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HIERARCHICAL MULTILEVEL OPTIMIZATION WITH MULTIPLE-LEADERS
MULTIPLE-FOLLOWERS SETTING AND NONSEPARABLE OBJECTIVES

Addis Belete Zewde1 and Semu Mitiku Kassa2,*

Abstract. Hierarchical multilevel multi-leader multi-follower problems are non-cooperative decision
problems in which multiple decision-makers of equal status in the upper-level and multiple decision-
makers of equal status are involved at each of the lower-levels of the hierarchy. Much of solution methods
proposed so far on the topic are either model specific which may work only for a particular sub-class of
problems or are based on some strong assumptions and only for two level cases. In this paper, we have
considered hierarchical multilevel multi-leader multi-follower problems in which the objective functions
contain separable and non-separable terms (but the non-separable terms can be written as a factor
of two functions, a function which depends on other level decision variables and a function which is
common to all objectives across the same level) and shared constraint. We have proposed a solution
algorithm to such problems by equivalent reformulation as a hierarchical multilevel problem involving
single decision maker at all levels of the hierarchy. Then, we applied a multi-parametric algorithm to
solve the resulting single leader single followers problem.
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1. Introduction

Multilevel multi-leader multi-follower (MLMF) game is a non-cooperative decision system in which there
are multiple higher-level decision-makers (who are referred to as leaders) and many lower-level decision-makers
(who are referred to as followers). In this formulation, the role of leaders and followers may not refer to the level
of management hierarchy, rather it indicates the sequence of actions in the decision process among themselves.
The leaders compete in a Nash game constrained by the equilibrium conditions of another Nash game among the
followers. In the sequential part of the game Stackelberg behavior is assumed, from which the leaders make their
decision first by competing in a Nash game constrained by the equilibrium conditions of another Nash game
among the followers and the followers react by optimizing their objective functions conditioned on the leaders’
decision. Since originally appeared in a 1973 paper by Bracken and McGill [1] multilevel decision-making (some
authors designated it as multilevel programming or multilevel optimization) often appears in many decentralized
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management problems in the real world and has motivated a number of researches on decision models, solution
approaches and applications.

One of the solution approaches in solving multilevel-MLMF games uses a reformulation that replaces the
lower-level problems by their optimality conditions which results in a mathematical problem classified as an
equilibrium problem with equilibrium constraints (EPECs). Although there are several EPECs which have been
shown to admit an equilibrium, there are also fairly simple EPECs which admit no equilibrium as shown in [18].
Under this approach, Okuguchi [17] presented models for multi-leader-follower games in a Cournot regime. With
the assumption that each leader can exactly anticipate the aggregate reaction curve of the followers, Okuguchi
proved existence of an equilibrium solution for such problems. Moreover, uniqueness of such a solution is asserted
for a special case of the problem where all leaders share an identical cost function and make identical decisions.
Sherali [21] also studied a multi-leader-follower game, referring it as a Stackelberg model, by associating it with
EPECs. In forward market equilibrium model, Su [22] extended the existence result of [17] and [21] under some
weaker conditions. The works of Pang and Fukushima [19] and Leyffer and Munson [16] are also categorized
under this reformulation.

Replacing the lower-level problems by their optimality conditions requires convexity of the problems and
some strict regularity conditions on the constraints. Under such condition it can be shown that the reformulated
problem is equivalent to the original one. However, if the level of decision hierarchy is more than two then the
equilibrium problem of the lower levels become highly non-convex and it will be difficult to establish continuity
of the set-valued solution (equilibrium) function. Moreover, for problems with more than three hierarchical
levels with multiple leaders and multiple followers at each level, it is not possible also to apply the principle of
variational inequality to solve them.

An alternative solution approach in solving multilevel-MLMF problems is reformulation of the problem as
an equivalent hierarchical multilevel problem involving a single decision maker at all levels of the hierarchy. In
such a case, once it is equivalently reformulated as a hierarchical multilevel problem, one can apply existing
solution approaches for multilevel optimization models to solve the problem, though such methods themselves
are limited. Wang et al. [24] used this reformulation for a convex bilevel problem with multiple followers and
separable second-level objective functions. Under some weaker conditions, this reformulation is also employed
in the works of Kulkarni and Shanbhag [15], Kassa and Kassa [14], and Kassa [12]. The type of multilevel-
MLMF games considered in [15] is a problem in which the objective function of each player consists of separable
terms and common non-separable terms across all the followers. Extending this result, Kassa and Kassa [14]
reformulated a class of multilevel single-leader multiple-follower games, that consist of separable terms and non-
separable terms across all the followers parameterized by constant positive weights. Motivated by this latest
method, the authors have proposed in [25, 26] an equivalent reformulation procedure to solve multiple-leaders
multiple-followers problems with any finite level of hierarchy. However, this procedure increases the level of the
hierarchy by one level and requires all the assumption in [14] to be satisfied.

Recently, multilevel-MLMF decision problems have been increasingly appearing in decentralized management
situations in the current age of integrated economic developments where business firms work in a decentralized
manner in a complex commercial networks comprised of suppliers, manufacturers, sales and logistics companies,
customers and other specialized service functions [8]. Therefore, this paper considers a hierarchical multi-leader
multi-follower problems in which multiple leaders of equal status in the upper-level and multiple followers of
equal status are involved at each lower-level of the hierarchy. We assume that the objective at all levels have
separable and non-separable terms (but the non-separable terms can be written as a factor of two functions
where the first one is a function of other level decision variables and the second factor is common to all objectives
across the same level), at each level there is a shared constraint common to all problems of same level, the leader
and followers have their own decision variables and objective functions, and the leader can only influence the
reactions of followers through their decision variables, while the followers optimize their objective functions in
view of the decisions of the leader and other middle level decision agents. Due to its computational difficulties
and mathematical complexities such as non-convexity and NP-hardness such optimization problems are lacking
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efficient algorithms. The main objective of this paper is to propose a solution approach for a more general class
of multilevel MLMF problems.

The remainder of the paper is organized into six sections. The next section presents the mathematical for-
mulation of general multilevel-MLMF games. Section 3 describes the proposed equivalent reformulations of
bilevel-MLMF problems into a hierarchical bilevel problem involving a single decision maker at each level of
the hierarchy. In Section 4, a multi-parametric programming problems are described. Section 5 presents an
algorithm to solve multilevel-MLMF problems using equivalent reformulation and multi-parametric approach.
Numerical examples are provided in Section 6 to illustrate the procedures of the algorithms and the paper ends
with concluding remarks in Section 7.

2. General formulations of multilevel-MLMF games

Consider a 𝑘-level hierarchical multi-leader multi-follower game involving 𝑁1 decision makers at the first-level,
𝑁2 decision makers at the second-level, . . . , and 𝑁𝑘 decision makers at the 𝑘𝑡ℎ-level. Under the assumptions
that (i) there is a shared constraint common to all problems at the same level, (ii) the reaction of all followers
are consistent across all the leaders at all hierarchical levels, and (iii) leaders and followers at all levels have their
own decision variables, objective functions and constraints, the problem can be formulated mathematically as
follows.

For 𝑛 = 1, . . . , 𝑁1, the vector (𝑦𝑛
1 , 𝑦2, . . . , 𝑦𝑘) solves an optimization problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑦𝑛
1 ∈𝑌 𝑛

1

𝐹 𝑛
1 (𝑦1, 𝑦2, . . . , 𝑦𝑘)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐺𝑛
1 (𝑦𝑛

1 , 𝑦2, . . . , 𝑦𝑘) ≤ 0,

𝐻1(𝑦1, 𝑦2, . . . , 𝑦𝑘) ≤ 0, and for all 𝑖 = 1, . . . , 𝑁2,

(𝑦𝑖
2, 𝑦3, . . . , 𝑦𝑘) solves

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑦𝑖
2∈𝑌 𝑖

2

𝑓 𝑖
2(𝑦1, 𝑦2, . . . , 𝑦𝑘)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔𝑖
2(𝑦1, 𝑦2, . . . , 𝑦𝑘) ≤ 0,

ℎ2(𝑦1, 𝑦2, . . . , 𝑦𝑘) ≤ 0, and

. . .

for all 𝑙 = 1, . . . , 𝑁𝑘,

𝑦𝑙
𝑘 solves

⎧
⎪⎪⎨

⎪⎪⎩

min
𝑦𝑙

𝑘
∈𝑌 𝑙

𝑘

𝑓 𝑙
𝑘(𝑦1, 𝑦2, . . . , 𝑦𝑘)

s.t.

{︃
𝑔𝑙

𝑘(𝑦1, 𝑦2, . . . , 𝑦𝑘) ≤ 0,

ℎ𝑘(𝑦1, 𝑦2, . . . , 𝑦𝑘) ≤ 0,

(2.1)

where 𝑦1 = (𝑦1
1 , . . . , 𝑦

𝑁1
1 ) is a decision vector for the leaders’ optimization and (∀𝑛) 𝑦𝑛

1 ∈ 𝑌 𝑛
1 is a decision

vector of the 𝑛𝑡ℎ-leader and 𝑦−𝑛
1 = (𝑦1

1 , . . . , 𝑦
𝑛−1
1 , 𝑦𝑛+1

1 , . . . , 𝑦𝑁1
1 ) is a vector of the decision variables for all leaders

without 𝑦𝑛
1 ; note that as customary we may write 𝑦1 = (𝑦𝑛

1 ; 𝑦−𝑛
1 ). The shared constraint 𝐻1 is common to all

leaders whereas, the constraint 𝐺𝑛
1 is only for the 𝑛th-leader. Similarly, at the second-level, 𝑦2 = (𝑦1

2 , . . . , 𝑦
𝑁2
2 )

is a decision vector for the second-level problem and ∀𝑖 ∈ {1, 2, . . . , 𝑁2}, 𝑦𝑖
2 ∈ 𝑌 𝑖

2 is a decision vector of the
𝑖th-player at the second-level optimization problem and 𝑦−𝑖

2 = (𝑦1
2 , . . . , 𝑦

𝑖−1
2 , 𝑦𝑖+1

2 , . . . , 𝑦𝑁2
2 ) is a vector of the

decision variables of all second-level players without the vector 𝑦𝑖
2; and 𝑦2 = (𝑦𝑖

2; 𝑦−𝑖
2 ). The shared constraint ℎ2

is common to all second-level players whereas, the constraint 𝐺𝑖
2 affects only the 𝑖th player of the second-level

problem.
Continuing the same way as above, finally, at 𝑘th-level, 𝑦𝑘 = (𝑦1

𝑘, . . . , 𝑦
𝑁𝑘

𝑘 ) is a decision vector for the 𝑘𝑡ℎ-level
problem and ∀𝑙 ∈ {1, 2, . . . , 𝑁𝑘}, 𝑦𝑙

𝑘 ∈ 𝑌 𝑙
𝑘 is a decision vector of the 𝑙th-player at the 𝑘th-level problem and

𝑦−𝑙
𝑘 = (𝑦1

𝑘, . . . , 𝑦
𝑙−1
𝑘 , 𝑦𝑙+1

𝑘 , . . . , 𝑦𝑁𝑘

𝑘 ) is a vector of the decision variables of all 𝑘th-level players without the vector
𝑦𝑙

𝑘; and 𝑦𝑘 = (𝑦𝑙
𝑘; 𝑦−𝑙

𝑘 ). The shared constraint ℎ𝑘 is common to all 𝑘th-level players whereas, the constraint 𝐺𝑙
𝑘

is assumed to affect only the 𝑙th-player of the 𝑘th-level problem.
In problem (2.1), if 𝑘 = 2 the problem is called a bilevel-MLMF game. As a bilevel problem, all leaders

in the upper-level compete with each other in a non-cooperative Nash game and make their decisions first
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by anticipating the responses of all the followers. Upon receipt of the leaders’ decisions, all followers compete
with each other in a parametric non-cooperative Nash game in the lower level with the strategies of leaders as
exogenous parameters [10]. This makes the problem of solving a multilevel problem having multiple decision
makers at each decision level quite difficult and complex, particularly when there is information exchange
between followers. In many applications, for instance in supply chain management models, however there are
more than two decision agents, like manufacturers, distributers, retailers (or vendors), etc. If we follow the
traditional approach, there will appear non-convex terms and shared variables across the followers at the (𝑘 −
1)th-level due to complementarity conditions from the 𝑘th-level followers. This may result in challenging task
in the process of solving multilevel-MLMF problem having shared resources and information.

