
MIXTURES OF BETA WEIBULL G FAMILY OF DISTRIBUTIONS AND

APPLICATIONS

BY

TEFO BARAKI

Reg. No:12000553

BSc Applied Science (Mathematics and Statistics), (BIUST, BW)

Department of Mathematics and Statistical Sciences

Faculty of Sciences

Botswana International University of Science and Technology

E-mail: tefo.baraki@studentmail.biust.ac.bw

A Thesis Submitted to the Faculty of Sciences in Partial Fulfilment of the Requirement

for the Award of the Degree of Masters in Statistics of BIUST

Supervisors:

Dr Nkumbuludzi Ndwapi Dr Thabiso Maupong

Department of Mathematics Department of Computer

and Statistical Sciences Science and Information Systems

Faculty of Sciences, BIUST Faculty of Sciences, BIUST

Email: ndwapin@biust.ac.bw Email: maupongt@biust.ac.bw

Signature:............................................ Signature.........................................

Date:................................................. Date...............................................

November, 2020

23 July 202123 July 2021



Declaration and Copyright
I Tefo Baraki, with student ID 12000553, hereby declare that this thesis has been

composed by myself and that it has never been submitted for a degree at this or any

other university or institution of higher learning. I confirm that the work contained

in this thesis is my own research work under the supervision of Dr N. Ndwapi and Dr

T. Maupong. Any work done by others has been acknowledged and referenced accordingly.

Signature:............................................................. Date:..............................................................

This thesis is copyright material protected under the Berne Convection, the Copyright Act of

1999 and other international and national enactments, in that behalf, on intellectual property.

It must not be reproduced by any means, in full or part, except in short extracts in fair dealing;

for researcher private study, critical scholarly review or discourse with an acknowledgement,

without the written permission of the office of the Provost on behalf of both the author and the

Botswana International University of Science and Technology.

1

23 July 2021



Certification
The undersigned certify that they have read and hereby recommend for acceptance by the Faculty

of Science a thesis titled: MIXTURES OF BETA WEIBULL G FAMILY OF DISTRIBUTIONS

AND APPLICATIONS, in fulfilment of the requirements for the Degree of Masters in Statistics

of BIUST.

Supervisors:
Dr Nkumbuludzi Ndwapi Dr Thabiso Maupong

Department of Mathematics Department of Computer

and Statistical Sciences Science and Information Systems

Faculty of Sciences, BIUST Faculty of Sciences, BIUST

Email: ndwapin@biust.ac.bw Email: maupongt@biust.ac.bw

Signature:............................................ Signature.........................................

Date:................................................. Date...............................................

2

23 July 202123 July 2021



Acknowledgements
I would like to thank my supervisor Dr Nkumbuludzi Ndwapi for his guidance and support

during my studies. His insightful discussions have steered me in the right direction, whenever

he thought I needed it. He consistently allowed this thesis to be my own work, whilst giving un-

wavering support. Secondly, I would like to thank Dr Thabiso Maupong for being a co-supervisor

to my work. He has availed himself whenever I needed guidance, and he has particularly made a

great contribution to my research writing.

I would like to thank my friends and family for their encouragement throughout my academic

journey.

Finally, I will like to express my sincere gratitude to the Botswana Insurance Holdings Limited

company, for funding my studies through the Professor Thomas Tlou Scholarship.

3



Contents

Acknowledgements 3

List of Figures 6

List of Tables 7

Abstract 8

1 Introduction 9

1.1 Clustering and Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 14

2.1 Mixture Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Parametric Estimation of Mixture Distributions . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 The Expectation Maximisation Algorithm . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 The Newton Raphson Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 The Bayesian Information Criterion . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Model Based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Performance Diagnostics in Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 The Adjusted Rand Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Mixture Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The Beta Weibull G family of Distributions . . . . . . . . . . . . . . . . . . . . . . . . 21

