratio for the solar PV system.  
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Figure 4.21: Performance ratio of the solar PV system 

 

The solar PV system design achieves an average performance ratio of 75.1% across the 

monthly performance. The system performed best during the winter months compared to 

the summer months. Summer months in Botswana are characterized by very high 

temperatures, which affect the PV module efficiency, thus the lower performance of the 

solar PV system. 

 

4.5.3 Energy losses 

 

There are energy losses experienced in a solar PV system through individual components. 

Figure 4.22 shows the energy losses diagram for the solar PV system.  
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Figure 4.22: Energy loss diagram of the solar PV system 

The annual energy losses of the solar PV system are depicted in Figure 4.22. Inverter 

losses account for 3.3% during the standard operation of the solar PV system. The high 

temperatures experienced in Botswana led to PV power losses accounting for up to 13%.  

4.6 Community solar PV microgrid system 

 

The 250-kW planned power DC microgrid was designed on the software environment 

MATLAB/Simulink for both the island mode and grid-connected mode of operation. The 
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simulation was conducted for a single day to identify key performance parameters of the 

components of the microgrid system.  

 

4.6.1 Island solar PV microgrid 

 

The design of the island microgrid model includes a static load of 250 kW with sources 

as the solar PV system and the BESS. The load behavior of the loads was set to constant 

impedance.  

 

4.6.1.1 Solar irradiation profile 

 

W/m2 denotes the y-axis of the irradiation profile, and the x-axis is represented by time 

(hrs.). 

 

Figure 4.23: Solar irradiation profile 

Figure 4.23 shows the irradiation profile for the village of Palapye, and the peak daily 

irradiation is experienced at 1500hrs. The daylight times are between the hours 0600hrs 

and 1900hrs. 
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4.6.1.2 DC bus voltage 

 

The key objectives of the microgrid system design are to maintain a DC constant bus 

voltage of 835 V to meet the 250-kW static load demand. The system generated a 

maximum power of 224-kW during the peak solar radiation hours. Therefore, the y-axis 

of Figure 4.24 is denoted by Voltage (V), and the x-axis is indicated by time (hrs.). 

 

 

Figure 4.24: Microgrid DC bus voltage and the reference voltage 

Figure 4.24 indicates that the PID control stabilized the system within approximately 0.4 

hrs. and generated a constant DC bus voltage of 835 V.  

4.6.1.3 Battery SOC 

 

The y-axis in Figure 4.25 is represented by the battery SOC (%), and the x-axis is denoted 

by time (hrs.). 
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Figure 4.25: Battery SOC 

 

From Figure 4.25, there is very minimal solar PV power generation during the early times 

of between 0000hrs and 0900hrs. Thereby, the battery discharges to maintain a constant 

DC bus voltage of 835 V. The hourly increase in sun irradiation received in the area causes 

a sharp increase in solar PV power generation between 0900 and 1500. The battery will 

not be depleted between 1400 and 1700 hours since the energy supply from the solar PV 

system meets the conditions of a required DC bus voltage of 835 V. Between the hours of 

1700 and 2359, the battery begins to deplete again, which corresponds to a decrease in 

the power produced by the solar PV system. 

 

4.6.1.4 Solar PV power generation 

 

A graph of the ideal solar PV power generated, and the actual solar PV power generated 

was prepared. The y-axis of the Pideal and Ppv graph is represented by kW, and the x-

axis is denoted by time (hrs.).  
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Figure 4.26: Ideal PV power versus actual PV power  

 

Figure 4.26 indicates the correlation between the ideal solar PV power and the true PV 

power generated. The peak of the ideal PV and real PV power was determined at 222.5293 

kW and 222.2798 kW during the peak solar irradiation time (1500hrs).  

4.6.2 Grid-connected mode 

 

The microgrid system was then simulated connected to the grid. The simulation was 

running for a single day (24hrs).  

4.6.2.1 Power generation 

 

During times of low solar power generation, the utility grid was supplying power to the 

electrical loads. Figure 4.27 provides a schematic of the PV power generated and the 

inverter's power along the y-axis as kW, and the x-axis is time (hrs). 
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Figure 4.27: Graph of solar PV power produced and the active power of the inverter 

From Figure 4.27, it can be identified that during high solar peak PV power generation, 

the solar PV system will be supplying power to the electrical loads without the assistance 

of the utility grid. Excess solar PV power generated is stored in the lithium-ion batteries. 

Between the hours 1100hrs and 1500hrs, there is a steep rise in solar PV power generation. 

Figure 4.28 depicts the DC bus voltage, and the PWM output waveforms of the inverter 

voltage with the y-axis as Voltage and the x-axis is time (hrs.). 
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Figure 4.28: Snapshot of the DC bus voltage and the inverter PWM voltage 

The solar PV system generated a DC-type power supply of 835 V. With a modulation 

index of 0.9, an output waveform was developed through the VSI with a peak of 835 V 

and a low of -835V.  

4.6.2.2 Total harmonic distortion (THD) 

 

Figure 4.29 depicts the THD experienced in the inverter-grid side current with % as the 

y-axis and time (hrs) as the x-axis. 
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Figure 4.29: Total Harmonic distortion 

 

From Figure 4.29, it can be identified that the THD generated peak was recorded at 

approximately 6.5% and the trough at 2.5%.  

 

4.6.2.3 Inverter voltage 

 

The grid and inverter output voltages are in phase. The LCL filter achieved the function 

of removing ripples in the output waveforms of the inverter voltage. Figure 4.30 shows a 

graph of the grid and inverter voltage waveforms with the y-axis as the Voltage (V) and 

the x-axis as the time (hrs.). 
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Figure 4.30: Snapshot of the grid and inverter voltage 
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4.7 Conclusion 

 

Data analytics can infer the residential household energy characteristics. They reveal the 

behavior of occupants in a household throughout the year. The 12-month study was 

conducted during COVID-19; thus, a typical standard daily profile was not accurately 

identified. The frequent lockdowns impacted the energy usage behaviors of the working 

personnel and the school children. The K-means clustering analysis provided insights that 

3 clusters with 20 iterations algorithm technique revealed the best electricity usage 

relationship between the 12 months of the year. The model fit could have been more 

accurate when the previous year's electricity consumption data was provided. The peak 

daily energy usage was utilized to size a grid-connected solar PV system for the metered 

house on the simulation platform PVSyst. The results from the simulation revealed that 

an average monthly yield of 7.594 kWh/m2/day. The simulation results showed an 

average monthly performance ratio of 75.1%, with the winter months generating a higher 

output than the summer months. The disparity is mainly due to the high temperatures 

experienced during the summer months that result in energy losses in the PV array. 

Simulations on MATLAB were conducted for a particular day to reveal the daily 

performance of the 250-kW community load solar PV microgrid system. The DG unit, 

solar PV system of the microgrid system generated a daily peak load of 224-kW during 

the peak solar irradiation hours. Through the support of the battery, the system could 

supply continuous power to the 250-kW load in the microgrid system. During the grid-

connected mode of operation, the THD-generated peak was identified as approximately 

7% and the least of 3%. 
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5  CHAPTER 5: MICROGRID SYSTEM OPTIMIZATION 

 

5.1 Overview 

 

This chapter outlines the control algorithms and techniques that ensure the efficient usage 

of power within the microgrid structure. The nature of solar as an intermittent source 

requires a smart energy management system to provide a constant supply of power to 

electrical loads in a microgrid community structure. Optimization of the microgrid system 

includes utilizing the fuzzy logic control (FLC) system to achieve the economic operation 

through the two microgrid operation modes and at a minimum required cost. 

 

5.2 Introduction 

 

Microgrid systems utilize an additional DG unit or an ESS to maintain the power balance 

supply in the microgrid system. A rapidly rising technique used in the optimization of a 

microgrid is machine learning. Machine learning through linear programming, effective 

energy management within the microgrid is accomplished through the scheduled 

economic dispatch and unit commitments of the microgrid components (Shrivastwa et al. 

2019). Optimization models such as DER-CAM have been utilized to encompass mixed-

integer linear programming (MILP) for microgrids with various energy types. Authors 

(Mashayekh et al. 2017), through MILP, use multi-modeling nodes for optimal siting of 

electrical and heating/cooling networks. Through linear programming, the community's 

standard and forecast load profiles will aid in the microgrid system's adequate sizing and 

design techniques through control algorithms. Another machine learning technique for the 

optimization model of microgrid energy management is dynamic programming. The FLC 

system is an alternative technique to utilize for energy management in microgrids instead 

of PID controllers. The FLC system can effectively manage the power flow between the 

components of the microgrid system through a set of governing rules (Al-Sakkaf et al. 

2019). Multi-parameter dynamic programming can be utilized to optimize microgrids by 

addressing issues of non-linear loads and power supply intermittency of DG units (X. 

Wang et al. 2020). Through technology advancement, projections indicate that by 2050, 
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solar PV will be the cheapest source of power, with costs estimated at USD 0.014- 0.05/ 

kWh (IRENA 2019a). Solar PV microgrids are promising energy solution avenues for 

developing countries considering the high Global Horizontal Irradiation (GHI) values 

received in certain countries (Yekini et al. 2013).  