At each levels of decision hierarchy in multilevel-MLMF problems, one need to solve parametric generalized
Nash Equilibrium problems, where the variables from upper levels are considered as parameters. It is well
known that solving such problems can be a tedious and error-prone task [23]. Many of the solution approaches
for solving problems with MLMF nature apply a reformulation of the Nash equilibrium problem and Stackelberg
equilibrium problem as an ‘equivalent’ variational inequality (VI) problems and mathematical problems with
equilibrium constraints (MPECs), respectively. But such reformulations have several limitations as mentioned
in [16]. In addition, a standard approach in MPECs requires ascertaining when the reaction map admits fixed
points. But this is difficult due to the lack of continuity in the solution set associated with the equilibrium
constraints capturing the follower equilibrium. Due to these challenges most of the solution methods work
only for particular subclasses of multilevel-MLMF games which satisfy some strict conditions (such as, strict
convexity, separability, etc.) for two levels. In the next section, we present a reformulation of a class of multiple
leaders and multiple followers problems into an equivalent bilevel problem involving only a single decision maker
at both levels of the hierarchy, which can be extended later to any finite hierarchical levels.

3. Equivalent reformulation of bilevel-MLMF games

Consider the following bilevel-MLMF game in which 𝑁 leaders compete in a non-cooperative game subject
to the equilibrium conditions of 𝑀 followers competing in a lower-level game given leaders’ level decisions. If
we denote 𝑥𝑖, 𝑖 ∈ {1, . . . , 𝑁}, the decision variables vector for leader 𝑖 and 𝑦𝑗 , 𝑗 ∈ {1, . . . ,𝑀}, the decision
variables for follower 𝑗. The leaders’ and followers’ variables are abbreviated, respectively by 𝑥 = (𝑥1, . . . , 𝑥𝑁 )
and 𝑦 = (𝑦1, . . . , 𝑦𝑀 ). For each of the leaders, 𝑖 = 1, . . . , 𝑁 , the Stackelberg game played by leader 𝑖 is given
by: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑥𝑖∈𝑋𝑖

𝐹𝑖(𝑥, 𝑦)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐺𝑖(𝑥𝑖, 𝑦) ≤ 0,
𝐻(𝑥, 𝑦) ≤ 0, and for all 𝑗 = 1, . . . ,𝑀,

𝑦𝑗 solves

⎧⎪⎪⎨⎪⎪⎩
min

𝑦𝑗∈𝑌 𝑗
𝑓𝑗(𝑥, 𝑦)

subject to

{︃
𝑔𝑗(𝑥, 𝑦𝑗) ≤ 0,
ℎ(𝑥, 𝑦) ≤ 0.

(3.1)

Let us assume that, for all 𝑖 and for each 𝑗, the functions 𝐹𝑖, 𝐺𝑖, 𝐻, ℎ, 𝑓𝑗 , 𝑔𝑗 in (3.1) are twice continuously
differentiable, and that the followers’ constraint functions satisfy the Guignard constraint qualifications condi-
tions [7]. Let us define the following sets that can be used in the preceding sections to characterize solutions of
the problem (3.1).

(i) The feasible set of problem (3.1) is given by

ℱ =
{︀

(𝑥, 𝑦) : 𝐻(𝑥, 𝑦) ≤ 0, ℎ(𝑥, 𝑦) ≤ 0, (∀𝑖) 𝐺𝑖(𝑥𝑖, 𝑦) ≤ 0, (∀𝑗) 𝑔𝑗(𝑥, 𝑦𝑗) ≤ 0
}︀
.

(ii) For any given leaders’ strategy 𝑥, the feasible set for the 𝑗𝑡ℎ-follower is defined as

ℱ𝑗(𝑥, 𝑦−𝑗) =
{︀
𝑦𝑗 ∈ 𝑌 𝑗 : 𝑔𝑗(𝑥, 𝑦𝑗) ≤ 0, ℎ(𝑥, 𝑦) ≤ 0

}︀
.
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(iii) The Nash rational reaction set for the 𝑗th-follower, is defined by,

ℛ𝑗(𝑥, 𝑦−𝑗) =

{︃
𝑦𝑗 ∈ 𝑌 𝑗 : 𝑦𝑗 ∈ argmin

𝑦𝑗

{︀
𝑓𝑗(𝑥, 𝑦) subject to 𝑦𝑗 ∈ ℱ𝑗(𝑥, 𝑦−𝑗)

}︀}︃
.

(iv) The feasible set for the 𝑖th-leader, is defined as

ℱ𝑖(𝑥−𝑖) =
{︀

(𝑥𝑖, 𝑦) : (𝑥, 𝑦) ∈ ℱ , (∀𝑗) 𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦−𝑗)
}︀
.

(v) The Nash rational reaction set for the 𝑖th-leader is given by

ℛ𝑖(𝑥−𝑖) =
{︂

(𝑥̄𝑖, 𝑦) : 𝑥̄𝑖 ∈ argmin
𝑥𝑖

{︀
𝐹𝑖(𝑥, 𝑦) subject to (𝑥𝑖, 𝑦) ∈ ℱ𝑖(𝑥−𝑖)

}︀}︂
.

(vi) The set of Stackelberg-Nash equilibrium points of problem (3.1) is given by

ℰ =
{︀

(𝑥, 𝑦) ∈ ℱ : (∀𝑖)(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥−𝑖), (∀𝑗) 𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦*,−𝑗)
}︀
.

Remark 3.1. If (𝑥*, 𝑦*) ∈ ℰ , for ∀(𝑥, 𝑦) ∈ ℱ , (∀𝑖) and (∀𝑗) we have

𝐹𝑖(𝑥*, 𝑦*) ≤ 𝐹𝑖(𝑥, 𝑦*) ≤ 𝐹𝑖(𝑥, 𝑦) and 𝑓𝑗(𝑥*, 𝑦*) ≤ 𝑓𝑗(𝑥*, 𝑦) ≤ 𝑓𝑗(𝑥, 𝑦).

Using the reaction sets, the leaders Nash problem of (3.1) is given by

∀𝑖 (𝑥𝑖, 𝑦) ∈

{︃
argmin

𝑥𝑖

𝐹𝑖(𝑥, 𝑦)

subject to (𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥−𝑖).
(3.2)

Definition 3.2. A tuple (𝑥*, 𝑦) = (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) is called an optimal Nash equilibrium solution to the problem
(3.2), if it satisfies the following conditions:

𝐹𝑖(𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) ≤ 𝐹𝑖(𝑥𝑖, 𝑥*,−𝑖, 𝑦), (∀𝑖)(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥*,−𝑖).

Given a strategy 𝑥 of the leaders, each of the 𝑀 followers play the Nash game:

(∀𝑗) 𝑦*,𝑗 ∈

⎧⎨⎩argmin
𝑦𝑗

𝑓𝑗(𝑥, 𝑦)

subject to 𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦−𝑗).
(3.3)

Definition 3.3. A tuple 𝑦* = (𝑦*,𝑗 , 𝑦*,−𝑗) is called an optimal Nash equilibrium solution to the problem (3.3),
if it satisfies the following conditions:

𝑓𝑗(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤ 𝑓𝑗(𝑥, 𝑦𝑗 , 𝑦*,−𝑗), (∀𝑗) 𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦*,−𝑗).

When the Nash problem (3.2) has objective functions with separable terms and a non-separable term which is
common to all leaders (i.e., for each 𝑖 if the objective functions are written as 𝐹𝑖(𝑥𝑖, 𝑥−𝑖, 𝑦) = 𝐹𝑖(𝑥𝑖)+𝐹𝑖(𝑥−𝑖)+
𝐹 (𝑥, 𝑦)), by defining a quasi-potential function

F(𝑥, 𝑦) =

[︃
𝑁∑︁

𝑖=1

𝐹𝑖(𝑥𝑖)

]︃
+ 𝐹 (𝑥, 𝑦),
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Kulkarni and Shanbhag [15] equivalently reformulated problem (3.2) as a single optimization problem

min
𝑥

F(𝑥, 𝑦) =

[︃
𝑁∑︁

𝑖=1

𝐹𝑖(𝑥𝑖)

]︃
+ 𝐹 (𝑥, 𝑦)

subject to (𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥−𝑖) (∀𝑖).

(3.4)

And they have shown that, the global minimizers of problem (3.4) are global equilibria of the problem (3.2). In
general, it has been shown in [15] that if the objectives of the leaders and the followers admit a quasi-potential
function formulation, then the global minimizers of this quasi-potential function problem are global equilibria
of the MLMF game.

The quasi-potential function problem of Kulkarni and Shanbhag considered in [15] covers only a class of
games whose objective functions are written as separable terms and a non-separable term which is common
to all decision makers at that level. In this work we have considered a game in which the objective functions
contain a separable and non-separable terms; but the non-separable terms can be written as a factor of two
functions where the first one is a function of other level decision variables and the second factor is common to
all objectives across the same level.

We make the following assumptions on the structure of the objective functions of the multi-leader multi-
follower game that will enable us to reformulate a bilevel-MLMF game as a hierarchical bilevel game involving
a single decision maker at both levels:

(A1) The leaders objective can be written as

𝐹𝑖(𝑥, 𝑦) = 𝐹𝑖(𝑥𝑖, 𝑦) + 𝐹𝑖(𝑥−𝑖, 𝑦) + 𝜌𝑖(𝑦)𝐹 (𝑥, 𝑦) = 𝐹𝑖(𝑥𝑖, 𝑥−𝑖, 𝑦) + 𝜌𝑖(𝑦)𝐹 (𝑥, 𝑦),

where, for any 𝑦 ∈ 𝑌 , (∀𝑖)(0 < 𝜌𝑖(𝑦) <∞).
(A2) The followers objective can be written as

𝑓𝑗(𝑥, 𝑦) = 𝑓𝑗(𝑥, 𝑦𝑗) + 𝑓𝑗(𝑥, 𝑦−𝑗) + 𝛿𝑗(𝑥)𝑓(𝑥, 𝑦) = 𝑓𝑗(𝑥, 𝑦𝑗 , 𝑦−𝑗) + 𝛿𝑗(𝑥)𝑓(𝑥, 𝑦),

where, for any 𝑥 ∈ 𝑋, (∀𝑗)(0 < 𝛿𝑗(𝑥) <∞).
(A3) 𝜌𝑖(·) and 𝛿𝑗(·) are twice continuously differentiable functions and uniformly bounded away from zero.

Lemma 3.4. If assumptions (A1) and (A2) hold for any (𝑥, 𝑦) ∈ 𝑋 × 𝑌 , then there exist functions 𝜋𝐹 (𝑥, 𝑦)
and 𝜋𝑓 (𝑥, 𝑦) such that

𝐹𝑖(𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝐹𝑖(𝑥𝑖, 𝑥*,−𝑖, 𝑦) = 𝜌𝑖(𝑦)
[︀
𝜋𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝜋𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦)

]︀
, (∀𝑖),

𝑓𝑗(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗)− 𝑓𝑗(𝑥, 𝑦𝑗 , 𝑦*,−𝑗) = 𝛿𝑗(𝑥)
[︀
𝜋𝑓 (𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗)− 𝜋𝑓 (𝑥, 𝑦𝑗 , 𝑦*,−𝑗)

]︀
, (∀𝑗).

Proof. For (𝑥, 𝑦) ∈ 𝑋 × 𝑌 and 0 < 𝜌𝑖(𝑦) <∞, define the function

𝜋𝐹 (𝑥, 𝑦) =
𝑁∑︁

𝑖=1

1
𝜌𝑖(𝑦)

𝐹𝑖(𝑥𝑖, 𝑦).