4



3 Mixture of the Beta Weibull G Family of Distributions 23

3.1 Parametric Estimation of BWG Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Identifiability of BWG mixture models . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 The EM Algorithm for BWG Mixtures . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Model Based Clustering with BWG Mixtures . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Mixture Discriminant Analysis with BWG Mixtures . . . . . . . . . . . . . . . . . . . 29

3.4 Mixture of the Beta Weibull log logistic Distribution . . . . . . . . . . . . . . . . . . . 29

3.5 Mixture of the Beta Weibull Exponential Distribution . . . . . . . . . . . . . . . . . . 35

4 Discussion of results 41

4.1 Mixture models for simulated BWLLoG distributions (A-B data) . . . . . . . . . . . . 41

4.2 Constrained mixture models for simulated BWLLoG distributions (A-B data) . . . . 43

4.3 Mixture models for simulated BWLLoG distributions (B-C data) . . . . . . . . . . . . 43

4.4 Constrained mixture models for simulated BWLLoG distributions (B-C data) . . . . 45

4.5 Mixture models for BWLLoG distributions (Yarn data) . . . . . . . . . . . . . . . . . 45

4.6 Constrained mixture models for BWLLoG distributions (Yarn data) . . . . . . . . . . 46

4.7 Mixture models for simulated BWE distributions (A-B data) . . . . . . . . . . . . . . 47

4.8 Constrained mixture models for simulated BWE distributions (A-B data) . . . . . . 48

4.9 Mixture models for simulated BWE distributions (B-C data) . . . . . . . . . . . . . . 49

4.10 Constrained mixture models for simulated BWE distributions (B-C data) . . . . . . 50

5 Conclusion 52

5.1 The partial derivatives of the complete log likelihood function of BWG mixture . . . 57

5.2 The partial derivatives of the complete log likelihood of the BWLLoG mixture . . . . 60

5.3 The partial derivatives of the complete log likelihood of the BWE mixture . . . . . . 63

5.4 Identifiability of mixture models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5



List of Figures

3.1 Density plots of the Beta Weibull log logistic distribution with different parameter

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Density plots of mixtures of the Beta Weibull log logistic distribution with different

parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Density plots of the Beta Weibull Exponential distribution with different parameter

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Density plots of mixtures of the Beta Weibull Exponential with different parameter

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6



List of Tables

4.1 Two component full mixtures for BWLLoG (A & B) . . . . . . . . . . . . . . . . . . . . 42

4.2 Two component constrained mixtures for BWLLoG (A & B) . . . . . . . . . . . . . . . 43

4.3 Two component full mixtures for BWLLoG (B & C) . . . . . . . . . . . . . . . . . . . . 44

4.4 Two component constrained mixtures for BWLLoG (B & C) . . . . . . . . . . . . . . . 45

4.5 Two component full mixtures for BWLLoG (Yarn data) . . . . . . . . . . . . . . . . . 46

4.6 Two component constrained mixtures for BWLLoG (Yarn data) . . . . . . . . . . . . 47

4.7 Two component full mixtures for BWE (A & B) . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Two component constrained mixtures for BWE (A & B) . . . . . . . . . . . . . . . . . 49

4.9 Two component full mixtures for BWE (B & C) . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Two component constrained mixtures for BWE (B & C) . . . . . . . . . . . . . . . . . 51

7



Abstract
Mixture models have gained popularity in statistical analyses because of their flexibility in cap-

turing local variations in heterogeneous populations. Model based approaches to classification

use mixture models to fit data via maximum likelihood based approaches and provide labels to

unlabelled observations. Over the years model based approaches have grown into an important

sub-field of classification because they provide the uncertainty of classifying the unlabelled ob-

servations as probabilities. Despite many advances in model based approaches to classification,

not much work is evidenced in the literature where reliability data is concerned. The Weibull

mixtures are often used in modelling reliability data but they are limited to data with monotone

failure rates. To this end we introduce a Beta Weibull G (BWG) mixture that provides an appeal-

ing framework for handling reliability data with non monotone failure rate functions. Parametric

estimation is executed by the Expectation Maximization algorithm, which is an extension of max-

imum likelihood estimation. The Bayesian Information Criterion is used for model selection.