 

5.3 Energy flow in microgrid system through fuzzy logic control 

 

The solar PV system in the microgrid system plays the role of the primary energy provider 

to the electrical loads. The secondary is the surplus energy provider alongside the utility 

grid. A control system is utilized to manage the power flow of the microgrid system. The 

core aim of the control system is to maintain the desired DC bus voltage necessary for the 

continuous power supply to the electrical loads in a settlement. The energy flow in a grid-

connected microgrid system occurs between the solar PV system, BESS, and the utility 

grid. Therefore, the primary energy supplier to the microgrid system is the solar PV 

system. The fuzzy logic control (FLC) algorithm was utilized to maintain power between 

the PV unit, battery, and utility grid. The FLC operates as a supervisory control to inform 

the charging and discharging of the battery depending on the amount of solar PV power 

generated (Anitha and Krishna 2015). Control systems are characterized by using one 

physical component to change another so that it exhibits desired attributes. The basic 

components of the FLC framework are a fuzzifier, a fuzzy inference engine in which the 

ruleset runs, and a defuzzifier. The FLC structure consists of crisp input quantities with 

either a value of 0 or 1 (Reyes-Garcia and Torres-Garcia 2022). The crispy quantities are 

transformed into fuzzy quantities throughout the fuzzification process. The elements of 

fuzzy quantities have a degree of membership in a set. The fuzzy logic utilizes a set of if-

then rules to execute commands. The defuzzification process then converts the fuzzy 

quantities into crisps quantities. The defuzzification technique converts the fuzzy sets' 

membership degree into real values (Nebey 2020). The deffuzified values present as 

action commands in a control system. The FLC structure also comprises of input and 

output variables. Figure 5.1 shows a process flowchart of the fuzzy logic control structure. 
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Figure 5.1: FLC structure 

The input variables for the fuzzy logic will be the change in power and the change in 

battery SOC, while the output will be a current reference (𝐼௥௘௙). The current reference 

generated informs the grid-connected inverter to discharge power from the grid and when 

to charge the grid with the excess solar PV power produced. The primary purpose of the 

FLC is to maintain the desired DC bus voltage of 835V required by the loads. The current 

reference generated by the FLC sends a control signal to the components of the microgrid, 

such as a solar photovoltaic system, a battery, or an electric grid to discharge or charge 

power in the microgrid bus to achieve the desired bus voltage.  The data range of the SOC 

of the battery is set as the input range of the desired. Equations 5.1 and 5.2 show the 

mathematical expressions for the input SOC. 

 

 𝑆𝑂𝐶௠௜௡  ≤  𝑆𝑂𝐶(௧)  ≤  𝑆𝑂𝐶௠௔௫ 5.1 

 

 ∆𝑆𝑂𝐶(௧) =  𝑆𝑂𝐶௢௥௜௚௜௡௔௟(௧) −  𝑆𝑂𝐶௡௢௪(௧) 5.2 

 

Where 𝑆𝑂𝐶௠௜௡ and 𝑆𝑂𝐶௠௔௫ represent the minimum and maximum SOC of the battery. 

The charging and discharging of the battery are relative to the time of day. During night 

hours, when the solar PV generation is very minimal, the battery will supply the desired 

voltage of the DC microgrid. To determine the change in SOC (∆𝑆𝑂𝐶(௧)), the difference 

 

 

 

 

 

 

Input Fuzzification Defuzzification Interference 
engine 

𝐼𝑟𝑒𝑓  

Rules 

∆𝑆𝑂𝐶(𝑡) 
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between the original SOC and the actual SOC of the battery is computed. Then, the power 

balance Equation is expressed mathematically in Equation 5.3: 

 

 ∆𝑃௕௔௟௔௡௖௘ = 𝑃௣௩ −  𝑃௟௢௔ௗ 5.3 

 

Where 𝑃௣௩ and 𝑃௟௢௔ௗ represent the solar PV power generated and the load demand power, 

respectively. Where ∆𝑃௕௔௟௔௡௖௘ represents the power balance in the microgrid system. 

When the ∆𝑃௕௔௟௔௡௖௘ is positive, excess solar PV power is used to charge the battery. The 

extra electricity generated by the solar PV system is fed into the grid once the battery is 

fully charged. The fuzzification process involves converting a crips input into a linguistic 

variable as per the assigned membership functions. The range of values of the inputs was 

given membership function terms to enable the rules execution of the logic algorithm.  

 

Table 5.1: Membership functions of fuzzy variables 

Membership function terms Meaning 

NB Negative big 

NS Negative small 

ZO Zero 

PS Positive small 

PB Positive big 

 

5.3.1 Rules 

 

The interference engine is instructed by a list of rules that occur based on IF statements 

between the two inputs being ∆𝑃௕௔௟௔௡௖௘& ∆𝑆𝑂𝐶(௧).Table 5.2 illustrates the list of rules for 

the FLC algorithm. 
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Table 5.2: List of the 25 rules for the FLC 

Rule# ∆𝑷𝒃𝒂𝒍𝒂𝒏𝒄𝒆& ∆𝑺𝑶𝑪(𝒕) 𝑰𝒓𝒆𝒇 

1 If ∆𝑃௕௔௟௔௡௖௘ is NB & ∆𝑆𝑂𝐶(௧) is NB Then Iref is PB 

2 If ∆𝑃௕௔௟௔௡௖௘ is NB & ∆𝑆𝑂𝐶(௧) is NS Then Iref is PB 

3 If ∆𝑃௕௔௟௔௡௖௘ is NB & ∆𝑆𝑂𝐶(௧) is ZO Then Iref is ZO 

4 If ∆𝑃௕௔௟௔௡௖௘ is NB & ∆𝑆𝑂𝐶(௧) is PS Then Iref is NS 

5 If ∆𝑃௕௔௟௔௡௖௘ is NB & ∆𝑆𝑂𝐶(௧) is PB Then Iref is NB 

6 If ∆𝑃௕௔௟௔௡௖௘ is NS & ∆𝑆𝑂𝐶(௧) is NB Then Iref is PB 

7 If ∆𝑃௕௔௟௔௡௖௘ is NS & ∆𝑆𝑂𝐶(௧) is NS Then Iref is PB 

8 If ∆𝑃௕௔௟௔௡௖௘ is NS & ∆𝑆𝑂𝐶(௧) is ZO Then Iref is ZO 

9 If ∆𝑃௕௔௟௔௡௖௘ is NS & ∆𝑆𝑂𝐶(௧) is PS Then Iref is NS 

10 If ∆𝑃௕௔௟௔௡௖௘ is NS & ∆𝑆𝑂𝐶(௧) is PB Then Iref is NB 

11 If ∆𝑃௕௔௟௔௡௖௘ is ZO & ∆𝑆𝑂𝐶(௧) is NB Then Iref is PB 

12 If ∆𝑃௕௔௟௔௡௖௘ is ZO & ∆𝑆𝑂𝐶(௧) is NS Then Iref is PS 

13 If ∆𝑃௕௔௟௔௡௖௘ is ZO & ∆𝑆𝑂𝐶(௧) is ZO Then Iref is ZO 

14 If ∆𝑃௕௔௟௔௡௖௘ is ZO & ∆𝑆𝑂𝐶(௧) is PS Then Iref is NS 

15 If ∆𝑃௕௔௟௔௡௖௘ is ZO & ∆𝑆𝑂𝐶(௧) is PB Then Iref is NB 

16 If ∆𝑃௕௔௟௔௡௖௘ is PS & ∆𝑆𝑂𝐶(௧) is NB Then Iref is PB 

17 If ∆𝑃௕௔௟௔௡௖௘ is PS & ∆𝑆𝑂𝐶(௧) is NS Then Iref is PS 

18 If ∆𝑃௕௔௟௔௡௖௘ is PS & ∆𝑆𝑂𝐶(௧) is ZO Then Iref is PS 

19 If ∆𝑃௕௔௟௔௡௖௘ is PS & ∆𝑆𝑂𝐶(௧) is PS Then Iref is NS 

20 If ∆𝑃௕௔௟௔௡௖௘ is PS & ∆𝑆𝑂𝐶(௧) is PB Then Iref is NB 

21 If ∆𝑃௕௔௟௔௡௖௘ is PB & ∆𝑆𝑂𝐶(௧) is NB Then Iref is PB 

22 If ∆𝑃௕௔௟௔௡௖௘ is PB & ∆𝑆𝑂𝐶(௧) is NS Then Iref is PB 

23 If ∆𝑃௕௔௟௔௡௖௘ is PB & ∆𝑆𝑂𝐶(௧) is ZO Then Iref is PB 

24 If ∆𝑃௕௔௟௔௡௖௘ is PB & ∆𝑆𝑂𝐶(௧) is PS Then Iref is PB 

25 If ∆𝑃௕௔௟௔௡௖௘ is PB & ∆𝑆𝑂𝐶(௧) is PB Then Iref is PB 
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The result of the ∆𝑃௕௔௟௔௡௖௘ and ∆𝑆𝑂𝐶(௧) generates a signal to the grid-connected inverter 

to relay the power exchange between the microgrid and the grid. As a result, during high 

peak solar generation hours, the battery SOC increases, and the PCC is disconnected. Still, 

during low solar generation hours, the grid supplies energy to the electrical loads while 

charging the battery.  