Note that, because of Assumption (A1), the function 𝜋𝐹 is well defined. Then, for any 𝑖 we have
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𝜌𝑖(𝑦)
[︀
𝜋𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝜋𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦)

]︀
= 𝜌𝑖(𝑦)

⎡⎣ 𝑁∑︁
𝑘=1,𝑘 ̸=𝑖

1
𝜌𝑘(𝑦)

𝐹𝑘(𝑥*,𝑘, 𝑦)−
𝑁∑︁

𝑘=1,𝑘 ̸=𝑖

1
𝜌𝑘(𝑦)

𝐹𝑘(𝑥*,𝑘, 𝑦)

⎤⎦
+ 𝜌𝑖(𝑦)

[︂
1

𝜌𝑖(𝑦)
𝐹𝑖(𝑥*,𝑖, 𝑦)− 1

𝜌𝑖(𝑦)
𝐹𝑖(𝑥𝑖, 𝑦)

]︂
= 𝜌𝑖(𝑦)

[︂
1

𝜌𝑖(𝑦)
𝐹𝑖(𝑥*,𝑖, 𝑦)− 1

𝜌𝑖(𝑦)
𝐹𝑖(𝑥𝑖, 𝑦)

]︂
= 𝐹𝑖(𝑥*,𝑖, 𝑦)− 𝐹𝑖(𝑥𝑖, 𝑦)

=
[︁
𝐹𝑖(𝑥*,𝑖, 𝑦) + 𝐹𝑖(𝑥*,−𝑖, 𝑦)

]︁
−

[︁
𝐹𝑖(𝑥𝑖, 𝑦) + 𝐹𝑖(𝑥*,−𝑖, 𝑦)

]︁
= 𝐹𝑖(𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝐹𝑖(𝑥𝑖, 𝑥*,−𝑖, 𝑦).

Implying that

𝐹𝑖(𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝐹𝑖(𝑥𝑖, 𝑥*,−𝑖, 𝑦) = 𝜌𝑖(𝑦)
[︀
𝜋𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝜋𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦)

]︀
, (∀𝑖).

Similarly, for (𝑥, 𝑦) ∈ 𝑋 × 𝑌 and 0 < 𝛿𝑖(𝑥) <∞ by defining

𝜋𝑓 (𝑥, 𝑦) =
𝑀∑︁

𝑗=1

1
𝛿𝑗(𝑥)

𝑓𝑗(𝑥, 𝑦𝑗),

we will have

𝑓𝑗(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗)− 𝑓𝑗(𝑥, 𝑦𝑗 , 𝑦*,−𝑗) = 𝛿𝑗(𝑥)
[︀
𝜋𝑓 (𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗)− 𝜋𝑓 (𝑥, 𝑦𝑗 , 𝑦*,−𝑗)

]︀
, (∀𝑗).

Hence, the conclusion of the Lemma follows. �

For a given strategy 𝑦, define the following optimization problem,⎧⎪⎨⎪⎩min
𝑥

F(𝑥, 𝑦) =

[︃
𝑁∑︁

𝑖=1

1
𝜌𝑖(𝑦)

𝐹𝑖(𝑥𝑖, 𝑦)

]︃
+ 𝐹 (𝑥, 𝑦)

subject to (𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥−𝑖) (∀𝑖).
(3.5)

Equivalence between optimal solution of (3.5) and equilibrium point of the Nash problem (3.2) can be established
based on the following theorem.

Theorem 3.5. Suppose that problem (3.2) satisfy Assumption (A1). If (𝑥*, 𝑦) is a global optimal solution of
(3.5), then (𝑥*, 𝑦) is a global Nash equilibrium point of (3.2).

Proof. Let (𝑥*, 𝑦) = (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) be an optimal solution to (3.5), then

𝑁∑︁
𝑖=1

1
𝜌𝑖(𝑦)

𝐹𝑖(𝑥*,𝑖, 𝑦) + 𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) ≤
𝑁∑︁

𝑖=1

1
𝜌𝑖(𝑦)

𝐹𝑖(𝑥𝑖, 𝑦) + 𝐹 (𝑥𝑖, 𝑥−𝑖, 𝑦),∀(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥−𝑖).

If we let 𝜋𝐹 (𝑥, 𝑦) =
∑︀𝑁

𝑖=1
1

𝜌𝑖(𝑦)𝐹𝑖(𝑥𝑖, 𝑦), it will follow that

𝜋𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) + 𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) ≤ 𝜋𝐹 (𝑥𝑖, 𝑥−𝑖, 𝑦) + 𝐹 (𝑥𝑖, 𝑥−𝑖, 𝑦), ∀(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥−𝑖).



2922 A.B. ZEWDE AND S.M. KASSA

Particularly for 𝑥−𝑖 = 𝑥*,−𝑖 and ∀(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥*,−𝑖), we have

𝜋𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) + 𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) ≤ 𝜋𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦) + 𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦).

By rearranging the above expression, we have

𝜋𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝜋𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦) + 𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) ≤ 𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦).

Multiplying both sides of the last inequality by 𝜌𝑖(𝑦) > 0, results in ∀(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥*,−𝑖)

𝜌𝑖(𝑦)
[︀
𝜋𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝜋𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦)

]︀
+ 𝜌𝑖(𝑦)𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) ≤ 𝜌𝑖(𝑦)𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦).

Using the results from Lemma 3.4,

𝜌𝑖(𝑦)
[︀
𝜋𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝜋𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦)

]︀
= 𝐹𝑖(𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝐹𝑖(𝑥𝑖, 𝑥*,−𝑖, 𝑦).

That means, in the above inequality, ∀(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥*,−𝑖) we have

𝐹𝑖(𝑥*,𝑖, 𝑥*,−𝑖, 𝑦)− 𝐹𝑖(𝑥𝑖, 𝑥*,−𝑖, 𝑦) + 𝜌𝑖(𝑦)𝐹 (𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) ≤ 𝜌𝑖(𝑦)𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦).

Implying, ∀(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥*,−𝑖)

𝐹𝑖(𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) + 𝜌𝑖(𝑦)𝐹 (𝑥*,𝑖, 𝑥*,−𝑖𝑦) ≤ 𝐹𝑖(𝑥𝑖, 𝑥*,−𝑖, 𝑦) + 𝜌𝑖(𝑦)𝐹 (𝑥𝑖, 𝑥*,−𝑖, 𝑦).

This is equivalent to
𝐹𝑖(𝑥*,𝑖, 𝑥*,−𝑖, 𝑦) ≤ 𝐹𝑖(𝑥𝑖, 𝑥*,−𝑖, 𝑦), (∀𝑖)(𝑥𝑖, 𝑦) ∈ ℛ𝑖(𝑥*,−𝑖). (3.6)

From inequality (3.6) we can see that the tuple (𝑥*, 𝑦), satisfies Definition 3.2. Therefore, (𝑥*, 𝑦) is a global
Nash equilibrium point of (3.2). �

For a given strategy 𝑥, define the following optimization problem,⎧⎪⎪⎨⎪⎪⎩
min

𝑦
f(𝑥, 𝑦) =

⎡⎣ 𝑀∑︁
𝑗=1

1
𝛿𝑗(𝑥)

𝑓𝑗(𝑥, 𝑦𝑗)

⎤⎦ + 𝑓(𝑥, 𝑦)

subject to 𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦−𝑗) (∀𝑗).

(3.7)

Then the relation between (3.7) and (3.3) can be established as follows.

Theorem 3.6. Suppose that problem (3.3) satisfies Assumption (A2). If 𝑦* is an optimal solution of (3.7),
then 𝑦* is a Nash reaction point of (3.3).

Proof. Let 𝑦* = (𝑦*,𝑗 , 𝑦*,−𝑗) be an optimal solution for (3.7), then

𝑀∑︁
𝑗=1

1
𝛿𝑗(𝑥)

𝑓𝑗(𝑥, 𝑦*,𝑗) + 𝑓(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤
𝑀∑︁

𝑗=1

1
𝛿𝑗(𝑥)

𝑓𝑗(𝑥, 𝑦𝑗) + 𝑓(𝑥, 𝑦𝑗 , 𝑦−𝑗), ∀𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦−𝑗).

If we let 𝜋𝑓 (𝑥, 𝑦) =
∑︀𝑀

𝑗=1
1

𝛿𝑗(𝑥)𝑓𝑗(𝑥, 𝑦𝑗), the above inequality becomes

𝜋𝑓 (𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) + 𝑓(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤ 𝜋𝑓 (𝑥, 𝑦𝑗 , 𝑦−𝑗) + 𝑓(𝑥, 𝑦𝑗 , 𝑦−𝑗), ∀𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦−𝑗).

Particularly for 𝑦−𝑗 = 𝑦*,−𝑗 and ∀𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦*,−𝑗), we have

𝜋𝑓 (𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) + 𝑓(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤ 𝜋𝑓 (𝑥, 𝑦𝑗 , 𝑦*,−𝑗) + 𝑓(𝑥, 𝑦𝑗 , 𝑦*,−𝑗).
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By rearranging the last inequality, we have an expression,

𝜋𝑓 (𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗)− 𝜋𝑓 (𝑥, 𝑦𝑗 , 𝑦*,−𝑗) + 𝑓(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤ 𝑓(𝑥, 𝑦𝑗 , 𝑦*,−𝑗), ∀𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦*,−𝑗). (3.8)

Multiply both sides of (3.8) by 𝛿𝑗(𝑥) > 0 to get,

𝛿𝑗(𝑥)
[︀
𝜋𝑓 (𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗)− 𝜋𝑓 (𝑥, 𝑦𝑗 , 𝑦*,−𝑗)

]︀
+ 𝛿𝑗(𝑥)𝑓(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤ 𝛿𝑗(𝑥)𝑓(𝑥, 𝑦𝑗 , 𝑦*,−𝑗).

Using the results from Lemma 3.4,

𝛿𝑗(𝑥)
[︀
𝜋𝑓 (𝑥, 𝑦*,𝑗)− 𝜋𝑓 (𝑥, 𝑦𝑗)

]︀
= 𝑓𝑖(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗)− 𝑓𝑖(𝑥, 𝑦𝑗 , 𝑦*,−𝑗);

and using this in the last inequality, ∀𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦*,−𝑗) we have

𝑓𝑗(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗)− 𝑓𝑗(𝑥, 𝑦𝑗 , 𝑦*,−𝑗) + 𝛿𝑗(𝑥)𝑓(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤ 𝛿𝑗(𝑥)𝑓(𝑥, 𝑦𝑗 , 𝑦*,−𝑗).

Which implies, ∀𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦*,−𝑗)

𝑓𝑗(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) + 𝛿𝑗(𝑥)𝑓(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤ 𝑓𝑗(𝑥, 𝑦𝑗 , 𝑦*,−𝑗) + 𝛿𝑗(𝑥)𝑓(𝑥, 𝑦𝑗 , 𝑦*,−𝑗).

Or equivalently,
𝑓𝑗(𝑥, 𝑦*,𝑗 , 𝑦*,−𝑗) ≤ 𝑓𝑗(𝑥, 𝑦𝑗 , 𝑦*,−𝑗), ∀𝑦𝑗 ∈ ℛ𝑗(𝑥, 𝑦*,−𝑗). (3.9)

From inequality (3.9) we can see that the tuple 𝑦*, satisfies Definition 3.3. Therefore, 𝑦* is a global Nash reaction
point of problem (3.3). �

Under the assumptions (A1)–(A3), an equivalent reformulation of bilevel-MLMF game (3.1) as a bilevel game
with single decision maker at both levels of the hierarchy is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑥∈𝑋

F(𝑥, 𝑦) =

[︃
𝑁∑︁

𝑖=1

1
𝜌𝑖(𝑦)

𝐹𝑖(𝑥𝑖, 𝑦)

]︃
+ 𝐹 (𝑥, 𝑦)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐺𝑖(𝑥𝑖, 𝑦) ≤ 0 , 𝑖 = 1, . . . , 𝑁,
𝐻(𝑥, 𝑦) ≤ 0, and

𝑦 solves

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min
𝑦∈𝑌

f(𝑥, 𝑦) =

⎡⎣ 𝑀∑︁
𝑗=1

1
𝛿𝑗(𝑥)

𝑓𝑗(𝑥, 𝑦𝑗)

⎤⎦ + 𝑓(𝑥, 𝑦)

subject to

{︃
𝑔𝑗(𝑥, 𝑦𝑗) ≤ 0 , 𝑗 = 1, . . . ,𝑀,

ℎ(𝑥, 𝑦) ≤ 0.