Model based clustering and mixture discriminant analysis techniques are used to assign labels

to unlabelled observation. These labels are cross validated by the Adjusted Rand Index. Ad-

ditionally, parsimony is introduced to the BWG mixtures, by adding constraints on some of the

parameter estimates. The constrained models give rise to simple models with great explanatory

predictive power. To demonstrate the utility of the proposed approaches, different data sets are

simulated to mimic reliability data with non monotone failure rates. The findings of this the-

sis demonstrate that mixtures of the BWG family of distributions fit heterogeneous population

with non monotone hazard rates better than mixtures of the Weibull distributions as evidenced

by higher values of BIC for BWG mixtures. The BWG mixtures performed better than Weibull

mixtures in both model based clustering and mixture discriminant analysis as demonstrated by

high values of the ARI.
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Chapter 1

Introduction

Reliability studies investigate time-to-event of objects in a population. This could be the time it

takes for car tyres to be worn out, light bulbs to die or yarn fabrics to break. Conventionally, the

Weibull distribution is used to fit reliability data, see Nelson (1985), Rinne (2008) and Meeker and

Escobar (2014) . Fitting reliability data with the Weibull distribution is done under the assump-

tion that the data has a monotone failure rate function. The monotone failure rate functions only

capture failure rates that either decrease or increase over time. These are events when defective

items are removed early from a population or when items become defective at a later stage in a

population. However, there are cases where the failure rate function is non monotone. Examples

of such cases include bathtube failure rate function discussed by Almalki and Nadarajah (2015)

and unimodal failure rates studied in Merovci and Elbatal (2015). In these cases the Weibull

distribution is not a reasonable fit due to the non monotone failure rate functions.

Over the years, there have been some generalisations of the Weibull distribution to accommodate

various forms of the failure rate function. Examples include new generalised class of modified

Weibull distributions investigated by Oluyede et al., (2015) , gamma Weibull G family of distri-

butions suggested by Oluyede (2018) and the Beta Weibull G family of distributions (BWG) intro-

duced by Fagbamigbe et al., (2018) . Even though the BWG family of distributions is flexible in

modelling various failure rates, it does not provide a sufficient fit for a heterogeneous population.

Heterogeneous data usually occur when the observed data aggregate into two or more groups

which result in unknown distributional shapes. Authors such as McLachlan and Peel (2000)

and Titterington et al., (1985) argue that heterogeneous data are not sufficiently fitted using

one statistical distribution due to their unknown distributional shapes. A common approach

when data do not follow one statistical distribution is to use mixture distributions. These are
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compositions of more than one statistical distributions. Mixture distributions are convenient in

fitting heterogeneous data due to their flexibility in capturing local variations in observed data,

as opposed to using one classical distribution.

In the context of mixture modelling, data are viewed to be arising from more than one population.

The distributions of the underlying sub-populations are called the component distributions and

their weighted sum is a probability distribution called the mixture distribution. Mixture models

have been used by several authors in fitting heterogeneous data. A classical example is the work

of Pearson (1894), who applied a mixture of two normal distributions to a data set from Weldon

(1892) , where the normal distribution was a poor fit for the skewed data.

Apart from fitting heterogeneous data, mixture models are a good tool to use in classification

problems, see Ko et al., (2007), McNicholas (2010) and McNicholas (2016). Classification is

concerned with assigning labels to observations where either all observations do not have labels

or some observations do not have labels. Classification can be explained in terms of clustering

and discriminant analysis.

1.1 Clustering and Discriminant Analysis

Clustering partitions data into groups with similar characteristics, on the assumption that none

of the observations has a prior class label. Some of clustering techniques include approaches

such as hierarchical clustering, K-means clustering and model-based clustering. K-means and

hierarchical clustering are simple techniques but they are not always ideal for mixture models.