 

5.4 Simulation Overview 

 

The y-axis of Figure 5.2 in the battery SOC graph is denoted by % (percentage) and the 

x-axis as the time (hrs.). Likewise, the y-axis of Figure 5.2 of the solar PV generation 

(Ppv) is denoted by kW, and the x-axis is represented by time(hrs.). 

 

 

Figure 5.2: Daily PV power generated and the battery SOC 

From Figure 5.2, the FLC algorithm is designed. During low solar PV power generation, 

the utility grid provides power to the electrical loads while charging the battery. The 

battery serves the function of stabilizing the DC bus voltage during the transition from 
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island mode and grid-connected mode for the microgrid system. Between the time 

1400hrs and 1600hrs, the microgrid system will be operating in island mode with battery 

support. From 1600hrs, when the solar PV power generation decreases, the battery 

provides auxiliary power to the electrical loads as the connection to the utility grid is re-

established. The y-axis of Figure 5.3 is denoted by Current (C), and the x-axis is 

represented by time(hrs.). 

 

Figure 5.3: Grid-connected inverter current and reference current signal 

From Figure 5.3, there are periods of the day when the grid-connected inverter current 

was the same as the load current, meaning that the microgrid system was operating in the 

grid-connected mode. The system was in island mode between 1000hrs and 2000hrs 

because the times of day corresponded with the peak solar irradiation hours. Therefore, 

the y-axis of Figure 5.4 is denoted by Power (kW), and the x-axis is represented by time 

(hrs.). 
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Figure 5.4: The active and reactive power of the grid-connected inverter 

From Figure 5.4, there is an uptake of power into the grid during periods when the solar 

PV generation was high. Excess power generated from the solar PV system was fed into 

the grid. The steep rise active power at 1600hrs is a combination of the solar PV power 

and battery power discharge into the grid-inverter. Thereafter at 2000hrs when the solar 

PV power generation was least, the microgrid system began to operate in grid-connected 

mode of operation. The y-axis of Figure 5.5 is denoted by percentage (%), and the x-axis 

is represented by time (hrs.). 
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Figure 5.5: THD of the solar PV microgrid system 

Figure 5.5 provides a schematic of the THD of the inverter-side current with the average 

percentages recorded at approximately 3%. By optimizing the microgrid system through 

FLC, the generated THD was more stable and closer to the allowable THD within 5% as 

per IEEE-519 standard. 
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5.5 Conclusion 

 

The optimization technique for a grid-connected solar PV microgrid with battery storage 

is described in this chapter. The strategy incorporates the usage of the fuzzy logic system 

to perform energy management functions in the microgrid structure. The inputs of the 

FLC are changes in SOC and power balance in the microgrid system. The simulation 

analysis shows that the microgrid system operates in the grid-connected mode during low 

solar PV power generation. The battery provides stability to the DC microgrid voltage 

during the transition between the two modes of operation. However, during periods of the 

day when the solar PV power generation is high, the microgrid system will be operating 

in an island model. Based on the availability of electricity in the system for electrical 

loads, the FLC algorithm may provide a current reference signal that instructs when the 

microgrid system will run in either island or grid-connected mode. The optimization 

through FLC revealed a more stable THD with minimal spikes; thus, it enhanced the 

stability of the microgrid system.  
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6 CHAPTER 6: ECONOMIC ANALYSIS IN HOMERPRO 

 

6.1 Overview 

 

The simulation of the designed solar PV microgrid on the software environment 

HOMERPro is included in this chapter. A cost summary of the 250-kW planned microgrid 

system is prepared.  

 

6.2 Introduction 

 

The components of the microgrid system, which include the solar PV system and battery, 

have initial capital costs. Therefore, the system sizing and design were fed through the 

software environment HOMERPro to analyze the cost analysis of the proposed system. 

HOMERPro is an industry-leading software in the design and optimization modeling of 

microgrid systems. It also examines the economic feasibility design by conducting a cost 

analysis of the microgrid system in design.  

 

6.3 System design 

 

The system comprises a 250-kW planned power solar PV system, a 100-kWh lithium-ion 

battery  
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Figure 6.1: Microgrid system design 

6.4 Initial capital costs 

 

The costs of a solar PV system have significantly depreciated over the past decade by 

improving technology and competitive supply chains (IRENA 2019b).  

 

6.4.1 Solar PV system 

 

The total installed costs for solar PV systems are USD 995/ kW. The fee includes solar 

PV modules, charge controllers, and boost converters (IRENA 2019b).  

 

Table 6.1: Cost specifications for a 250-kW solar PV system  

Architecture/PV 

(kW) 

PV/Capital Cost ($) Cost/Initial 

capital ($) 

PV/Capital 

Cost ($) 

249.3906308 3274.807 551229.3 249390.6 
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6.4.2 Battery 

 

The average capital cost of a 4hr lithium-Ion battery is estimated at USD 400/kWh (Cole, 

Frazier, and Augistine 2021). Therefore, the total costs for a 100-kWh lithium-Ion battery 

will be calculated at USD 40,000.00. 

 

Table 6.2: Battery usage specification  

100LI/Autonomy (hr) 100LI/Nominal 

Capacity (kWh) 

100LI/Usable Nominal Capacity 

(kWh) 

2.298639 100.0002 80.00016 

 

From Table 6.2, it can be identified that the usable nominal capacity of the 100-kWh 

lithium-Ion battery was set at 80.00016 kWh. Therefore, the battery system is operated 

for 2.298639 hr. in a single day.  

6.5 Energy calculations 

 

Table 6.3: Energy purchased and energy sold to the grid 

Grid/Energy Purchased 

(kWh) 

Grid/Energy Sold 

(kWh) 

Energy balance 

(kWh) 

168197.3 267445.9 99248.6 
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Figure 6.2: Energy exchanges between the grid and microgrid 

 

6.6 Levelized Cost of Electricity (LCOE) 

 

Based on how much energy is generated and sold to the utility grid, a cost analysis 

component is determined, namely the Levelized Cost of Energy (LCOE). Equation 6.1 

represents the expression for the LCOE. 

 

 
𝐿𝐶𝑂𝐸 =  

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑠𝑡

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 

6.1 

 

𝐿𝐶𝑂𝐸 =
$10.90

𝑘𝑊ℎ
(𝑏𝑎𝑠𝑒 𝑐𝑜𝑠𝑡) 

 

6.7 Net present cost 

 

A net present cost is an economic tool representing the installation and operation expenses 

of a project throughout the project deficient of the current value of the revenues the project 

Purchased, 
168197.3, 31%

Sold, 267445.9, 
50%

Balance, 
99248.6, 19%

ENERGY EXCHANGES (KWH)
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earns over its lifetime duration. Equation 6.2 represents the mathematical expression for 

the net present cost. 

 
𝑁𝑃𝐶 =  ෍

𝑅(௧)

(1 + 𝑖)௧

௡

௧ୀ଴

 
6.2 

 

 

Where 𝑅(௧) represents the net cash flow during a single period 𝑡 , 𝑖 represents the discount 

rate and 𝑡 represents the number of timer periods. Using Equation 6.2, HOMERPro 

revealed the results in Table 6.4. 

 

Table 6.4: The NPC of the microgrid system 

Base case Lowest system cost 

USD 317,235 USD 284,430 
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6.8 Conclusion 

 

This chapter of the research revealed the cost analysis of the 250-kW planned power solar 

microgrid system. The initial capital costs of the solar PV system were calculated at USD 

249,390.6, while the lithium-ion battery's initial capital costs were calculated to be USD 

40,000.00. Annual analysis reveals that excess energy stored on the grid was estimated at 

99,248.6 kWh. The LCOE and NPC of the microgrid system were determined to be USD 

10.90/kWh and USD 317,235, respectively.  
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7 CHAPTER 7: CONCLUSION AND FUTURE WORK 

 

7.1 Overview 

 

This chapter presents a conclusion derived from the study effort per the research 

objectives and questions. 

 

7.2 Load metering analysis 

 

One of the objectives of the research was to measure the electricity consumption of a 

residential household in Botswana over a period of one year. The load metering was 

successfully completed in a residential home for 12 months between 20th August 2020 

and 20th August 2021. The data collected from the residential household was presented in 

Chapter 4, sub-section 4.3. The data analysis revealed critical data such as the daily peak 

power usage and daily electricity usage. Another objective of the research was to execute 

smart meter data analytics. The smart meter analysis was successfully carried out using 

techniques such as regression analysis, time series analysis, and clustering analysis, as 

described fully in Chapter 4, sub-heading 4.4. The smart meter analysis revealed the 

characteristics of energy usage behavior in urban residential households. However, due to 

high variability in the daily energy usage, the linear regression analysis revealed a low 

RSME, thus indicating the low model accuracy of the analyzed dataset as per the analysis 

technique. 