(3.10)

Proposition 3.7. Suppose that (3.1) satisfies the assumptions (A1)–(A3). If (𝑥*, 𝑦*) is a Stackelberg equilib-
rium point of (3.10), then (𝑥*, 𝑦*) is a Stackelberg-Nash equilibrium point of (3.1).

Proof. Follows from Theorems 3.5 and 3.6. �

Note that when all the functions 𝜌𝑖(𝑦) and 𝛿𝑗(𝑥) are always equal to a constant 1, then problem (3.1) reduces
to the quasi-potential game considered in [15]. Therefore, our result improves the one given in [15].

Remark 3.8. The idea described above can be extended to any finite 𝑘-level multi-leader multi-follower game
by reformulating the problems on the same level with a single objective as stated above. That is, any multilevel
multi-leader multi-follower game which satisfies assumptions (A1)–(A3) can be equivalently reformulated as a
multilevel single-leader single-follower problem without increasing the vertical hierarchical levels. However the
resulting multilevel optimization problem requires a solution approach that is different from the traditional
Karush–Kuhn–Tucker (KKT) reformulation to avoid the effect of the complementarity conditions in the middle
level problems.
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4. Multi-parametric programming formulations and methods

A multi-parametric solution approach for multilevel optimization is a global solution strategy that works
by rewriting the most inner level optimization problem as a multi-parametric problem, where the upper level
optimization variables are considered as parameters. The resulting problem can be solved globally and the para-
metric solutions can be substituted into the most nearby upper level optimization problem. The key advantage
of multi-parametric programming approach is that it provides a complete map of the optimal solution in the
space of the varying parameters [20].

Multi-parametric programming techniques systematically subdivide the parameter space into characteristic
regions where the optimal value and an optimizer are given as explicit functions of the parameters. A typical
multi-parametric nonlinear program (mp-NLP) is generally defined as [5]:

(NLP(𝜃)) :

⎧⎪⎨⎪⎩
min

𝑥
𝑓(𝑥, 𝜃)

s.t.

{︃
𝑔𝑖(𝑥, 𝜃) ≤ 0, 𝑖 = 1, . . . , 𝑝,
ℎ𝑗(𝑥, 𝜃) = 0, 𝑗 = 1, . . . , 𝑞,

(4.1)

where 𝜃 ∈ 𝛩 ⊆ R𝑚 is the parameters vector, 𝑥 ∈ 𝑋 ⊆ R𝑛 is the vector of the decision variables, and
𝑓, 𝑔𝑖, ℎ𝑗 : R𝑛 ×R𝑚 −→ R are parametric nonlinear functions.

The Lagrangian function associated with (NLP(𝜃)) is defined by:

ℒ(𝑥, 𝜆, 𝜇, 𝜃) = 𝑓(𝑥, 𝜃) +
𝑝∑︁

𝑖=1

𝜆𝑖𝑔𝑖(𝑥, 𝜃) +
𝑞∑︁

𝑗=1

𝜇𝑇
𝑗 ℎ𝑗(𝑥, 𝜃), (4.2)

where 𝜆 = (𝜆1, . . . , 𝜆𝑝)𝑇 and 𝜇 = (𝜇1, . . . , 𝜇𝑞)𝑇 are the Lagrange multiplier vectors associated with inequality
and equality constraints 𝑔𝑖 and ℎ𝑗 , respectively.

If 𝜃 = 𝜃0 is fixed, we will have a classical nonlinear problem,

(NLP(𝜃0)) :

⎧⎪⎨⎪⎩
min

𝑥
𝑓(𝑥, 𝜃0)

s.t.

{︃
𝑔𝑖(𝑥, 𝜃0) ≤ 0, 𝑖 = 1, . . . , 𝑝,
ℎ𝑗(𝑥, 𝜃0) = 0, 𝑗 = 1, . . . , 𝑞.

(4.3)

The first-order sensitivity results for a parametric nonlinear programming problem (NLP(𝜃)) was presented by
Fiacco [5], based on the following assumptions:

(C1) The functions defining problem (NLP(𝜃)) are twice continuously differentiable in (𝑥, 𝜃) in a neighborhood
of (𝑥0, 𝜃0).

(C2) The second order sufficient conditions for a local minimum of problem (NLP(𝜃0)) hold at 𝑥0 with associated
Lagrange multipliers 𝜆0 and 𝜇0.

(C3) The gradients ∇𝑥𝑔𝑖(𝑥0, 𝜃0), for all 𝑖 such that 𝑔𝑖(𝑥0, 𝜃0) = 0 and ∇𝑥ℎ𝑗(𝑥0, 𝜃0), 𝑗 = 1, . . . , 𝑞 are linearly
independent.

(C4) Strict complementary slackness(SCS) holds at (𝑥0, 𝜃0), i.e. (𝜆𝑖)0 > 0 for all 𝑖 such that 𝑔𝑖(𝑥0, 𝜃0) = 0.

Theorem 4.1 (Fiacco [5]). If assumptions (C1)–(C4) hold for problem (NLP(𝜃)) at (𝑥0, 𝜃0), then:

(a) 𝑥0 is a local isolated minimizing point of problem (NLP(𝜃0)) and the associated multipliers 𝜆0 and 𝜇0 are
unique.

(b) For 𝜃 in a neighborhood of 𝜃0, there exists a unique, once continuously differentiable vector function 𝑧(𝜃) =
[𝑥(𝜃), 𝜆(𝜃), 𝜇(𝜃)]𝑇 satisfying the second order sufficient conditions for a local minimum of problem (NLP(𝜃))
such that 𝑧(𝜃0) = 𝑧0 = [𝑥0, 𝜆0, 𝜇0]𝑇 and hence, 𝑥(𝜃) is a locally unique local minimum of problem (NLP(𝜃))
with associated unique multipliers 𝜆(𝜃) and 𝜇(𝜃).
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(c) For 𝜃 near 𝜃0, the set of active inequalities is unchanged, strict complementary slackness holds for 𝜆𝑖(𝜃) for
𝑖 such that 𝑔𝑖(𝑥(𝜃), 𝜃) = 0, and the active constraint gradients are linearly independent at 𝑥(𝜃).

The derivative of 𝑧(𝜃) = [𝑥(𝜃), 𝜆(𝜃), 𝜇(𝜃)]𝑇 can be calculated near 𝜃0 by the expression

∇𝜃𝑧(𝜃) = [𝑀(𝜃)]−1𝑁(𝜃),

where 𝑀(𝜃) is the Jacobian with respect to (𝑥, 𝜆, 𝜇) of the following Karush–Kuhn–Tucker system (satisfied by
𝑧(𝜃) near 𝜃 = 𝜃0):

∇𝑥ℒ[𝑥(𝜃), 𝜆(𝜃), 𝜇(𝜃), 𝜃] = 0
𝜆𝑖𝑔𝑖[𝑥(𝜃), 𝜃] = 0, 𝑖 = 1, . . . , 𝑝
ℎ𝑗 [𝑥(𝜃), 𝜃] = 0, 𝑗 = 1, . . . , 𝑞,

and 𝑁(𝜃) is the negative of the Jacobian of the Karush–Kuhn–Tucker system with respect to 𝜃.

Corollary 4.2 (Fiacco [5]). Under the assumptions (C1)–(C4) a first-order estimation of the optimal solution
[𝑥(𝜃), 𝜆(𝜃), 𝜇(𝜃)] in a neighborhood of 𝜃0 is⎡⎣𝑥(𝜃)

𝜆(𝜃)
𝜇(𝜃)

⎤⎦ =

⎡⎣𝑥0

𝜆0

𝜇0

⎤⎦−𝑀−1
0 ·𝑁0 · (𝜃 − 𝜃0) + 𝑜(‖𝜃‖), (4.4)

where [𝑥0, 𝜆0, 𝜇0] = [𝑥(𝜃0), 𝜆(𝜃0), 𝜇(𝜃0)],𝑀0 = 𝑀(𝜃0), 𝑁0 = 𝑁(𝜃0), and 𝑀(𝜃) and 𝑁(𝜃) are defined as

𝑀(𝜃) =

⎡⎣ ∇2
𝑥𝑥ℒ ∇𝑥𝑔 ∇𝑥ℎ

−𝜆∇𝑇
𝑥 𝑔 diag(−𝑔𝑖) 0

∇𝑇
𝑥 ℎ 0 0

⎤⎦ ,
𝑁(𝜃) = [∇2

𝜃𝑥ℒ,−𝜆1∇𝑇
𝜃 𝑔1, . . . ,−𝜆𝑝∇𝑇

𝜃 𝑔𝑝,∇𝑇
𝜃 ℎ1, . . . ,∇𝑇

𝜃 ℎ𝑞]𝑇

and 𝜑(𝜃) = 𝑜(‖𝜃‖) means that 𝜑(𝜃)/‖𝜃‖ → 0 as 𝜃 → 𝜃0.

The assumptions (C1)–(C4) ensure that the inverse of 𝑀0 exists and hence for problems involving convex 𝑓, 𝑔
and ℎ, the parametric solutions within the corresponding critical regions, are necessary and sufficient.

The main question here is how to find a parametric solution 𝑥(𝜃) which remains stable in some subregion of
the parameter space. We will consider this in the following two subsections.

4.1. Multi-parametric problems with linear constraints

Based on Corollary 4.2, Dua et al. [3] proposed an algorithm to solve (4.1) in the entire range of the varying
parameters for general convex problems. The space of 𝜃 where solution (4.4) remains optimal to (4.1) is defined
as the critical region, 𝒞ℛ, and can be obtained by using feasibility and optimality conditions [3]. Each piecewise
linear approximation is confined to regions defined by feasibility and optimality conditions. If 𝑔 corresponds
to the inactive polyhedral constraints and 𝜆̌ to the Lagrangian multipliers of the active constraints, then the
critical regions can be defined as,

𝒞ℛ =

{︃
𝑔(𝑥(𝜃), 𝜃) ≤ 0, Feasibility conditions,
𝜆̌(𝜃) ≥ 0, Optimality conditions.

After defining the critical region 𝒞ℛ on which the parametric solution is valid, if 𝒞ℛ has not covered the para-
metric region, we repeat again the same mathematical procedure as in above with any new feasible parameter
(𝜃 = 𝜃0) taken from the rest of parametric regions until the parametric region has been explored successfully as
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Table 1. Definition of the rest regions.

Region Inequalities

𝒞ℛRest
1 𝑐1 ≥ 0, 𝜃1 ≥ 𝜃𝐿

2 , 𝜃2 ≤ 𝜃𝑈
2

𝒞ℛRest
2 𝑐1 ≤ 0, 𝑐2 ≥ 0, 𝜃1 ≥ 𝜃𝑈

2 , 𝜃2 ≤ 𝜃𝑈
2

𝒞ℛRest
3 𝑐1 ≤ 0, 𝑐2 ≤ 0, 𝑐3 ≥ 0, 𝜃𝐿

2 ≤ 𝜃1 ≥ 𝜃𝑈
2 , 𝜃𝐿

2 ≤ 𝜃2

described in [13]. To define the rest of the parametric region, consider 𝒞ℛ𝐼 = [𝜃𝐿, 𝜃𝑈 ] to be the overall parametric
region (where 𝜃𝐿 and 𝜃𝑈 represent the lower and upper bounds of the parametric region) and let the inequal-
ities, labeled by 𝑐1 ≤ 0, 𝑐2 ≤ 0, 𝑐3 ≤ 0 define 𝒞ℛ. Now the rest of the parameter region 𝒞ℛRest = 𝒞ℛ𝐼 − 𝒞ℛ
can be characterized by considering each of the inequalities which comprise 𝒞ℛ0, reversing their signs one by
one and removing redundant constraints [4]. For example, consider inequality 𝑐1 ≤ 0, the rest of the region can
be addressed by reversing the sign of inequality 𝑐1 ≤ 0 and removing redundant constraints in 𝒞ℛ𝐼 , which is
𝒞ℛRest

1 = 𝑐1 ≥ 0, 𝜃1 ≥ 𝜃𝐿
2 , 𝜃2 ≤ 𝜃𝑈

2 where, 𝜃 = (𝜃1, 𝜃2). Thus by considering the rest of the inequalities, the total
of the rest region is given by, 𝒞ℛRest = 𝒞ℛRest

1 ∪ 𝒞ℛRest
2 ∪ 𝒞ℛRest

3 , where 𝒞ℛRest
1 , 𝒞ℛRest

2 and 𝒞ℛRest
3 are given

in Table 1.
Finally, the optimal solution 𝑥(𝜃) can be expressed explicitly as a conditional piecewise linear function [3]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑥 = 𝐶1 +𝐾1𝜃, if 𝜃 ∈ 𝒞ℛ1

𝑥 = 𝐶2 +𝐾2𝜃, if 𝜃 ∈ 𝒞ℛ2

...
...