This is because K- means clustering is sensitive to noise and outliers while hierarchical clustering

is such that once a particular merge or split decision is made then the method cannot backtrack

and make any adjustments. Moreover, the method does not have explicit clusters.

A superior approach to clustering is the model based clustering technique. Model based cluster-

ing is explained by McNicholas (2010) as an unsupervised learning technique that uses mixture

models to aggregate data into clusters. Observations following the same distribution are assigned

to the same cluster.

Discriminant analysis on the other hand is a type of classification in which some observations

have class labels whilst other observations do not have labels and only the observations which
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are prior labelled into groups are used to infer labels of unlabelled observations. Fisher0s discrim-

inant function, Linear discriminant analysis (LDA) and Quadratic discriminant analysis (QDA)

are the most commonly used techniques due to their ease in implementation. Unfortunately these

methods have strong assumptions. For example, Fisher0s discriminant method assumes equal co-

variance structure of the underlying population while LDA assumes normality and homogeneous

class covariance and QDA assumes normality with heterogeneous class covariance. When these

assumptions are violated, an alternative approach is the mixture discriminant analysis (MDA).

Mixture discriminant analysis, explained in detail by Hastie and Tibshirani (1996), is a super-

vised learning technique that uses mixture models to develop a discriminant rule. In MDA, la-

belled observations are used to derive the discriminating rule, then the unlabelled observations

are assigned labels based on this discriminating rule.

1.2 Contributions

An extensive literature review on mixture models of reliability data, yields mixtures of the classi-

cal Weibull distributions, see Bucar et al., (2004) , Qin et al., (2012), Razali and Al-Wakeel (2013)

and Shin et al., (2016). However, it can be argued that mixtures of the classical Weibull distribu-

tion do not model heterogeneous population with non monotone failure rates effectively. To this

end, the use of the Beta Weibull G family of distributions in mixture modelling is proposed.

A hypothesis that the BWG mixture out performs the mixture of Weibull distributions is made,

because the BWG family of distributions is more flexible than the Weibull distribution. In this

thesis two special cases of the mixtures of BWG family of distributions are developed. These

are mixtures of Beta Weibull log logistic distribution (BWLLoG) and mixtures of Beta Weibull

Exponential distribution (BWE). These extensions have applications in the textile industry as

demonstrated by Fagbamigbe et al., (2018) , and these mixtures could also be applied in other

areas where the reliability data follow non monotone failure rate functions. The utility of the

proposed mixtures will be demonstrated by real data sets and simulated data sets. Parameter es-

timation for the mixture models will be done using the Expectation Maximisation (EM) algorithm

and the Bayesian Information Criterion (BIC) will be used for model selection.

The contributions of this thesis are as follows.

• Mixtures of the Beta Weibull G Family of Distributions.

The proposed mixtures fill the gap where fitting heterogeneous reliability data sets by the
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classical Weibull mixture is not a reasonable fit. This typically occurs when the underlying

sub populations have non monotone hazard functions. Also some constraints are imposed on

parameters of the BWG mixture models, resulting in simpler models with high explanatory

and predictive power.

• Model Based Classification with Mixtures of the Beta Weibull G Family of Distributions.

We propose model based approaches to classification that are tailored for reliability data:

where the underlying sub populations have non monotone hazard functions. These model

based approaches to classification are also extended to using BWG mixture models with

fewer parameter estimates.

1.3 Thesis Structure

1.3.1 Chapter 2

This chapter provides background information on;

• Mixture distributions with emphasis on parameter estimation using the Expectation Max-

imisation (EM) algorithm as an extension of maximum likelihood estimation.

• The Newton Raphson algorithm and EM algorithm and their application in parameter

estimation.

• Criterion used for model selection.

• Model based clustering (MBC).

• Mixture Discriminant Analysis (MDA).

• Performance diagnostics in clustering and discriminant analysis.

• The Beta Weibull G family of distributions.

1.3.2 Chapter 3

This chapter consists of the contributions of this thesis.

• The construction of mixtures of the Beta Weibull G family of distributions.