 

On the other hand, the clustering analysis revealed high model accuracy in the monthly 

energy usage analysis among the other analytics methods. In addition, the load profiling 

assessment revealed the clustering analysis as an accurate technique to identify typical 

load profiles for long-term energy planning. A challenge of the smart metering analysis 

was the lack of previous energy usage data, which could have improved the accuracy in 

both the linear regression and time series analysis. Another challenge was the lack of data 

recording due to power cuts and equipment malfunction. 
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7.3 Single household solar PV system simulation 

 

Another objective of the research was to design a single household solar PV system. 

Following the load metering analysis, the time series energy usage of the residential house 

was fed into the solar PV system design in PVSyst simulation software as the load. The 

metering analysis revealed a daily peak load of 9.2 kW, thereby informing the design and 

simulation of a ten kWp planned solar PV power system. The simulation analysis 

incorporated the solar irradiation and temperature profiles of the residential households 

as inputs of the solar PV system. The average daily hourly load profile of the residential 

house was utilized as the daily self-consumption profile on PVSyst. The simulation results 

revealed an average monthly reference incident energy of 7.594 kWh/kWp/day. The 

performance of the solar PV system was only recorded at 75.1%, thus indicating the 

substantial energy losses from PV modules due to temperature. Modern monocrystalline 

solar cells need to be incorporated as they possess a higher efficiency and can withstand 

high temperatures. The primary goal of the objective was met through the design of the 

solar PV system in the PVSyst simulation environment.  

7.4 Community solar PV microgrid  

 

A significant section of the research included the simulation analysis of the designed solar 

PV microgrid. Another goal of the research was to model and simulate the solar PV 

microgrid in both the island and grid-connected modes. The design and simulation of the 

microgrid system were carried out in the MATLAB/Simulink simulation environment. 

The load in the microgrid system was a 250-kW community load block in 

MATLAB/Simulink, with the model structure being constant impedance. The assumption 

is that the residential household has similar load profiles; hence, the 10-kWp of each house 

was utilized, so the cumulative community load accounted for 250-kWp. Bidirectional 

converters were used to ensure bidirectional power flow amongst the other components. 

SPWM inverters were incorporated to reduce harmonics in the output waveforms, and 

their performance was assessed in the simulation analysis. The control of the microgrid 

system was through PID controllers, and for optimization, fuzzy logic control was 

incorporated. The goal of the objective was successfully achieved through the design of a 
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250-kW microgrid system built in the MATLAB/Simulink software environment for both 

island and grid-connected operation. Daily irradiation and temperature profiles of Palapye 

were utilized for the solar PV microgrid.  

7.4.1 Island mode 

 

The microgrid system's design and simulation under the island mode of operation was 

successful. The simulation's critical results demonstrated that the usage of PID controllers 

achieved power management in the microgrid system.  Periods of the day when the solar 

PV system was low, the battery was supplying power to the DC microgrid, while when 

the solar PV power generated was in excess, the battery was charged. The primary 

function of the battery control method was to maintain the desired DC voltage level in the 

microgrid system. The lithium-ion battery operated as the load or generator to ensure the 

optimum operation of the microgrid system. 

 

7.4.2 Grid-connected mode 

 

The model design and simulation of the microgrid system in grid connected mode was 

successfully performed in the MATLAB / Simulink simulation environment. The desired 

DC voltage bus level was achieved through power management between the solar PV 

system and the grid through the grid-connected mode. Periods of the day when the solar 

PV power generated was low and energy was discharged from the grid into the microgrid 

system. The performance of the grid-inverter current revealed a THD between 3 and 7%, 

which is similar to the allowable THD of the grid-side current of approximately 5% 

(IEEE-519 standard) (Hamizah et al. 2014).  

 

7.5 Optimization and economic analysis 

 

Another objective of research included the optimization and sensitivity analysis of the 

solar PV microgrid system. A fuzzy logic control was implemented for the grid-connected 

microgrid with battery backup to optimize the microgrid system. The FLC's main goal 
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was to switch between the island and grid-connected modes dependent on the amount of 

solar PV power available. The simulations were successful since the microgrid system 

operated in grid-connected mode during low solar PV power generation times and island 

mode during high solar PV power generation periods. The battery served as an auxiliary 

power supply during the transitions between the two modes of operation. By utilizing the 

FLC, a more stable THD of approximately 3% was achieved throughout the day. The 

optimization analysis was successful due to the improved power quality of the solar PV 

microgrid system. The transition from island to grid-connected mode revealed a 

temporary high THD, thereby indicating the need for further analysis of the impact of the 

FLC on the microgrid system. The simulations of the microgrid could only be conducted 

for a single day in Simulink due to the lack of advanced computer processing equipment. 

The economic analysis was successfully conducted in the HOMERPRO simulation 

environment and critical results revealed the LCOE and NPC of USD 10.90/kWh and 

USD 317,235.   

 

7.6 Research contributions 

 

The research achieved the following as per the stated research objectives: 

 

I. Carried out smart energy metering in a residential household in Botswana. 

II. The residential characteristics and energy behavior usage trends were identified 

through smart meter data analytics. 

III. The sizing and simulation analysis of a grid-connected solar PV system was done 

for the metered residential household. 

IV. The design and simulation assessment of the solar PV microgrid system was done 

for a community. 

V. The economic analysis was done to determine the feasibility of the proposed solar 

PV microgrid for residential communities in Botswana. 
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7.7 Published work 

 

The research author performed a presentation at a conference and has also submitted other 

work done to journals. 

 

 Conference 

Authors: Tumelo B Seane, Professor Ravi Samikannu 

Title: Energy management of solar PV microgrids through fuzzy logic control: A 

review 

Presented at: 3rd International Conference on Engineering Facilities Maintenance and 

Management Technologies (2021), 28th – 29th October 2021, Botswana International 

University of Science & Technology (BIUST), Botswana 

 

Submitted two other papers which are in review: 

1. Assessment of residential building energy usage through regression and clustering 

techniques (Applied Energy journal) 

2. Solar Photovoltaic Community Based Microgrids: A Review (Technology and 

Economics of Smart Grids and Sustainable Energy journal) 

 

7.8 Future work 

 

Through the research analysis, more future work on solar PV microgrids can be continued 

in the following areas: 

 

 Microgrid stability analysis which incorporates load demand predictions 

 Increased accuracy of load prediction models that account for changes in human 

energy use behavior 

 Microgrid synchronization with the utility grid (voltage, phase, and frequency) 

 Reduction of harmonics in inverter output waveforms through multiple switching 

on the pulse width modulation (PWM) 
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7.9 Conclusion 

 

In conclusion, despite the problems experienced, the research study was able to 

accomplish the specified objectives. However, further research work requires to be 

conducted on the model optimization of the solar PV microgrid to improve performance, 

thereby affecting system economics. 
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9 APPENDIX A – ELECTRICITY USAGE RAW DATA 

 

MONTH DATE 

 

ELECTRICITY 

USAGE (kWh) 

Daily Peak 

Electricity 

(kW) 

Peak power 

(KW) 

Peak 

Demand 

(kWh) 

Peak 

demand 

time 

A
U

G
U

S
T

 

Thursday, 20 August 2020 19.515 0.813 9.249 1.881 17:48:00 

Friday, 21 August 2020 29.238 1.218 4.808 0.867 13:33:00 

Saturday, 22 August 2020 18.890 0.787 4.840 0.803 20:48:00 

Sunday, 23 August 2020 17.717 0.738 3.762 0.831 20:18:00 

Monday, 24 August 2020 26.024 1.084 5.223 0.812 20:03:00 

Tuesday, 25 August 2020 22.985 0.958 5.112 0.839 19:33:00 

Wednesday, 26 August 2020 22.521 0.938 5.201 0.841 20:03:00 

Thursday, 27 August 2020 23.239 0.968 4.994 0.840 17:48:00 

Friday, 28 August 2020 26.514 1.105 5.382 0.855 19:18:00 

Saturday, 29 August 2020 19.094 0.796 4.894 0.832 18:18:00 

Sunday, 30 August 2020 17.595 0.733 3.765 0.817 19:33:00 

Monday, 31 August 2020 28.101 1.171 5.090 0.809 14:48:00 

S
E

P
T

E
M

B
E

R
 

Tuesday, 01 September 2020 29.804 1.242 4.919 0.822 12:48:00 

Wednesday, 02 September 2020 28.857 1.202 4.956 0.810 18:03:00 

Thursday, 03 September 2020 37.986 1.583 6.817 1.661 08:18:00 

Friday, 04 September 2020 24.576 1.024 5.118 0.823 19:18:00 
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Saturday, 05 September 2020 17.281 0.720 5.081 0.851 19:33:00 