𝑥 = 𝐶𝑝 +𝐾𝑝𝜃, if 𝜃 ∈ 𝒞ℛ𝑝

where 𝐶𝑖 are column vectors and 𝐾𝑖 are real matrices, whereas 𝒞ℛ𝑖 ⊆ R𝑚 are critical regions and note that
𝒞ℛ𝑖 denotes the 𝑖th critical region. For multi-parametric linear and quadratic problems, exact solutions can be
computed using the first-order estimation.

4.2. Multi-parametric problems with nonlinear constraints

When a multi-parametric problem involves non-linear constraints, Fiacco [5] used penalty functions to esti-
mate the first-order sensitivity results for a parametric nonlinear programming problem (NLP(𝜃)) by means of
penalty function, define the following logarithmic-quadratic-barrier-penalty function for problem (NLP(𝜃)),

𝑊 (𝑥, 𝜃, 𝑡) = 𝑓(𝑥, 𝜃)− 𝑡

𝑝∑︁
𝑖=1

ln(−𝑔𝑖(𝑥, 𝜃)) +
1
2𝑡

𝑞∑︁
𝑗=1

ℎ2
𝑗 (𝑥, 𝜃).

Under assumptions (C1)–(C4), and from penalty function theory (see Fiacco and McCormick [6]), we have the
following results for problem (NLP(𝜃0)):

(1) For 𝑡 > 0 and small, there exists a unique once continuously differentiable vector function 𝑥(𝜃0, 𝑡) such that
𝑥(𝜃0, 𝑡) is a locally unique minimizing point of 𝑊 (𝑥, 𝜃0, 𝑡) in

𝐾#(𝜃0) = {𝑥 : 𝑔𝑖(𝑥, 𝜃0) < 0, 𝑖 = 1, . . . , 𝑝, and ℎ𝑗(𝑥, 𝜃0) = 0, 𝑗 = 1, . . . , 𝑞}

and such that 𝑥(𝜃0, 𝑡) −→ 𝑥(𝜃0, 0) = 𝑥*, and 𝑥* is a locally isolated minimizer of (NLP(𝜃0)).
(2) lim

𝑡→0
𝑊 (𝑥(𝜃0, 𝑡), 𝜃0, 𝑡) = 𝑓(𝑥, 𝜃0).
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Theorem 4.3 (Fiacco (1976) [5]). If assumptions (C1)–(C4) hold for (NLP(𝜃)) then in a neighborhood
about (𝜃, 𝑡) = (𝜃0, 0) there exists a unique once continuously differentiable vector function 𝑧(𝜃, 𝑡) =
[𝑥(𝜃, 𝑡), 𝜆(𝜃, 𝑡), 𝜇(𝜃, 𝑡)]𝑇 satisfying

∇𝑥ℒ[𝑥, 𝜆, 𝜇, 𝜃] = 0
𝜆𝑖𝑔𝑖[𝑥, 𝜃] = 𝑡, 𝑖 = 1, . . . , 𝑝
ℎ𝑗 [𝑥(𝜃), 𝜃] = 𝜇𝑗𝑡, 𝑗 = 1, . . . , 𝑞,

with 𝑧(𝜃0, 0) = (𝑥*, 𝜆*, 𝜇*)𝑇 and such that (𝜃, 𝑡) near (𝜃0, 0) and 𝑡 > 0, 𝑥(𝜃, 𝑡) is a locally unique unconstrained
local minimizing point of 𝑊 (𝑥, 𝜃, 𝑡), 𝑔𝑖(𝑥(𝜃, 𝑡), 𝜃) < 0, 𝑖 = 1, . . . ,𝑚, and ∇2

𝑥𝑊 (𝑥(𝜃, 𝑡), 𝜃, 𝑡) is positive definite.

The derivative of 𝑧(𝜃, 𝑡) = [𝑥(𝜃), 𝜆(𝜃), 𝜇(𝜃)]𝑇 can be calculated near (𝜃0, 0) by the expression

∇𝜃𝑧(𝜃, 𝑡) = [𝑀(𝜃, 𝑡)]−1𝑁(𝜃, 𝑡),

where 𝑀 and −𝑁 are the Jacobians of the perturbed KKT system with respect to (𝑥, 𝜆, 𝜇) and 𝜃, respectively.

Corollary 4.4 (Fiacco (1976) [5]). If assumptions (C1)–(C4) hold for (NLP(𝜃)), then for any 𝜃 near 𝜃0, then
we have

(a) lim
𝑡→0+

𝑧(𝜃, 𝑡) = 𝑧(𝜃),

(b) lim
𝑡→0+

∇𝜃𝑧(𝜃, 𝑡) = ∇𝜃𝑧(𝜃).

Continuity of 𝑓(𝑥, 𝜃) and Corollary 4.4 imply that lim
𝑡→0+

𝑊 *(𝜃, 𝑡) = 𝑓*(𝜃).

From the above arguments we can observe that whenever nonlinear convex constraints appear in the para-
metric problem (4.1), we apply the barrier method procedure to transform the nonlinear functional expression
into the objective part and apply the procedure in Section 4.1 to obtain the required parametric solutions.

5. Algorithm to solve multilevel-MLMF problems using equivalent
reformulation and multi-parametric approach

In this section we propose an appropriate solution approach to solve a classes of multilevel-MLMF games with
a property that every objective function in the problem consists of separable terms and non-separable terms
(but each of the non-separable terms can be written as a factor of two functions one of the factor being common
across all players of the same level) and with non-degenerate polyhedral constraints in addition to possible
convex non-linear ones. For the sake of clarity in presentation, the methodology is described using a general
trilevel-MLMF game. However, the same approach can be extended to a general 𝑘-level case with appropriate
adjustments.

5.1. Equivalent reformulation of multilevel-MLMF games

Consider a trilevel-MLMF game involving 𝑁 decision makers at the first-level, 𝑀 decision makers at the
second-level and 𝐿 decision makers at the third-level which can be formulated mathematically as follows. For
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𝑛 = 1, . . . , 𝑁 , the vector (𝑦𝑛
1 , 𝑦2, 𝑦3) solves an optimization problem,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑦𝑛
1 ∈𝑌 𝑛

1

𝐹𝑛
1 (𝑦1, 𝑦2, 𝑦3)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐺𝑛
1 (𝑦𝑛

1 , 𝑦2, 𝑦3) ≤ 0,
𝐻1(𝑦1, 𝑦2, 𝑦3) ≤ 0, and for all 𝑖 = 1, . . . ,𝑀,

(𝑦𝑖
2, 𝑦3) solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑦𝑖
2∈𝑌 𝑖

2

𝑓 𝑖
2(𝑦1, 𝑦2, 𝑦3)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑔𝑖
2(𝑦1, 𝑦𝑖

2, 𝑦3) ≤ 0,
ℎ2(𝑦1, 𝑦2, 𝑦3) ≤ 0, and for all 𝑙 = 1, . . . , 𝐿,

(𝑦𝑙
3) solves

⎧⎪⎪⎨⎪⎪⎩
min

𝑦𝑙
3∈𝑌 𝑙

3

𝑓 𝑙
3(𝑦1, 𝑦2, 𝑦3)

s.t.

{︃
𝑔𝑙
3(𝑦1, 𝑦2, 𝑦𝑙

3) ≤ 0,
ℎ3(𝑦1, 𝑦2, 𝑦3) ≤ 0.

(5.1)

Assume that each of the objective functions of the third and second level followers is convex with respect to its
own decision variable vector and the Guignard constraint qualifications [7] hold for the followers constraints.

We make the following assumptions on the structure of the objective functions of (5.1):

(B1) The objective functions at the first-level can be written as

𝐹𝑛
1 (𝑦1, 𝑦2, 𝑦3) = 𝐹𝑛

1 (𝑦𝑛
1 , 𝑦2, 𝑦3) + 𝐹𝑛

1 (𝑦−𝑛
1 , 𝑦2, 𝑦3) + 𝜌𝑛

1 (𝑦2, 𝑦3)𝐹1(𝑦1, 𝑦2, 𝑦3),

where (∀𝑛) (0 < 𝜌𝑛
1 (𝑦2, 𝑦3) <∞).

(B2) The objective functions at the second-level can be written as

𝑓 𝑖
2(𝑦1, 𝑦2, 𝑦3) = 𝑓 𝑖

2(𝑦1, 𝑦𝑖
2, 𝑦3) + 𝑓 𝑖

2(𝑦1, 𝑦−𝑖
2 , 𝑦3) + 𝜌𝑖

2(𝑦1, 𝑦3)𝑓2(𝑦1, 𝑦2, 𝑦3),

where (∀𝑖) (0 < 𝜌𝑖
2(𝑦1, 𝑦3) <∞).

(B3) The objective functions at the third-level can be written as

𝑓 𝑗
3 (𝑦1, 𝑦2, 𝑦3) = 𝑓 𝑗

3 (𝑦1, 𝑦2, 𝑦
𝑗
3) + 𝑓 𝑗

3 (𝑦1, 𝑦2, 𝑦
−𝑗
3 ) + 𝜌𝑗

3(𝑦1, 𝑦2)𝑓3(𝑦1, 𝑦2, 𝑦3),

where (∀𝑗) (0 < 𝜌𝑗
3(𝑦1, 𝑦2) <∞).

(B4) 𝜌𝑛
1 (·), 𝜌𝑖

2(·) and 𝜌𝑗
3(·) are twice continuously differentiable functions and uniformly bounded away from

zero.
If (5.1) satisfies the assumptions (B1)–(B4), then it can be equivalently formulated as a trilevel optimization

problem having a single decision maker at all levels as follows. The vector (𝑦1, 𝑦2, 𝑦3) solves an optimization
problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑦1

[︃
𝑁∑︁

𝑛=1

𝐹 𝑛
1 (𝑦𝑛

1 , 𝑦2, 𝑦3)

𝜌𝑛
1 (𝑦2, 𝑦3)

]︃

+ 𝐹1(𝑦1, 𝑦2, 𝑦3)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐺𝑛
1 (𝑦𝑛

1 , 𝑦2, 𝑦3) ≤ 0 , 𝑛 = 1, . . . , 𝑁,

𝐻1(𝑦1, 𝑦2, 𝑦3) ≤ 0, and

(𝑦2, 𝑦3) solves

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑦2

[︃
𝑀∑︁

𝑖=1

𝑓 𝑖
2(𝑦1, 𝑦

𝑖
2, 𝑦3)

𝜌𝑖
2(𝑦1, 𝑦3)

]︃

+ 𝑓2(𝑦1, 𝑦2, 𝑦3)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔𝑖
2(𝑦1, 𝑦

𝑖
2, 𝑦3) ≤ 0 , 𝑖 = 1, . . . , 𝑀,

ℎ2(𝑦1, 𝑦2, 𝑦3) ≤ 0, and

𝑦3 solves

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
𝑦3

[︃
𝐿∑︁

𝑗=1

𝑓 𝑗
3 (𝑦1, 𝑦2, 𝑦

𝑗
3)

𝜌𝑗
3(𝑦1, 𝑦2)

]︃

+ 𝑓3(𝑦1, 𝑦2, 𝑦3)

s.t.

{︃
𝑔𝑙
3(𝑦1, 𝑦2, 𝑦

𝑙
3) ≤ 0 , 𝑙 = 1, . . . , 𝐿,

ℎ3(𝑦1, 𝑦2, 𝑦3) ≤ 0.