• An overview of how the EM algorithm will be used for parameter estimation in mixtures

of Beta Weibull G Family of distribution is given.
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• An overview of how model based clustering and mixture discriminant analysis with mix-

tures of Beta Weibull G Family of Distributions.

• Special cases of mixtures of the Beta Weibull G family of distribution being the mixture of

Beta Weibull log logistic (BWLLoG) distribution and the mixture of Beta Weibull Exponen-

tial (BWE) distribution.

1.3.3 Chapter 4

In this chapter the utility of the proposed techniques in Chapter 2 is demonstrated by;

• Providing simulated data sets and some real life data sets to be used in the analyses.

• Fitting both the full and parsimonious mixture models of the BWG family of distributions.

• Performing model based clustering and mixture discriminant analysis using the BWG

mixtures.

1.3.4 Chapter 5

This chapter highlights the conclusions reached from this work and makes suggestions for future

work.

13



Chapter 2

Background

This chapter provides background information on mixture distributions with emphasis on param-

eter estimation using the Expectation Maximisation (EM) algorithm as an extension of maximum

likelihood estimation. A detailed account of the Newton Raphson algorithm and EM algorithm

is also provided. In addition this chapter addresses convergence criterion of the EM algorithm

and model selection. A discussion on model based clustering and mixture discriminant analysis

then follows. Within the chapter, diagnostics in clustering and discriminant analysis are also

discussed. A discussion of the Beta Weibull G family of Distributions concludes the chapter.

2.1 Mixture Distribution

Mixture distributions model heterogeneous population by a weighted sum of probability density

functions with non negative mixing proportions that sum to unity. The statistical distributions

of the sub-populations are called the components of the mixture and their weighted sum is a

probability distribution called the mixture distribution.

A formal definition of a parametric finite mixture given by Titterington et al., (1985), is as follows.

Let X be a set of observations from a distribution with a density function

f(x | ⇥) =
GX

g=1

⇡gfg(x | ✓g) (2.1)

then x 2 X arises from a parametric finite mixture distribution, where G is the number of compo-

14



nents of the mixture, ⇡g > 0 are mixing proportions such that
PG

g=1 ⇡g = 1, ⇥ = [⇡1, ...,⇡G,✓1, ...,✓G] is the vector of parameters and fg(x | ✓g) is the compo-

nent probability density function of the g
th component. Usually the component distributions are

taken from the same family of distribution.The vector of parameters ⇥ = [⇡1, ...,⇡G,✓1, ...,✓G] is

unknown and it should be estimated in order to fully characterise the mixture model.

2.2 Parametric Estimation of Mixture Distributions

There are several methods that can be used to approximate the vector of parameters ⇥ =

[⇡1, ...,⇡G,✓1, ...,✓G]. These include methods of moments, maximum likelihood estimation (MLE),

Bayes0 estimation and minimum �
2. Authors such as Day (1969), Tan and Chang (1972), Hol-

gersson and Jorner (1978) have compared the afore mentioned techniques and concluded that the

best fit is achieved by the maximum likelihood estimation.

A formal definition of the likelihood function of a mixture distribution given by McLachlan and

Peel (2000), is

`(⇥ | x) :=
nY

i=1

GX

g=1

⇡gf(xi | ✓g), (2.2)

where n is the number of observations, xi is the i
th observation and G,⇡g, ✓g are the same as in

equation 2.1.

Then the log likelihood function of a mixture is defined by

``(⇥ | x) = log

nY

i=1

GX

g=1

⇡gf(xi | ✓g). (2.3)

To simplify the computation of the log likelihood function of the mixture for each of the groups

the variable zig associated with the i
th observation in the g

th group is introduced. The variable,

zig equals to 1 if the observation xi belongs to a sub-population g and 0 otherwise and the vector

z = [zi1, zi2, ..., znG].