Sunday, 06 September 2020 22.535 0.939 3.785 0.824 18:48:00 

Monday, 07 September 2020 27.748 1.156 6.697 0.825 19:18:00 

Tuesday, 08 September 2020 20.651 0.860 5.203 0.803 20:03:00 

Wednesday, 09 September 2020 23.648 0.985 5.380 0.864 09:33:00 

Thursday, 10 September 2020 21.439 0.893 5.077 0.835 14:48:00 

Friday, 11 September 2020 27.357 1.140 5.125 0.855 09:33:00 

Saturday, 12 September 2020 17.445 0.727 3.684 0.860 19:48:00 

Sunday, 13 September 2020 18.831 0.785 4.282 0.806 12:48:00 

Monday, 14 September 2020 22.134 0.922 4.826 0.815 11:33:00 

Tuesday, 15 September 2020 16.824 0.701 4.938 0.785 14:48:00 

Wednesday, 16 September 2020 18.803 0.783 4.950 0.809 09:33:00 

Thursday, 17 September 2020 17.187 0.716 4.864 0.813 19:03:00 

Friday, 18 September 2020 15.697 0.654 5.394 0.830 10:48:00 

Saturday, 19 September 2020 19.078 0.795 5.855 1.044 23:33:00 

Sunday, 20 September 2020 41.633 1.735 6.290 2.198 15:03:00 

Monday, 21 September 2020 41.747 1.739 9.212 2.320 22:18:03 

Tuesday, 22 September 2020 21.841 0.910 4.836 0.800 21:48:03 

Wednesday, 23 September 2020 18.994 0.791 5.252 0.809 09:18:02 

Thursday, 24 September 2020 20.795 0.866 4.544 0.796 11:03:01 

Friday, 25 September 2020 19.819 0.826 4.732 1.138 11:18:01 

Saturday, 26 September 2020 33.019 1.376 4.855 1.342 15:03:01 
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Sunday, 27 September 2020 31.157 1.298 6.772 1.670 22:02:59 

Monday, 28 September 2020 26.493 1.104 5.335 0.969 11:32:59 

Tuesday, 29 September 2020 16.288 0.679 4.934 0.840 23:47:00 

Wednesday, 30 September 2020 10.486 0.437 5.282 0.629 09:17:00 

O
C

T
O

B
E

R
 

Thursday, 01 October 2020 13.510 0.563 3.976 0.828 17:47:00 

Friday, 02 October 2020 14.567 0.607 4.348 1.056 09:02:00 

Saturday, 03 October 2020 23.517 0.980 5.229 0.848 08:02:00 

Sunday, 04 October 2020 19.039 0.793 5.511 0.841 08:17:00 

Monday, 05 October 2020 17.972 0.749 3.729 0.844 01:02:00 

Tuesday, 06 October 2020 28.456 1.186 5.270 1.489 08:47:00 

Wednesday, 07 October 2020 25.519 1.063 5.087 0.837 10:17:00 

Thursday, 08 October 2020 23.915 0.996 4.928 0.834 15:02:00 

Friday, 09 October 2020 15.988 0.666 4.780 0.810 08:02:00 

Saturday, 10 October 2020 21.062 0.878 4.734 1.353 16:32:00 

Sunday, 11 October 2020 20.785 0.866 4.485 0.829 01:32:00 

Monday, 12 October 2020 22.698 0.946 4.792 0.793 08:02:00 

Tuesday, 13 October 2020 20.883 0.870 5.691 0.816 08:17:00 

Wednesday, 14 October 2020 18.115 0.755 3.703 0.808 18:17:00 

Thursday, 15 October 2020 15.927 0.664 4.937 0.827 08:47:00 

Friday, 16 October 2020 14.956 0.623 4.779 0.723 10:02:00 

Saturday, 17 October 2020 30.075 1.253 5.702 1.379 23:47:00 

Sunday, 18 October 2020 43.795 1.825 8.787 2.205 16:17:00 
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Monday, 19 October 2020 51.386 2.141 8.750 2.418 14:02:00 

Tuesday, 20 October 2020 73.797 3.075 6.778 2.041 21:32:00 

Wednesday, 21 October 2020 32.898 1.371 4.927 1.224 00:02:00 

Thursday, 22 October 2020 36.893 1.537 5.876 1.667 22:47:00 

Friday, 23 October 2020 33.476 1.395 6.603 1.847 15:17:00 

Saturday, 24 October 2020 44.231 1.843 5.326 1.652 16:02:00 

Sunday, 25 October 2020 51.107 2.129 6.782 1.841 21:32:00 

Monday, 26 October 2020 56.788 2.366 6.669 1.656 00:02:00 

Tuesday, 27 October 2020 46.359 1.932 6.774 1.763 21:47:00 

Wednesday, 28 October 2020 51.027 2.126 6.726 1.823 23:17:00 

Thursday, 29 October 2020 54.252 2.260 6.640 1.733 01:17:00 

Friday, 30 October 2020 20.091 0.837 5.101 1.363 13:47:00 

  Saturday, 31 October 2020 6.076 0.253 3.199 0.639 04:47:00 

N
ovem

ber 

Sunday, 01 November 2020 11.380 0.474 3.737 0.790 21:17:00 

Monday, 02 November 2020 17.020 0.709 4.843 0.776 06:47:00 

Tuesday, 03 November 2020 18.561 0.773 4.731 0.834 09:17:00 

Wednesday, 04 November 2020 22.854 0.952 5.216 1.635 06:47:00 

Thursday, 05 November 2020 18.776 0.782 4.733 0.769 10:17:00 

Friday, 06 November 2020 44.538 1.856 6.064 1.876 16:47:00 

Saturday, 07 November 2020 64.165 2.674 6.279 1.705 19:02:00 

Sunday, 08 November 2020 73.421 3.059 6.323 2.163 15:32:00 

Monday, 09 November 2020 70.243 2.927 7.012 2.430 23:32:00 



APPENDIX A – ELECTRICITY USAGE RAW DATA 148        

 

Tuesday, 10 November 2020 31.243 1.302 5.216 1.406 09:02:00 

Wednesday, 11 November 2020 17.446 0.727 4.926 0.851 18:17:00 

Thursday, 12 November 2020 19.195 0.800 3.650 0.798 00:32:00 

Friday, 13 November 2020 17.913 0.746 5.780 0.803 13:32:00 

Saturday, 14 November 2020 23.656 0.986 4.279 1.090 20:47:00 

Sunday, 15 November 2020 20.025 0.834 4.782 1.110 23:47:00 

Monday, 16 November 2020 53.723 2.238 6.236 2.114 21:17:00 

Tuesday, 17 November 2020 40.762 1.698 6.132 1.771 22:47:00 

Wednesday, 18 November 2020 44.926 1.872 6.908 1.766 13:02:00 

Thursday, 19 November 2020 44.122 1.838 4.772 1.910 00:17:00 

Friday, 20 November 2020 20.459 0.852 4.851 0.821 02:02:00 

Saturday, 21 November 2020 17.815 0.742 3.643 0.811 19:02:00 

Sunday, 22 November 2020 19.029 0.793 4.928 1.045 21:47:00 

Monday, 23 November 2020 40.688 1.695 5.426 1.476 19:47:00 

Tuesday, 24 November 2020 45.321 1.888 5.360 0.497 18:14:00 

Wednesday, 25 November 2020 28.471 1.186 5.451 2.411 13:22:00 

Thursday, 26 November 2020 46.006 1.917 6.100 1.917 15:07:00 

Friday, 27 November 2020 34.325 1.430 5.226 1.188 13:52:00 

Saturday, 28 November 2020 28.671 1.195 4.955 1.012 00:22:00 

Sunday, 29 November 2020 28.764 1.198 5.438 1.469 20:22:00 

Monday, 30 November 2020 20.171 0.840 5.660 1.336 20:52:00 

D
ec

em
b

er Tuesday, 01 December 2020 22.346 0.931 5.195 1.395 23:07:00 
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Wednesday, 02 December 2020 15.983 0.666 5.176 0.825 08:37:00 

Thursday, 03 December 2020 17.175 0.716 4.831 0.784 08:22:00 

Friday, 04 December 2020 17.645 0.735 3.705 0.804 21:37:00 

Saturday, 05 December 2020 14.330 0.597 3.579 0.820 21:07:00 

Sunday, 06 December 2020 16.670 0.695 3.803 0.832 21:37:00 

Monday, 07 December 2020 19.988 0.833 4.919 0.844 14:07:00 

Tuesday, 08 December 2020 24.957 1.040 5.092 0.862 09:22:00 

Wednesday, 09 December 2020 18.848 0.785 5.292 0.814 09:37:00 

Thursday, 10 December 2020 41.610 1.734 6.371 2.279 20:22:00 

Friday, 11 December 2020 52.700 2.196 6.842 1.788 22:22:00 

Saturday, 12 December 2020 46.300 1.929 7.093 1.906 21:07:00 

Sunday, 13 December 2020 34.153 1.423 6.826 1.673 01:37:00 

Monday, 14 December 2020 20.640 0.860 6.009 0.889 07:22:00 

Tuesday, 15 December 2020 20.559 0.857 5.929 0.839 08:22:00 

Wednesday, 16 December 2020 22.804 0.950 5.043 0.868 08:22:00 

Thursday, 17 December 2020 26.532 1.106 5.142 0.883 13:22:00 

Friday, 18 December 2020 20.901 0.871 5.041 0.840 08:37:00 

Saturday, 19 December 2020 22.020 0.918 5.232 0.917 19:22:00 

Sunday, 20 December 2020 19.793 0.825 6.003 0.874 08:37:00 

Monday, 21 December 2020 20.418 0.851 5.025 0.845 18:44:00 

Tuesday, 22 December 2020 27.209 1.134 8.534 1.734 08:14:00 

Wednesday, 23 December 2020 32.525 1.355 6.789 1.938 21:29:00 



APPENDIX A – ELECTRICITY USAGE RAW DATA 150        

 