(5.2)

Then the following statement is a direct consequence of Proposition 3.7. Hence we state it here without proof.
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Proposition 5.1. Suppose that (5.1) satisfies the assumptions (B1)–(B4). If (𝑦*1 , 𝑦
*
2 , 𝑦

*
3) is a Stackelberg equi-

librium point of (5.2), then (𝑦*1 , 𝑦
*
2 , 𝑦

*
3) is a Stackelberg-Nash equilibrium point of (5.1).

Note that the approach by Kulkarni and Shanbhag [15] leads to an MPEC for two level problems whose
global solution provides an equilibrium to a bilevel-MLMF game. When we have more than two hierarchical
levels, the nonconvex expression resulted from the lower-level problems makes it difficult to solve. For example,
in tri-level programs the complementarity condition of the third-level KKT conditions makes the second-level
problem nonconvex. Therefore, using the same transformation will result in a problem which is very difficult to
solve (if it is tractable at all). To avoid this situation, we apply multi-parametric procedures for transforming
the lower level problems. In this procedure, instead of embedding lower level problems into the middle level
through the KKT conditions, we will equivalently transform the tri-level problem into a single-level problem by
sequentially substituting the parametric solutions in problems of the middle and upper levels.

5.2. Multi-parametric based algorithm to solve multilevel-MLMF

The algorithm starts by reformulating the hierarchical multi-leader multi-follower problem as a multilevel
optimization problem involving a single decision maker over the hierarchy as discussed in Sections 3 and 5.1.
Then, each of the optimization problems in lower levels can be recast as multi-parametric programming problem
where the variables from upper level problems are considered as parameters, and hence obtain an analytical
parametric solution for the rational reaction set for each of the sub problems in the corresponding critical
(stability) region of the parameter space. The basic steps of the proposed algorithm for tri-level MLMF problem
(5.1) are described as follows.

Algorithm 1. Multi-parametric based algorithm to solve a tri-level MLMF problem (5.1).

Step 1. Reformulate the hierarchical multi-leader multi-follower problem (5.1) as a multilevel optimization problem as
discussed in Subsection 5.1 to obtain (5.2).

Step 2. The third-level problem of (5.2) is treated as a multi-parametric problem with 𝑦3 being the optimization
variable and the first-level and second-level decision variables (i.e. 𝑦1, 𝑦2) the parameters; and solved by a
multi-parametric approach discussed in Section 4.

Step 3. Substitute the parametric solution from Step 2 in the second-level optimization problem of (5.2) and solve the
resulting multiparametric problem with 𝑦2 being the optimization variable and the first-level decision variable
(𝑦1) the parameters.

Step 4. Substitute the parametric solution from Step 3 in the first-level optimization problem of (5.2) and use a
standard nonlinear optimization algorithms to solve the resulting optimization problem with decision variable
𝑦1.

Remark 5.2. Since the number of partitions of the critical regions are finite as shown in [3,13], the algorithmic
procedures described in Steps 2 and 3 terminate after a finite number of iterations. Hence, the above algorithm
requires only a finite number of iterative procedures to arrive at the required solution.

Moreover, if all the involved functions are linear or quadratically convex, the solutions obtained through the
above algorithm will be an exact global solution to the original problem.

6. Illustrative Examples

To apply the proposed solution algorithm, it is to be noted that each of the transformed problems at the
lower levels must satisfy the required four conditions (C1)–(C4). These conditions seem to be very strong and
restrictive. However, many practical application problems satisfy these conditions.
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For example, the oligopoly market problem with divisible homogeneous products, that is described and
analyzed in [11], satisfies all of the assumptions in our reformulation in Section 3. Therefore, it can be considered
as a particular example of our proposed formulation.

The second example is the supply chain management problem. Supply chains are systems with multiple
components such as supplier, manufacturer, distributer, retailer and customer, that exchange information with
one another [2]. Mathematical models formulated to analyse the overall economic process of the supply chain
management are usually described by MLMF games with at least three hierarchical levels (see for instance [9],
where all the involved functions are assumed to be linear). Most of the deterministic versions of such problems
satisfy the conditions required in our model formulation and solution algorithm.

Here below, we will illustrate the proposed method using selectively constructed numerical examples.

Example 6.1. Consider the following bilevel two-leader two-follower game:⎧⎨⎩min
𝑥1

𝐹1(𝑥, 𝑦) = −𝑥1𝑦
2
2 − 𝑥2𝑦

2
1 + 𝑥1𝑒

𝑥2𝑒𝑦1 ,

min
𝑥2

𝐹2(𝑥, 𝑦) = 𝑥1 − 3𝑥2𝑦1 + (𝑦2 + 1)𝑥1𝑒
𝑥2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑥1, 𝑥2 ≤ 2,⎧⎨⎩min
𝑦1

𝑓1(𝑥, 𝑦) = 𝑦2
1 + (1− 𝑥1)𝑦2 − (𝑥2

2 + 2) ln(𝑦1 + 𝑦2 + 4),

min
𝑦2

𝑓2(𝑥, 𝑦) = −𝑦2
2 + (1− 𝑥2)𝑦1 − (𝑥2

1 + 3) ln(𝑦1 + 𝑦2 + 4)

s.t.

⎧⎪⎨⎪⎩
𝑥1 + 2𝑦1 − 𝑦2 − 2 ≤ 0,
𝑥1 − 𝑥2 − 𝑦1 + 𝑦2 − 1 ≤ 0,
0 ≤ 𝑦1, 𝑦2 ≤ 2.

(6.1)

As it was discussed in Section 3 problem (6.1) can be equivalently reformulated as a bilevel single-leader single-
follower problem,

min
𝑥
𝐹 (𝑥, 𝑦) = 𝑥1(𝑒𝑥2 − 𝑦2

2𝑒
−𝑦1)− 3𝑦1𝑥2

𝑦2 + 1

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑥1, 𝑥2 ≤ 2,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

𝑦
𝑓(𝑥, 𝑦) =

𝑦2
1

𝑥2
2 + 2

− 𝑦2
2

𝑥2
1 + 3

− ln(𝑦1 + 𝑦2 + 4)

s.t.

⎧⎪⎨⎪⎩
𝑥1 + 2𝑦1 − 𝑦2 − 2 ≤ 0,
𝑥1 − 𝑥2 − 𝑦1 + 𝑦2 − 1 ≤ 0,
0 ≤ 𝑦1, 𝑦2 ≤ 2.

(6.2)

By treating the leaders decision variable, 𝑥 = (𝑥1, 𝑥2) as a parameter, the inner problem in (6.2) can be
considered as a multi-parametric problem:

min
𝑦
𝑓(𝑥, 𝑦) =

𝑦2
1

𝑥2
2 + 2

− 𝑦2
2

𝑥2
1 + 3

− ln(𝑦1 + 𝑦2 + 4)

s.t.

⎧⎪⎨⎪⎩
𝑥1 + 2𝑦1 − 𝑦2 − 2 ≤ 0,
𝑥1 − 𝑥2 − 𝑦1 + 𝑦2 − 1 ≤ 0,
0 ≤ 𝑦1, 𝑦2 ≤ 2.

(6.3)

So we use multi-parametric approach discussed in Section 4 to solve (6.3). The Lagrangian of (6.3) is given by,
ℒ(𝑥, 𝑦, 𝜆) = 𝑓(𝑥, 𝑦)+𝜆1𝑔1(𝑥, 𝑦)+𝜆2𝑔2(𝑥, 𝑦), where 𝑔1(𝑥, 𝑦) = 𝑥1+2𝑦1−𝑦2−2 and 𝑔2(𝑥, 𝑦) = 𝑥1−𝑥2−𝑦1+𝑦2−1.
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Figure 1. Critical regions for parametric problem (6.3).

𝑀(𝑥) =

⎡⎣ ∇2
𝑦𝑦ℒ ∇𝑦𝑔1 ∇𝑦𝑔2

−𝜆1∇𝑇
𝑦 𝑔1 −𝑔1 0

−𝜆2∇𝑇
𝑦 𝑔2 0 −𝑔2

⎤⎦ and 𝑁(𝑥) = [∇2
𝑥𝑦ℒ,−𝜆1∇𝑇

𝑥 𝑔1,−𝜆2∇𝑇
𝑥 𝑔2].

Then,
[︀
𝑦(𝑥) 𝜆(𝑥) 𝜇(𝑥)

]︀𝑇 =
[︀
𝑦0 𝜆0 𝜇0

]︀𝑇 −𝑀−1
0 ·𝑁0 · (𝑥− 𝑥0) where

[︀
𝑦0 𝜆0 𝜇0

]︀
=

[︀
𝑦(𝑥0) 𝜆(𝑥0) 𝜇(𝑥0)

]︀
,𝑀0 =

𝑀(𝑥0) and 𝑁0 = 𝑁(𝑥0).
After exploring all the parameter spaces, the optimal solution to the problem (6.3) with their corresponding
critical regions (see Fig. 1) are

𝒞ℛ1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑦*(𝑥) =

[︃
−3.8630𝑥1 + 3.6393𝑥2 + 1.2237
−4.8630𝑥1 + 4.6393𝑥2 + 2.2237

]︃
,with

0.7881𝑥1 − 0.6156𝑥2 ≤ 0.3224,
−0.5767𝑥1 + 0.8170𝑥2 ≤ 0.5498,
𝑥1 ≥ 0, 0 ≤ 𝑥2 ≤ 2;

𝒞ℛ2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦*(𝑥) =

[︃
−6.5148𝑥1 + 4.5813𝑥2 + 3.3640
−7.5148𝑥1 + 5.5813𝑥2 + 4.3640

]︃
,with

−0.7881𝑥1 + 0.6156𝑥2 ≤ −0.3224,
𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 2;

𝒞ℛ3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦*(𝑥) =

[︃
0.2870𝑥2 − 0.1114
0.0107𝑥2 + 1.9786

]︃
,with

0.6167𝑥1 − 0.7872𝑥2 ≤ −0.6723,
𝑥1 ≥ 0, 𝑥2 ≤ 2;
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𝒞ℛ4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦*(𝑥) =

[︃
−14.7758𝑥1 + 10.1658𝑥2 − 2.4725
−15.7758𝑥1 + 11.1658𝑥2 − 1.4725

]︃
,with

−0.8125𝑥1 + 0.5829𝑥2 ≤ 0.3480,
−0.6167𝑥1 + 0.7872𝑥2 ≤ 0.6723,
0.5767𝑥1 − 0.8170𝑥2 ≤ −0.5498,
𝑥2 ≤ 2;

and 𝒞ℛ5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦*(𝑥) =

[︃
−1.6379𝑥1 + 1.0111𝑥2 + 2.2657
−2.6379𝑥12.0111𝑥2 + 3.2657

]︃
,with

0.8125𝑥1 − 0.5829𝑥2 ≤ −0.3480,
−0.6167𝑥1 + 0.7872𝑥2 ≤ 0.6723,
0.5767𝑥1 − 0.8170𝑥2 ≤ −0.5498,
𝑥1 ≥ 0.

This can be incorporated into the upper-level problem of (6.2) and the resulting nonlinear problems
are solved in each critical regions. The following are the optimal solutions:In 𝒞ℛ1, (𝑥1, 𝑥2, 𝑦1, 𝑦2) =

(0.5157, 0.4923, 1.0234, 2.0000) and objective value 𝐹 = −0.4014.
In 𝒞ℛ2: (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (0.5035, 0.1208, 0.6372, 1.2545) and objective value 𝐹 = 0.0467.
In 𝒞ℛ3: (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (0.2610, 1.0586, 0.1924, 1.9899) and objective value 𝐹 = −0.3047.
In 𝒞ℛ4: (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (0.5121, 1.0345, 0.4776, 2.0000) and objective value 𝐹 = −0.3238.
In 𝒞ℛ5: (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (0.3773, 0.4820, 2.1349, 3.2395) and objective value 𝐹 = −0.5854.

Now, comparing all the values of the objective of the leader in each of the critical regions, we can see that
the objective value obtained in 𝒞ℛ5 gives a better result. Hence we take (0.3773, 0.4820, 2.1349, 3.2395) as an
optimal solution to the upper-problem of (6.2).