The G component mixture distribution is such that the observation xi belongs to exactly one of

the sub-populations g = 1, 2, ..., G. The observed data are viewed to be incomplete because the

latent variables associated with component labels are unobserved. McLachlan and Peel (2000)

incorporated the latent variable zig in the log likelihood function of mixture models, resulting

15



in the complete log likelihood function of a mixture distributions. The complete log likelihood

function of a mixture distribution is defined by

``c(⇥ | x, z) :=
nX

i=1

GX

g=1

zig(log⇡g + logf(xi | ✓g)). (2.4)

The complete log likelihood plays a key role in parameter estimation via the EM algorithm as

outlined in section 2.2.1.

2.2.1 The Expectation Maximisation Algorithm

The EM algorithm proposed by Dempster et al., (1977) , is a general iterative method for

maximum likelihood parameter estimation when the data are incomplete. The EM algorithm

works well in estimating parameters in mixture models. The algorithm alternates between two

steps, the expectation step (E-step) and the maximisation step (M-step). On each E-step, the

expected value of the complete-data log-likelihood is calculated conditional on current parameter

estimates.

Let Q = ``c(⇥ | x, z) be the complete log likelihood of the mixture model defined by

Q =
nX

i=1

GX

g=1

ziglog(⇡gf(xi | ✓g)).

The expected value of the complete log likelihood is calculated as follows,

E(Q) =
nX

i=1

GX

g=1

log(⇡gf(xi | ✓g))E[zig | xi]. (2.5)

By Bayes theorem, the expected value (eig) of the latent variable zig is calculated as

E[zig | xi] = P (zig = 1 | xi)

=
⇡gf(xi | ✓g)PG
h=1 ⇡hf(xi | ✓h)

= eig. (2.6)
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From (2.5) and (2.6) it follows that,

E(Q) =
nX

i=1

GX

g=1

log(⇡gf(xi | ✓g))eig

=
nX

i=1

GX

g=1

(eiglog⇡g) +
nX

i=1

GX

g=1

eiglogf(xi | ✓g). (2.7)

The updated log likelihood follows from replacing zig by their expected values. This is equivalent

to replacing zig by its estimate ẑig.

ẑig :=
⇡̂gf(xi | ✓̂g)PG
h=1 ⇡̂hf(xi | ✓̂h)

(2.8)

For each M-step, the maximum likelihood estimates of the model parameters are updated based

on maximising the expected value of the complete-data log-likelihood (``c(⇥ | x, z)) from the

preceding E-step with respect to ⇥. Then by using Lagrange multipliers (�),

@

@⇡g

0

@
nX

i=1

GX

g=1

(ẑiglog⇡g) + �[
GX

i=1

⇡g � 1]

1

A = 0

and
@

@�

0

@
nX

i=1

GX

g=1

(ẑiglog⇡g) + �[
GX

i=1

⇡g � 1]

1

A = 0,

thus � = �n.

Then the updated estimates ⇡̂g are obtained as

⇡̂g =
1

n

nX

i=1

GX

g=1

ẑig, (2.9)

The updated estimates ✓̂g are obtained as solutions of

@

@✓g

0

@
nX

i=1

GX

g=1

ẑig(logf(xi | ✓g))

1

A = 0. (2.10)

Where there are no analytical solutions to equation 2.10 numeric techniques are used to find

updated estimates ✓̂g. There are several iterative techniques that are used to calculate numeric

solutions to problems in optimizations when analytical solutions are not plausible. These include

quasi-Newton methods, modified Newton methods and Newton Raphson method.
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2.2.2 The Newton Raphson Algorithm

The Newton Raphson method explained by Little and Rubin (2014) is a technique that uses the

linear Taylor series expansion to find maximum likelihood estimates. In the context of finite mix-

tures, a system of partial derivatives of the complete log likelihood is represented as a Jacobian

matrix denoted by J(⇥ | x, z). Thus the Newton Raphson method finds solutions to

J(⇥ | x, z) = @``c(⇥, z | x)
@✓g

= 0.