Thursday, 24 December 2020 22.264 0.928 5.870 0.814 08:29:00 

Friday, 25 December 2020 19.168 0.799 5.988 1.187 10:29:00 

Saturday, 26 December 2020 44.450 1.852 6.424 1.752 13:59:00 

Sunday, 27 December 2020 46.870 1.953 6.933 2.130 17:44:00 

Monday, 28 December 2020 29.519 1.230 5.159 1.590 15:59:00 

Tuesday, 29 December 2020 17.242 0.718 4.015 0.844 23:29:00 

Wednesday, 30 December 2020 16.954 0.706 4.022 0.781 22:59:00 

January 

Thursday, 31 December 2020 32.359 1.348 6.762 1.859 22:29:00 

Friday, 01 January 2021 41.714 1.738 6.600 1.920 23:44:00 

Saturday, 02 January 2021 23.065 0.961 4.777 1.457 05:59:00 

Sunday, 03 January 2021 16.847 0.702 4.858 0.808 20:44:00 

Monday, 04 January 2021 19.136 0.797 5.208 1.333 08:59:00 

Tuesday, 05 January 2021 35.827 1.493 6.002 1.695 20:44:00 

Wednesday, 06 January 2021 44.848 1.869 5.901 1.822 20:59:00 

Thursday, 07 January 2021 26.026 1.084 4.782 0.982 02:44:00 

Friday, 08 January 2021 23.868 0.995 4.769 1.048 11:14:00 

Saturday, 09 January 2021 20.554 0.856 5.640 1.344 07:14:00 

Sunday, 10 January 2021 43.135 1.797 6.691 1.712 20:44:00 

Monday, 11 January 2021 29.100 1.212 4.966 1.101 18:29:00 

Tuesday, 12 January 2021 31.768 1.324 5.859 1.478 20:29:00 

Wednesday, 13 January 2021 33.604 1.400 6.655 1.462 19:14:00 

Thursday, 14 January 2021 34.099 1.421 6.565 1.817 20:44:00 
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Friday, 15 January 2021 39.328 1.639 6.744 1.769 13:14:00 

Saturday, 16 January 2021 26.242 1.093 5.877 1.281 20:59:00 

Sunday, 17 January 2021 50.050 2.085 6.691 1.725 21:29:00 

Monday, 18 January 2021 20.179 0.841 4.930 0.889 19:14:00 

Tuesday, 19 January 2021 18.651 0.777 4.974 0.811 21:14:00 

Wednesday, 20 January 2021 22.074 0.920 5.254 1.331 20:14:00 

Thursday, 21 January 2021 19.236 0.801 6.418 0.870 08:44:00 

Friday, 22 January 2021 20.372 0.849 5.238 1.337 19:59:00 

Saturday, 23 January 2021 22.300 0.929 4.863 1.199 07:29:00 

Sunday, 24 January 2021 27.231 1.135 5.953 1.206 09:14:00 

Monday, 25 January 2021 17.269 0.720 4.996 0.814 08:14:00 

Tuesday, 26 January 2021 16.587 0.691 4.667 0.834 13:44:00 

Wednesday, 27 January 2021 17.033 0.710 4.895 1.012 08:14:00 

Thursday, 28 January 2021 17.033 0.710 4.792 1.012 01:49:00 

Friday, 29 January 2021 21.506 0.896 4.413 1.150 20:46:00 

F
ebruary 

Saturday, 30 January 2021 14.695 0.612 4.847 0.835 11:46:00 

Sunday, 31 January 2021 19.897 0.829 4.830 1.190 21:16:00 

Monday, 01 February 2021 21.828 0.909 6.574 1.598 09:16:00 

Tuesday, 02 February 2021 19.819 0.826 4.928 0.808 14:31:00 

Wednesday, 03 February 2021 18.315 0.763 3.902 0.810 20:46:00 

Thursday, 04 February 2021 15.749 0.656 4.963 0.820 08:31:00 

Friday, 05 February 2021 14.477 0.603 5.737 1.153 08:16:00 
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Saturday, 06 February 2021 12.340 0.514 4.607 0.751 20:46:00 

Sunday, 07 February 2021 18.482 0.770 4.153 0.823 20:31:00 

Monday, 08 February 2021 16.337 0.681 4.866 0.827 19:31:00 

Tuesday, 09 February 2021 16.695 0.696 4.029 0.781 14:01:00 

Wednesday, 10 February 2021 16.784 0.699 5.984 0.759 13:16:00 

Thursday, 11 February 2021 14.499 0.604 3.916 0.775 13:16:00 

Friday, 12 February 2021 19.872 0.828 4.803 1.194 09:01:00 

Saturday, 13 February 2021 51.447 2.144 8.267 1.956 20:31:00 

Sunday, 14 February 2021 31.961 1.332 5.286 1.721 14:01:00 

Monday, 15 February 2021 36.171 1.507 6.104 1.737 15:16:00 

Tuesday, 16 February 2021 22.683 0.945 5.082 0.903 18:16:00 

Wednesday, 17 February 2021 19.608 0.817 4.477 0.826 07:01:00 

Thursday, 18 February 2021 28.624 1.193 6.753 1.494 16:46:00 

Friday, 19 February 2021 53.214 2.217 5.722 1.507 22:46:00 

Saturday, 20 February 2021 39.207 1.634 6.719 1.677 22:46:00 

Sunday, 21 February 2021 34.042 1.418 5.089 1.213 20:16:00 

Monday, 22 February 2021 28.291 1.179 6.003 1.010 08:01:00 

Tuesday, 23 February 2021 25.141 1.048 5.125 0.988 12:01:00 

Wednesday, 24 February 2021 25.255 1.052 6.734 2.204 20:46:00 

Thursday, 25 February 2021 22.904 0.954 5.046 0.852 12:46:00 

Friday, 26 February 2021 18.406 0.767 4.918 0.960 12:31:00 

Saturday, 27 February 2021 16.396 0.683 5.003 0.850 18:16:00 
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Sunday, 28 February 2021 21.970 0.915 5.450 1.160 20:42:00 

M
arch 

Monday, 01 March 2021 22.590 0.941 5.690 1.101 09:35:00 

Tuesday, 02 March 2021 24.000 1.000 5.430 0.906 11:43:00 

Wednesday, 03 March 2021 16.558 0.690 5.025 0.847 21:03:00 

Thursday, 04 March 2021 25.747 1.073 5.268 1.548 14:33:00 

Friday, 05 March 2021 19.347 0.806 4.933 0.807 19:03:00 

Saturday, 06 March 2021 13.251 0.552 4.138 0.797 02:18:00 

Sunday, 07 March 2021 16.267 0.678 4.907 0.812 20:18:00 

Monday, 08 March 2021 25.211 1.050 5.156 1.110 08:33:00 

Tuesday, 09 March 2021 25.029 1.043 6.758 1.726 21:37:00 

Wednesday, 10 March 2021 33.100 1.379 5.862 1.565 20:22:00 

Thursday, 11 March 2021 35.597 1.483 5.526 1.868 08:37:00 

Friday, 12 March 2021 22.596 0.942 5.327 1.703 22:07:00 

Saturday, 13 March 2021 19.666 0.819 5.068 0.878 21:37:00 

Sunday, 14 March 2021 20.666 0.861 4.821 0.835 22:22:00 

Monday, 15 March 2021 23.915 0.996 6.147 1.522 22:22:00 

Tuesday, 16 March 2021 22.828 0.951 5.296 1.607 19:52:00 

Wednesday, 17 March 2021 19.128 0.797 5.616 1.370 22:37:00 

Thursday, 18 March 2021 28.156 1.173 5.917 1.559 21:07:00 

Friday, 19 March 2021 25.139 1.047 6.576 1.713 20:52:00 

Saturday, 20 March 2021 21.840 0.910 4.786 0.797 11:22:00 

Sunday, 21 March 2021 19.089 0.795 5.067 1.010 11:37:00 
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Monday, 22 March 2021 17.568 0.732 4.697 0.836 08:07:00 

Tuesday, 23 March 2021 18.626 0.776 4.581 0.844 10:37:00 

Wednesday, 24 March 2021 19.104 0.796 5.189 0.827 18:37:00 

Thursday, 25 March 2021 22.049 0.919 4.859 0.848 13:22:00 

Friday, 26 March 2021 22.768 0.949 3.596 0.848 19:22:00 

Saturday, 27 March 2021 14.876 0.620 4.637 0.871 20:07:00 

Sunday, 28 March 2021 13.806 0.575 3.587 0.060 20:07:00 

Monday, 29 March 2021 24.112 1.005 5.084 0.822 13:37:00 

Tuesday, 30 March 2021 18.859 0.786 5.262 0.808 08:52:00 

Wednesday, 31 March 2021 15.932 0.664 3.549 0.771 20:37:00 

A
P

R
IL

 