Therefore, the optimal solution to the bilevel multi-leader multi-follower problem (6.1) is (𝑥*, 𝑦*) =
(0.3773, 0.4820, 2.1349, 3.2395) with optimal leaders objective 𝐹1 = −0.9899 and 𝐹2 = −0.1191; and optimal
followers objective 𝑓1 = 1.5792 and 𝑓2 = −16.4213.

Example 6.2. Consider the following nonlinear tri-level multi-follower programming problem:
⎧
⎨

⎩

min
𝑥1

𝐹 1
1 (𝑥, 𝑦, 𝑧) = (𝑥1 − 𝑧1)

2 − (𝑦1 + 4) cos
(︁𝜋

2
(𝑥2 − 𝑥1)

)︁
,

min
𝑥2

𝐹 2
1 (𝑥, 𝑦, 𝑧) = (𝑥2 − 1)2 − (−𝑦2 + 𝑧3 + 3) cos

(︁𝜋

2
(𝑥2 − 𝑥1)

)︁

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑥1, 𝑥2 ≤ 1, and⎧
⎨

⎩

min
𝑦1

𝑓1
2 (𝑥, 𝑦, 𝑧) = (𝑦1 − 1)2 + (𝑦2 − 2)2 + (𝑥2 + 𝑧2 + 5)(𝑦2

1 + 𝑦2)
2,

min
𝑦2

𝑓2
2 (𝑥, 𝑦, 𝑧) = −1

2
𝑦2
2 − 𝑦1𝑧1 + (𝑥1 − 𝑧1 + 6)(𝑦2

1 + 𝑦2)
2,

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑦1, 𝑦2 ≤ 1, and⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
𝑧1

𝑓1
3 (𝑥, 𝑦, 𝑧) = 𝑧2

1 + 𝑧1 + (𝑦2
1 + 1)(𝑦2𝑥

2
1 − 𝑧2

1 − 𝑧2
2),

min
𝑧2

𝑓2
3 (𝑥, 𝑦, 𝑧) = 𝑧2

2 − 𝑦2𝑧2 + (2− 𝑦2)(𝑦2𝑥
2
1 − 𝑧2

1 − 𝑧2
2),

min
𝑧3

𝑓3
3 (𝑥, 𝑦, 𝑧) = −𝑧2

3 + 𝑥2(𝑧1 − 𝑧2) + (1 + 𝑥2)(𝑦2𝑥
2
1 − 𝑧2

1 − 𝑧2
2),

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−𝑦1 + 2𝑦2 − 2𝑧1 − 𝑧3 − 2 ≤ 0,

𝑥1 − 𝑥2 + 𝑦1 − 𝑧2 + 𝑧3 − 5 ≤ 0,

4𝑥1 − 2𝑦2 − 𝑧1 + 𝑧2 + 𝑧3 − 3 ≤ 0,

0 ≤ 𝑧1, 𝑧2, 𝑧3 ≤ 2.

(6.4)



HIERARCHICAL MULTILEVEL OPTIMIZATION 2933

Problem (6.4) is equivalently reformulated as tri-level problem having a single decision maker at each levels
of the hierarchy:

min
𝑥
𝐹1(𝑥, 𝑦, 𝑧) =

(𝑥1 − 𝑧1)2

(𝑦1 + 4)
+

(𝑥2 − 1)2

(𝑦2 − 𝑧3 + 3)
− cos

(︁𝜋
2

(𝑦2 − 𝑧1)
)︁

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑥1, 𝑥2 ≤ 1, and

min
𝑦
𝑓2(𝑥, 𝑦, 𝑧) =

(𝑦1 − 1)2

(𝑥2 + 𝑧2 + 5)
− 𝑦2

2

2(𝑥1 − 𝑧1 + 6)
+ (𝑦2

1 + 𝑦2)2,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ 𝑦1, 𝑦2 ≤ 1, and

min
𝑧
𝑓3(𝑥, 𝑦, 𝑧) =

𝑧2
1 + 𝑧1
𝑦2
1 + 1

+
𝑧2
2 − 𝑦2𝑧2
2− 𝑦2

− 𝑧2
3

𝑥2 + 𝑦1 + 1
+ 𝑦2𝑥

2
1 − 𝑧2

1 − 𝑧2
2 ,

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝑦1 + 2𝑦2 − 2𝑧1 − 𝑧3 − 2 ≤ 0,
𝑥1 − 𝑥2 + 𝑦1 − 𝑧2 + 𝑧3 − 5 ≤ 0,
4𝑥1 − 2𝑦2 − 𝑧1 + 𝑧2 + 𝑧3 − 3 ≤ 0,
0 ≤ 𝑧1, 𝑧2, 𝑧3 ≤ 2.

(6.5)

By treating the first and second level decision variables, (𝑥, 𝑦) as parameters, the third-level problem in (6.5)
can be considered as a multi-parametric problem (with the parameter vector (𝑥, 𝑦)):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑧
𝑓3(𝑥, 𝑦, 𝑧) =

𝑧2
1 + 𝑧1
𝑦2
1 + 1

+
𝑧2
2 − 𝑦2𝑧2
2− 𝑦2

− 𝑧2
3

𝑥2 + 𝑦1 + 1
+ 𝑦2𝑥

2
1 − 𝑧2

1 − 𝑧2
2

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝑦1 + 2𝑦2 − 2𝑧1 − 𝑧3 − 2 ≤ 0,
𝑥1 − 𝑥2 + 𝑦1 − 𝑧2 + 𝑧3 − 5 ≤ 0,
4𝑥1 − 2𝑦2 − 𝑧1 + 𝑧2 + 𝑧3 − 3 ≤ 0,
0 ≤ 𝑧1, 𝑧2, 𝑧3 ≤ 2.

(6.6)

The Lagrangian of (6.6) is given by ℒ(𝑥, 𝑦, 𝑧, 𝜆) = 𝑓3(𝑥, 𝑦, 𝑧)+𝜆1𝑔1 +𝜆2𝑔2 +𝜆3𝑔3, where 𝑔1 = −𝑦1 +2𝑦2−2𝑧1−
𝑧3 − 2, 𝑔2 = 𝑥1 − 𝑥2 + 𝑦1 − 𝑧2 + 𝑧3 − 5 and 𝑔3 = 4𝑥1 − 2𝑦2 − 𝑧1 + 𝑧2 + 𝑧3 − 3. After exploring all the parameter
spaces, the optimal solution to the problem (6.6) with their corresponding critical regions (see Fig. 2) are:

𝒞ℛ1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑧*(𝑥, 𝑦) =

⎡⎢⎣−0.7111𝑦1 − 0.9028𝑦2 + 1.7361𝑥1 − 0.0611
−0.3556𝑦1 + 0.7361𝑦2 − 1.5694𝑥1 + 2.5944
−0.3556𝑦1 + 0.3611𝑦2 − 0.6944𝑥1 + 0.3444

⎤⎥⎦ ,with

0.1731𝑦1 + 0.7667𝑦2 − 0.6183𝑥1 − 0.4946 ≤ 0,
0 ≤ 𝑦1, 𝑦2 ≤ 1, 0 ≤ 𝑥1, 𝑥2 ≤ 1;

and 𝒞ℛ2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑧*(𝑥, 𝑦) =

⎡⎢⎣ −1.2255𝑦1 + 0.7353
1.6071𝑦2 − 2.8571𝑥1 + 1.2857

0

⎤⎥⎦ ,with

−0.1731𝑦1 − 0.7667𝑦2 + 0.6183𝑥1 + 0.4946 ≤ 0,
0 ≤ 𝑦1, 𝑦2 ≤ 1, 0 ≤ 𝑥1, 𝑥2 ≤ 1.

Using these solutions into the second-level problem of (6.5) results in a multi-parametric problems of param-
eter 𝑥. Again by employing a multi-parametric approach, in 𝒞ℛ1 we have,⎧⎪⎨⎪⎩𝑦

*(𝑥) =

[︃
0.0561𝑥1 − 0.0358𝑥2 + 0.3433
−0.0424𝑥1 + 0.0270𝑥2 + 0.0077

]︃
,with

0 ≤ 𝑥1, 𝑥2 ≤ 1
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Figure 2. Critical regions for parametric problem (6.3).

and in 𝒞ℛ2 we have,

⎧⎪⎨⎪⎩𝑦
*(𝑥) =

[︃
−0.0838𝑥1 − 0.0105𝑥2 + 0.1864
0.8254𝑥1 + 0.0024𝑥2 + 0.6030

]︃
,with

0 ≤ 𝑥1, 𝑥2 ≤ 1.

Incorporating these solutions into the leader problem of (6.5) and solving the resulting problem, we obtain:
In 𝒞ℛ1, (𝑥, 𝑦, 𝑧) = (0.3230, 0.4720, 0.3446, 0.0068, 0.2486, 1.9699, 0) and objective value 𝐹1 = −0.8782. In 𝒞ℛ2,
(𝑥, 𝑦, 𝑧) = (0.4792, 0.6299, 0.1397, 1.0000, 0.5641, 1.5237, 0) and objective value 𝐹1 = −0.9022. Since the objec-
tive value obtained in 𝒞ℛ2 is better we can take it as an optimal solution to the upper-problem of (6.5).

Therefore, the optimal solution to the tri-level multi-leader multi-follower problem (6.4) is (𝑥*, 𝑦*, 𝑧*) =
(0.4792, 0.6299, 0.1397, 1.0000, 0.5641, 1.5237, 0) with optimal leaders objective 𝐹 1

1 = −4.8533 and 𝐹 2
1 =

−1.8072; optimal second-level objectives 𝑓1
2 = 9.1757 and 𝑓2

2 = 5.0693; and optimal third-level objectives
𝑓1
3 = −1.5750, 𝑓2

3 = −1.6124 and 𝑓3
3 = −4.5332.

Example 6.3. Consider the following bilevel two-leader two-follower problem with nonlinear constraints:⎧⎨⎩min
𝑥1

𝐹1(𝑥, 𝑦) = 𝑥2
1 + 𝑥2𝑦1 + 𝑦2

2 + 𝑥1𝑥2,

min
𝑥2

𝐹2(𝑥, 𝑦) = 𝑥2
2 − 4𝑥2 + 𝑥2

1 − 𝑦1 + 𝑥1𝑥2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3 ≤ 𝑥1, 𝑥2 ≤ 3,⎧⎨⎩min
𝑦1

𝑓1(𝑥, 𝑦) = 𝑦2
1 + 𝑥1𝑦2 + 4(𝑦1 − 𝑦2)2,

min
𝑦2

𝑓2(𝑥, 𝑦) = 𝑦2
2 − 5𝑦2 + 𝑥2𝑦1 + 2(𝑦1 − 𝑦2)2

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦2
2 + 5𝑦2 − 10𝑥1 − 15 ≤ 0,
𝑦1 − 𝑦2 − 𝑥1 + 2𝑥2 ≤ 0,
𝑦1 + 𝑦2 + 5𝑥2 − 12 ≤ 0,
−5 ≤ 𝑦1, 𝑦2 ≤ 5.

(6.7)
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Problem (6.7) can be equivalently reformulated as a bilevel single-leader single-follower problem,

min
𝑥
𝐹 (𝑥, 𝑦) = 𝑥2

1 + 𝑥2𝑦1 − 4𝑥2 + 𝑥1𝑥2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3 ≤ 𝑥1, 𝑥2 ≤ 3,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
𝑦
𝑓(𝑥, 𝑦) = 0.25𝑦2

1 + 0.5𝑦2
2 − 2.5𝑦2 + (𝑦1 − 𝑦2)2

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦2
2 + 5𝑦2 − 10𝑥1 − 15 ≤ 0,
𝑦1 − 𝑦2 − 𝑥1 + 2𝑥2 ≤ 0,
𝑦1 + 𝑦2 + 5𝑥2 − 12 ≤ 0,
−5 ≤ 𝑦1, 𝑦2 ≤ 5.