Thursday, 01 April 2021 14.725 0.614 4.887 0.842 08:37:00 

Friday, 02 April 2021 16.006 0.667 4.768 0.874 09:52:00 

Saturday, 03 April 2021 28.010 1.167 6.059 1.407 20:07:00 

Sunday, 04 April 2021 11.691 0.487 4.614 0.642 00:52:00 

Monday, 05 April 2021 15.696 0.654 4.846 0.797 20:52:00 

Tuesday, 06 April 2021 20.348 0.848 8.061 0.952 08:22:00 

Wednesday, 07 April 2021 20.018 0.834 5.176 0.845 10:37:00 

Thursday, 08 April 2021 17.318 0.722 4.862 0.776 13:19:00 

Friday, 09 April 2021 16.770 0.699 4.957 0.843 18:19:00 

Saturday, 10 April 2021 15.292 0.637 3.617 0.844 16:19:00 

Sunday, 11 April 2021 18.803 0.783 4.652 1.031 19:04:00 

Monday, 12 April 2021 21.678 0.903 5.390 1.024 21:34:00 
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Tuesday, 13 April 2021 20.690 0.862 6.582 1.086 09:34:00 

Wednesday, 14 April 2021 16.998 0.708 5.158 1.034 20:34:00 

Thursday, 15 April 2021 22.274 0.928 6.418 1.026 09:49:00 

Friday, 16 April 2021 20.996 0.875 4.404 1.119 19:49:00 

Saturday, 17 April 2021 17.996 0.750 4.948 0.855 17:34:00 

Sunday, 18 April 2021 17.099 0.712 5.247 0.907 18:19:00 

Monday, 19 April 2021 24.490 1.020 5.050 0.850 12:19:00 

Tuesday, 20 April 2021 25.191 1.050 6.455 0.863 08:34:00 

Wednesday, 21 April 2021 22.228 0.926 5.061 0.841 18:34:00 

Thursday, 22 April 2021 20.968 0.874 5.102 0.888 19:19:00 

Friday, 23 April 2021 26.491 1.104 5.040 0.888 09:34:00 

Saturday, 24 April 2021 11.414 0.476 3.501 0.757 00:34:00 

Sunday, 25 April 2021 18.284 0.762 4.972 0.863 18:19:00 

Monday, 26 April 2021 19.986 0.833 4.844 0.807 08:19:00 

Tuesday, 27 April 2021 20.740 0.864 4.913 0.841 08:19:00 

Wednesday, 28 April 2021 15.582 0.649 4.986 0.821 18:19:00 

Thursday, 29 April 2021 22.447 0.935 4.860 0.851 12:19:00 

Friday, 30 April 2021 23.269 0.970 4.863 0.841 13:04:00 

M
A

Y
 

Saturday, 01 May 2021 13.052 0.544 3.652 0.803 19:34:00 

Sunday, 02 May 2021 18.891 0.787 4.799 0.815 11:04:00 

Monday, 03 May 2021 19.099 0.796 4.831 0.839 17:49:00 

Tuesday, 04 May 2021 28.207 1.175 8.049 1.846 08:19:00 
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Wednesday, 05 May 2021 30.320 1.263 6.189 1.311 08:34:00 

Thursday, 06 May 2021 34.337 1.431 8.038 1.407 09:19:00 

Friday, 07 May 2021 29.884 1.245 7.993 1.866 08:34:00 

Saturday, 08 May 2021 28.864 1.203 5.886 1.723 08:19:00 

Sunday, 09 May 2021 26.949 1.123 5.837 1.789 16:23:00 

Monday, 10 May 2021 32.114 1.338 6.412 1.302 09:08:00 

Tuesday, 11 May 2021 28.748 1.198 5.853 1.618 08:08:00 

Wednesday, 12 May 2021 28.290 1.179 6.163 1.944 09:08:00 

Thursday, 13 May 2021 24.273 1.011 4.740 0.975 19:38:00 

Friday, 14 May 2021 24.355 1.015 4.935 0.955 09:38:00 

Saturday, 15 May 2021 21.158 0.882 4.787 0.921 21:53:00 

Sunday, 16 May 2021 21.619 0.901 4.792 0.986 20:53:00 

Monday, 17 May 2021 23.587 0.983 5.005 1.000 20:23:00 

Tuesday, 18 May 2021 21.838 0.910 6.277 1.117 08:38:00 

Wednesday, 19 May 2021 26.532 1.106 4.715 0.856 22:08:00 

Thursday, 20 May 2021 21.625 0.901 4.604 0.955 19:08:00 

Friday, 21 May 2021 24.486 1.020 5.005 0.995 20:08:00 

Saturday, 22 May 2021 24.788 1.033 5.060 0.874 18:23:00 

Sunday, 23 May 2021 17.920 0.747 3.917 1.679 13:38:00 

Monday, 24 May 2021 37.465 1.561 5.712 1.814 07:08:00 

Tuesday, 25 May 2021 36.498 1.521 6.934 1.547 09:04:00 

Wednesday, 26 May 2021 32.357 1.348 6.682 1.418 08:19:00 
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Thursday, 27 May 2021 40.102 1.671 7.913 1.934 08:19:00 

Friday, 28 May 2021 37.884 1.578 6.997 1.774 08:19:00 

Saturday, 29 May 2021 24.774 1.032 4.585 1.244 20:49:00 

Sunday, 30 May 2021 31.128 1.297 7.870 1.693 09:19:00 

Monday, 31 May 2021 27.543 1.148 6.486 1.220 17:04:00 

JU
N

E
 

Tuesday, 01 June 2021 40.015 1.667 6.556 1.901 08:04:00 

Wednesday, 02 June 2021 38.626 1.609 6.907 1.664 09:04:00 

Thursday, 03 June 2021 44.170 1.840 6.678 1.923 07:04:00 

Friday, 04 June 2021 45.360 1.890 7.813 2.128 18:49:00 

Saturday, 05 June 2021 35.362 1.473 7.703 2.109 18:49:00 

Sunday, 06 June 2021 38.470 1.603 7.671 2.124 18:49:00 

Monday, 07 June 2021 52.057 2.169 6.805 2.129 18:34:00 

Tuesday, 08 June 2021 49.576 2.066 7.611 1.931 09:04:00 

Wednesday, 09 June 2021 48.164 2.007 6.851 1.963 08:19:00 

Thursday, 10 June 2021 47.819 1.992 6.991 1.610 06:49:00 

Friday, 11 June 2021 47.192 1.966 7.534 2.193 09:19:00 

Saturday, 12 June 2021 35.027 1.459 5.913 2.016 07:49:00 

Sunday, 13 June 2021 33.703 1.404 6.182 1.547 08:34:00 

Monday, 14 June 2021 47.427 1.976 7.493 2.047 08:18:00 

Tuesday, 15 June 2021 41.760 1.740 7.431 1.995 09:34:00 

Wednesday, 16 June 2021 36.355 1.515 6.756 1.669 09:03:00 

Thursday, 17 June 2021 34.611 1.442 6.607 1.339 06:48:00 
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Friday, 18 June 2021 36.510 1.521 5.889 5.080 09:48:00 

Saturday, 19 June 2021 31.205 1.300 7.386 1.929 18:03:00 

Sunday, 20 June 2021 35.407 1.475 5.855 1.714 08:48:00 

Monday, 21 June 2021 59.253 2.469 7.366 1.948 09:18:00 

Tuesday, 22 June 2021 50.626 2.109 6.996 1.892 09:03:00 

Wednesday, 23 June 2021 37.103 1.546 7.336 1.390 09:49:00 

Thursday, 24 June 2021 39.265 1.636 5.502 1.388 09:03:00 

Friday, 25 June 2021 27.610 1.150 4.976 0.814 12:48:00 

Saturday, 26 June 2021 20.237 0.843 4.853 0.827 15:48:00 

Sunday, 27 June 2021 16.316 0.680 5.982 0.857 08:48:00 

Monday, 28 June 2021 26.281 1.095 6.273 0.978 09:33:00 

Tuesday, 29 June 2021 25.071 1.045 4.993 0.830 20:18:00 

Wednesday, 30 June 2021 25.556 1.065 5.515 0.814 00:03:00 

  

Thursday, 01 July 2021 18.767 0.841 4.929 0.841 18:33:00 

  

Friday, 02 July 2021 26.226 0.833 4.908 0.833 19:18:00 

  

Saturday, 03 July 2021 21.214 0.831 3.707 0.831 18:48:00 

  

Sunday, 04 July 2021 24.016 2.884 4.884 2.884 17:03:00 

  

Monday, 05 July 2021 30.258 1.380 5.477 1.380 08:49:00 

  

Tuesday, 06 July 2021 30.455 0.840 5.020 0.840 15:03:00 

  

Wednesday, 07 July 2021 30.783 1.275 6.344 1.275 09:18:00 

  

Thursday, 08 July 2021 21.107 0.977 5.161 0.977 18:33:00 

  