(6.8)

By treating the leaders decision variable, 𝑥 = (𝑥1, 𝑥2) as a parameter, the inner problem in (6.8) can be
considered as a multi-parametric problem:

min
𝑦
𝑓(𝑥, 𝑦) = 0.25𝑦2

1 + 0.5𝑦2
2 − 2.5𝑦2 + (𝑦1 − 𝑦2)2

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦2
2 + 5𝑦2 − 10𝑥1 − 15 ≤ 0,
𝑦1 − 𝑦2 − 𝑥1 + 2𝑥2 ≤ 0,
𝑦1 + 𝑦2 + 5𝑥2 − 12 ≤ 0,
−5 ≤ 𝑦1, 𝑦2 ≤ 5.

(6.9)

So we use multi-parametric approach discussed in Section 4 to solve (6.9). Here, 𝐺(𝑥, 𝑦) = 𝑦2
2 + 5𝑦2− 10𝑥1− 15

and 𝑔(𝑥, 𝑦) = [𝑦1 − 𝑦2 − 𝑥1 + 2𝑥2, 𝑦1 + 𝑦2 + 5𝑥2 − 12]. So for 𝑥 ∈ 𝑋* the barrier function, 𝜓(𝑥, 𝑦), is define as
𝜓(𝑥, 𝑦) = − ln(−𝐺(𝑥, 𝑦)) with domain {𝑦 : 𝐺(𝑥, 𝑦) < 0}.

Assuming the intersection of the domain of the logarithmic barrier and the polyhedral sets is nonempty, i.e.,
𝑌𝐵(𝑥) = {𝑦 : 𝐺(𝑥, 𝑦) < 0, 𝑔(𝑥, 𝑦) ≤ 0,−3 ≤ 𝑥1, 𝑥2 ≤ 3,−5 ≤ 𝑦1, 𝑦2 ≤ 5} ̸= ∅, and for 𝑡 > 0 we can define the
barrier approximation for (6.9) as

𝑊 *(𝑥, 𝑡) = min
𝑦
{0.25𝑦2

1 + 0.5𝑦2
2 − 2.5𝑦2 + (𝑦1 − 𝑦2)2 + 𝑡𝜓(𝑥, 𝑦)}

s.t.

⎧⎪⎨⎪⎩
𝑦1 − 𝑦2 − 𝑥1 + 2𝑥2 ≤ 0,
𝑦1 + 𝑦2 + 5𝑥2 − 12 ≤ 0,
−5 ≤ 𝑦1, 𝑦2 ≤ 5.

(6.10)

Problem (6.10) is a MPP with parameter 𝑥 = (𝑥1, 𝑥2) and its Lagrangian becomes,

ℒ(𝑥, 𝑦, 𝜆, 𝑡) = 0.25𝑦2
1 + 0.5𝑦2

2 − 2.5𝑦2 + (𝑦1 − 𝑦2)2 + 𝑡𝜓(𝑥, 𝑦) + 𝜆𝑇 𝑔(𝑥, 𝑦),

𝑀(𝑥, 𝑡) =
[︂
∇2

𝑦𝑦ℒ ∇𝑦𝑔

−𝜆∇𝑇
𝑦 𝑔 diag(−𝑔)

]︂
, 𝑁(𝑥, 𝑡) =

[︀
∇2

𝑥𝑦ℒ,−𝜆∇𝑥𝑔
]︀𝑇
,[︂

𝑦(𝑥, 𝑡)
𝜆(𝑥, 𝑡)

]︂
=

[︂
𝑦0
𝜆0

]︂
− [𝑀0(𝑡)]−1 ·𝑁0(𝑡) · [𝑥− 𝑥0],

where (𝑦0, 𝜆0) = (𝑦(𝑥0), 𝜆(𝑥0)), 𝑀0(𝑡) = 𝑀(𝑥0, 𝑡) and 𝑁0(𝑡) = 𝑁(𝑥0, 𝑡).
By solving the barrier problem (6.10), as 𝑡→ 0+, the solutions and the critical regions will be,

𝑦(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[︃
0.6681𝑥1 − 1.3340𝑥2 + 1.6663
−0.3319𝑥1 + 0.6660𝑥2 + 1.6663

]︃
on 𝒞ℛ1

[︃
0.5𝑥1 − 3.5𝑥2 + 6
−0.5𝑥1 − 1.5𝑥2 + 6

]︃
on 𝒞ℛ2
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Figure 3. Critical regions for the problem (6.10).

𝒞ℛ1 =
{︂
−0.0774𝑥1 + 0.9970𝑥2 − 1.9948 ≤ 0,
−3 ≤ 𝑥1 ≤ 3, 𝑥2 ≥ −3;

𝒞ℛ2 =
{︂

0.0774𝑥1 − 0.9970𝑥2 + 1.9948 ≤ 0,
−3 ≤ 𝑥1 ≤ 3, 𝑥2 ≤ 3,

where 𝒞ℛ1 and 𝒞ℛ2 are as shown in Figure 3.
Then, the critical regions of (6.9) is determined as follows:

𝒞ℛ𝐿 = {𝒞ℛ} ∩ {𝑥 : 𝐺(𝑦(𝑥), 𝑥) ≤ 0},

𝑦𝐿(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[︃
0.6681𝑥1 − 1.3340𝑥2 + 1.6663
−0.3319𝑥1 + 0.6660𝑥2 + 1.6663

]︃
on 𝒞ℛ𝐿

1

[︃
0.5𝑥1 − 3.5𝑥2 + 6
−0.5𝑥1 − 1.5𝑥2 + 6

]︃
on 𝒞ℛ𝐿

2

𝒞ℛ𝐿
1 =

⎧⎨⎩0.0774𝑥1 + 0.9970𝑥2 − 1.9948 ≤ 0,
0.1102𝑥2

1 − 0.4421𝑥1𝑥2 − 12.7660𝑥1 + 0.4435𝑥2
2 + 5.5491𝑥2 − 3.8917 ≤ 0,

−3 ≤ 𝑥1 ≤ 3, 𝑥2 ≥ −3;

𝒞ℛ𝐿
2 =

⎧⎨⎩−0.0774𝑥1 − 0.9970𝑥2 + 1.9948 ≤ 0,
0.25𝑥2

1 + 1.5𝑥1𝑥2 − 18.5𝑥1 + 2.25𝑥2
2 − 25.5𝑥2 + 51 ≤ 0,

−3 ≤ 𝑥1 ≤ 3, 𝑥2 ≤ 3,

where 𝒞ℛ𝐿
1 and 𝒞ℛ𝐿

2 are as shown in Figure 4.
The rest of the spaces will be,

𝒞ℛ𝑁𝐿
1 =

⎧⎨⎩0.0774𝑥1 + 0.9970𝑥2 − 1.9948 ≤ 0,
0.1102𝑥2

1 − 0.4421𝑥1𝑥2 − 12.7660𝑥1 + 0.4435𝑥2
2 + 5.5491𝑥2 − 3.8917 ≥ 0,

−3 ≤ 𝑥1 ≤ 3, 𝑥2 ≥ −3;
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Figure 4. Critical regions for the problem (6.10).

𝒞ℛ𝑁𝐿
2 =

⎧⎨⎩−0.0774𝑥1 − 0.9970𝑥2 + 1.9948 ≤ 0,
0.25𝑥2

1 + 1.5𝑥1𝑥2 − 18.5𝑥1 + 2.25𝑥2
2 − 25.5𝑥2 + 51 ≥ 0,

−3 ≤ 𝑥1 ≤ 3, 𝑥2 ≤ 3.

Next we will determine the nonlinear solution as follows:

In 𝒞ℛ𝑁𝐿
1 the solution is determined from 𝑌𝑁𝐿(𝑥) = arg{𝐺(𝑥, 𝑦) = 0, 𝑔2(𝑥, 𝑦) < 0}

𝑦𝑁𝐿(𝑥) = arg{𝑦2
2 + 5𝑦2 − 10𝑥1 − 15 = 0, 𝑦1 + 𝑦2 + 5𝑥2 − 12 < 0},

which is infeasible.

In 𝒞ℛ𝑁𝐿
2 the solution is determined from 𝑌𝑁𝐿(𝑥) = arg{𝐺(𝑥, 𝑦) = 0, 𝑔2(𝑥, 𝑦) = 0}

𝑦𝑁𝐿(𝑥) = arg{𝑦2
2 + 5𝑦2 − 10𝑥1 − 15 = 0, 𝑦1 + 𝑦2 + 5𝑥2 − 12 = 0},

which results in

𝑌𝑁𝐿(𝑥) =
[︂
∓0.5

√︀
5(8𝑥1 + 17)− 5𝑥2 + 14.5

±0.5
√︀

5(8𝑥1 + 17)− 2.5

]︂
.

Since 𝑦 = (−0.5120, 2.7547) at 𝑥 = (0.6362, 1.9515) which is a common point for 𝒞ℛ𝐿
1 , 𝒞ℛ𝐿

2 and 𝒞ℛ𝐿
2 , the only

nonlinear parametric solution is

𝑌𝑁𝐿(𝑥) =
[︂
−0.5

√︀
5(8𝑥1 + 17)− 5𝑥2 + 14.5

0.5
√︀

5(8𝑥1 + 17)− 2.5

]︂
,

which is valid in 𝒞ℛ𝑁𝐿
2 .
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Therefore, the optimal solution is given by,

𝑦(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[︃
0.6681𝑥1 − 1.3340𝑥2 + 1.6663
−0.3319𝑥1 + 0.6660𝑥2 + 1.6663

]︃
on 𝒞ℛ𝐿

1

[︃
0.5𝑥1 − 3.5𝑥2 + 6
−0.5𝑥1 − 1.5𝑥2 + 6

]︃
on 𝒞ℛ𝐿

2

Infeasible on 𝒞ℛ𝑁𝐿
1[︃

−0.5
√︀

5(8𝑥1 + 17)− 5𝑥2 + 14.5
0.5

√︀
5(8𝑥1 + 17)− 2.5

]︃
on 𝒞ℛ𝑁𝐿

2

where 𝒞ℛ𝐿
1 , 𝒞ℛ

𝐿
2 , 𝒞ℛ

𝑁𝐿
1 and 𝒞ℛ𝑁𝐿

2 are as indicated in Figure 4.
Incorporating the solution 𝑦(𝑥) into the upper-level problem of (6.8) and solving the resulting nonlinear

problems in each critical regions, we get following optimal solutions:
In 𝒞ℛ𝐿

1 , (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (−0.4365, 1.0305,−0.0000, 2.4975) and objective value 𝐹 = −2.2574.
In 𝒞ℛ𝐿

2 : (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (1.2998, 1.9000,−0.0000, 2.5002) and objective value 𝐹 = 3.7788.
In 𝒞ℛ𝑁𝐿

2 : (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (−0.5710, 1.1428, 4.8437, 1.4421) and objective value 𝐹 = −2.2857.
Now, comparing all the values of the objective of the leader in each of the critical regions, we can see that

the objective value obtained in 𝒞ℛ𝑁𝐿
2 gives a better result. Hence we take the solution in 𝒞ℛ𝑁𝐿

2 as an optimal
solution to the upper-problem of (6.8).

Therefore, the optimal solution to the bilevel multi-leader multi-follower problem (6.7) is (𝑥*, 𝑦*) =
(−0.5710, 1.1428, 4.8437, 1.4421) with optimal leaders objective 𝐹1 = 7.2880 and 𝐹2 = −8.4355; and optimal
followers objective 𝑓1 = 68.9219 and 𝑓2 = 41.1532.

7. Conclusion

This work proposes a solution procedure for a class of hierarchical multi-leader multi-follower games whose
objective functions at each level have non-separable terms and some polyhedral constraints. The solution pro-
cedure transforms the given problem into an equivalent multilevel hierarchical problems having single decision
maker at each level of the hierarchy and without increasing the level of hierarchy in the problem. The equiv-
alent reformulation maintains the equilibrium points of the original problem, so that we can use any of the
existing methods to solve the resulting multilevel problem with one player at each level. In this article the
multi-parametric approach is employed to solve the resulting multilevel optimization problem. The proposed
equivalence reformulation does not require the smoothness of the involved functions. However, due to the require-
ments of the multi-parametric solution methods (that is used to solve multilevel hierarchical problems in this
article), we additionally imposed second order smoothness conditions as well as convexity of the lower level
problems. These conditions may not be necessary if one uses other methods (like the heuristic methods) to solve
the resulting equivalent multilevel hierarchical optimization problems.
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