Friday, 09 July 2021 23.094 0.993 6.416 0.993 06:48:00 
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Saturday, 10 July 2021 22.939 0.858 5.761 0.858 11:03:00 

  

Sunday, 11 July 2021 18.243 0.850 4.939 0.850 18:19:00 

  

Monday, 12 July 2021 24.903 0.860 3.805 0.860 19:49:00 

  

Tuesday, 13 July 2021 24.173 0.853 5.409 0.853 10:19:00 

  

Wednesday, 14 July 2021 25.786 0.941 4.896 0.941 20:19:00 

  

Thursday, 15 July 2021 36.022 1.360 5.874 1.929 17:49:00 

  

Friday, 16 July 2021 24.261 0.873 4.838 1.082 14:49:00 

  

Saturday, 17 July 2021 38.613 1.400 7.283 1.973 09:34:00 

  

Sunday, 18 July 2021 28.234 1.381 6.134 1.956 09:19:00 

  

Monday, 19 July 2021 50.068 1.577 7.245 2.035 12:49:00 

  

Tuesday, 20 July 2021 36.198 1.377 6.435 1.956 08:04:00 

  

Wednesday, 21 July 2021 60.461 1.702 7.187 2.275 18:34:00 

  

Thursday, 22 July 2021 44.190 1.474 6.286 1.474 20:34:00 

  

Friday, 23 July 2021 49.788 1.650 6.245 2.416 22:49:00 

  

Saturday, 24 July 2021 32.388 1.399 6.284 1.399 22:04:00 

  

Sunday, 25 July 2021 31.074 1.442 6.313 1.442 22:19:00 

  

Monday, 26 July 2021 41.872 1.806 7.187 2.398 18:49:00 

  

Tuesday, 27 July 2021 38.746 1.328 6.242 1.328 19:04:00 

  

Wednesday, 28 July 2021 30.709 1.417 6.416 1.417 21:19:00 

A
ugust 

Thursday, 29 July 2021 39.283 1.394 6.488 1.394 19:34:00 

Friday, 30 July 2021 39.994 1.265 6.525 1.265 20:49:00 

Saturday, 31 July 2021 26.264 1.398 6.478 1.398 21:19:00 
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Sunday, 01 August 2021 30.659 1.397 7.149 1.397 20:34:00 

Monday, 02 August 2021 31.685 1.228 6.199 1.228 22:04:00 

Tuesday, 03 August 2021 29.385 1.167 7.115 1.167 20:34:00 

Wednesday, 04 August 2021 32.455 1.057 6.374 1.057 20:19:00 

Thursday, 05 August 2021 33.756 1.208 6.433 1.208 20:19:00 

Friday, 06 August 2021 27.453 0.887 5.040 0.887 21:49:00 

Saturday, 07 August 2021 25.909 0.898 5.033 0.898 20:19:00 

Sunday, 08 August 2021 23.063 0.881 6.363 0.881 22:04:00 

Monday, 09 August 2021 30.164 0.952 6.577 0.952 20:34:00 

Tuesday, 10 August 2021 24.425 1.377 6.562 1.377 19:34:00 

Wednesday, 11 August 2021 31.913 0.987 6.319 0.987 18:34:00 

Thursday, 12 August 2021 26.162 0.861 5.132 0.861 20:19:00 

Friday, 13 August 2021 23.574 1.204 6.328 1.204 18:49:00 

Saturday, 14 August 2021 28.656 1.404 6.239 1.404 12:49:00 

Sunday, 15 August 2021 37.035 1.341 6.363 1.341 17:19:00 

Monday, 16 August 2021 34.316 1.347 7.111 1.347 19:49:00 

Tuesday, 17 August 2021 36.618 1.412 6.424 1.412 19:34:00 

Wednesday, 18 August 2021 28.755 0.956 5.639 0.956 12:49:00 

Thursday, 19 August 2021 25.966 1.050 6.520 1.050 19:49:00 

Friday, 20 August 2021           

Saturday, 21 August 2021           
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10 APPENDIX B – MATLAB CODE 

 

10.1 MPPT Algorithm 

 

function duty= MPPT(vpv,ipv,delta_in) 

duty_init=0.05; 

duty_min=0; 

duty_max=0.85; 

  

persistent Vold Pold duty_old; 

if isempty(Vold) 

    Vold=0; 

    Pold=0; 

    duty_old=duty_init; 

end 

P= vpv*ipv; 

dV= vpv-Vold; 

dP= P-Pold; 

duty = duty_old; 

delta= delta_in; 

  

if dP~= 0  



APPENDIX B – MATLAB CODE 163        

 

    if dP<0 

        if dV<0 

            duty=duty_old - delta; 

        else 

            duty=duty_old + delta; 

        end 

    else 

        if dV<0 

            duty=duty_old + delta; 

             

        else 

            duty= duty_old - delta; 

        end 

    end 

end 

   if duty>=duty_max; 

        duty=duty_max; 

    elseif duty<duty_min 

        duty=duty_min; 

    end 

    duty_old=duty; 

    Vold=vpv; 
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    Pold=P; 

 

10.2 Community solar PV microgrid component code 

 

%Boost Converter Filter Design 

P=250e3;       %Rated power 

U=460; %Inverter phase2phase voltage 

f=50;          %grid frequency 

fsw=5e3;     %switching frequency 

Ts=1e-6;       %Sampling time 

  

Lf=((0.1*(U^2))/(2*pi*f*(P/3)));  %Filter inductance for inverter 

  

%Design of boost converter 

Vmpp=546.75; 

V_bus_ref=835; 

Vin=Vmpp;       %input voltage of boost converter 
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Vo=V_bus_ref;   %output voltage of boost converter 

fsw_boost=5e3; %switching frequency of boost converter 

D= 1-(Vin/Vo); 

L_bound= ((1-D)^2)*D*(Vo^2)/(2*fsw_boost*P); 

C_boost_min= (D*P)/(0.1*Vo^2*fsw_boost); 

L_boost = 10*L_bound; %Boost converter inductor 

C_boost= 1000e-6; 

  

%LCL Filter for grid-connected inverter 

fres=fsw/10; 

Ig= P/(3*U); 

Igsw =0.003*Ig; 

Vgsw=0.9*U; 

Wsw=2*pi*fsw; 

Wres=2*pi*fres; 

Lmin=abs((1)/((Wsw*(Igsw/Vgsw))*(1-((Wsw^2)/(Wres^2))))); 
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Lmin_value= Lmin/2; 

C= ((0.05*P)/(3*((U^2)*2*pi*f))); 

Lmax=((0.2*U)/(2*pi*f*Ig)); 

Lmax_value=Lmax/2; 

R= Vo^2/P; 

 

10.3 Data preprocessing 

 

Due to power outages in the area, there are missing gaps in the annual power usages.  

10.3.1 Missing data 
 

Through the MATLAB live script, the linear interpolation method was utilized to fill the missing data. The code used to fill in 

the missing data is shown below. 

% Fill missing data 

[cleanedData,missingIndices] = fillmissing(new1.ActivePowerkW,'linear'); 

% Display results 

clf 

plot(cleanedData,'Color',[0 114 189]/255,'LineWidth',1.5,... 

    'DisplayName','Cleaned data') 
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hold on 

% Plot filled missing entries 

plot(find(missingIndices),cleanedData(missingIndices),'.','MarkerSize',12,... 

    'Color',[217 83 25]/255,'DisplayName','Filled missing entries') 

title(['Number of filled missing entries: ' num2str(nnz(missing indices))]) 

hold off 

legend 

clear missing indices 

Figure 10.1 is a graph of filled missing entries in the dataset. 
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Figure 10.1: Missing entries filled in the daily energy consumption dataset 

10.3.2 Remove outliers 
 

The exceptional values in the dataset have the possibility of distorting statistical analysis. Thereby they must be removed. Below 

is the MATLAB live script code to remove the outliers 

 

% Remove outliers 

[cleanedData2,outlierIndices] = rmoutliers(new1.ActivePowerkW,'mean'); 
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% Display results 

clf 

plot(new1.ActivePowerkW,'Color',[109 185 226]/255,'DisplayName','Input data') 

hold on 

plot(find(~outlierIndices),cleanedData2,'Color',[0 114 189]/255,'LineWidth',1.5,... 

    'DisplayName','Cleaned data') 

 

% Plot outliers 

plot(find(outlierIndices),new1.ActivePowerkW(outlierIndices),'x',... 

    'Color',[64 64 64]/255,'DisplayName','Outliers') 

title(['Number of outliers: ' num2str(nnz(outlierIndices))]) 

% Compute thresholds and center 

[~,thresholdLow,thresholdHigh] = isoutlier(new1.ActivePowerkW,'mean'); 

% Plot outlier thresholds 

plot([xlim missing xlim],[thresholdLow*[1 1] NaN thresholdHigh*[1 1]],... 

    'Color',[145 145 145]/255,'DisplayName','Outlier thresholds') 

hold off 

legend 

clear threshold low threshold high 
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Figure 10.2 represents the number of outliers in the dataset 

 

 

Figure 10.2: Number of outliers in the large dataset 

 