The gradient of J(⇥ | x) is approximated by a linear Taylor series expansion about the current

estimate ⇥(s) of the parameter ⇥. The gradient of J(⇥ | x, z) is a Hessian matrix denoted by

H(⇥ | x, z) and defined by

H(⇥ | x, z) = @
2
``c(⇥, z | x)

@✓2
g

.

Hence,

J(x, z | ⇥) ⇡ J(x, z | ⇥(s))�H(⇥(s) | x, z)(⇥�⇥(s)).

The new estimate ⇥(s+1) is found by rearranging the equation above.

⇥(s+1) ⇡ ⇥(s) +H
�1(⇥(s) | x, z)J(x, z | ⇥).

In this thesis the M step in the EM algorithm will be executed using the Newton Raphson algo-

rithm.

The EM algorithm will alternate between these two steps until a convergence criterion is sat-

isfied. Conversely the EM algorithm is stopped when the likelihood function is not improving

significantly for consecutive iterations. That is when `
(k+1) � `

(k)
< ✏, where ✏ is a small value

indicating the allowed margin of error.

Over the years several authors such as Aitken (1926), Bohning et al., (1994), Lindsay (1995) and

McNicholas (2010) have made suggestions on the convergence criterion of the EM algorithm. In

this thesis the convergence criterion suggested by McNicholas (2010) will be used. This criterion

is given by

`
(k+1)
1 � `

(k)
< ✏

where `
(k+1)
1 = `

(k) + 1
1�a(k)

(`(k+1) � `
(k)) and a

(k) = `(k+1)�`(k)

`(k)�`(k�1)
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2.2.3 The Bayesian Information Criterion

The Bayesian Information Criterion (BIC), proposed by Schwarz (1978) is given by

BIC = 2``(⇥̂ | x)� plog(n),

where ⇥̂ is the maximum likelihood estimate of ⇥, ``(⇥̂ | x) is the maximised log likelihood and

p is the number of free parameters. The larger the value of BIC the better the model.

According to Keribin (2000) and Dasgupta and Raftery (1998) the BIC is commonly used to choose

the number of components in mixture models. Even though the BIC is popularly used, McNicholas

(2016) argues that it does not necessarily give the best classification performance amongst candi-

date models. In this thesis the BIC will be used for model selection because it penalises for the

number of parameters used in the mixture model.

2.3 Model Based Clustering

Model based clustering uses finite mixture models to perform clustering. This method supposes

that the data follow a certain probability distribution model and it allocates observations fol-

lowing the same distribution into the same cluster. This is achieved by finding the maximum

likelihood estimates of the mixture model via the EM algorithm and obtaining the partitions by

using posterior probability estimation.

The predicted clustering results are given by a posterior probability defined by

ẑig :=
⇡̂gf(xi | ✓̂g)PG
h=1 ⇡̂hf(xi | ✓̂h)

. (2.11)

The estimate ⇡̂g can be viewed as the prior probability that xi belongs to the g
th sub-population.

Then the posterior probability of zig given the observed value of xi will be central for clustering

purposes.

According to Kaufman and Rousseeuw (2009) and Bezdek (2013) the assignment of points to clus-

ters is soft, if the membership of a data point in a cluster is given as a probability. This allows the

observations to belong to several clusters simultaneously, with different degrees of membership.

The assignment of points to clusters is hard if a strict regulation that each observation belongs
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to exactly one cluster is imposed. The assignment of labels can be hardened by the maximum a

posterior (MAP), MAP{ẑig} = 1 if g= arg maxh {ẑih} occurs at component h and MAP{ẑig} = 0 oth-

erwise. This allows each observation to belong to exactly one cluster. Each observation is assigned

to a cluster where the degree of membership of that observation is maximum. In this thesis the

model based clustering with hard posterior will be used so that each observation is assigned to

exactly one cluster.

2.4 Performance Diagnostics in Clustering

2.4.1 The Adjusted Rand Index

The Adjusted Rand Index suggested by Hubert and Arabie (1985) is a correction of the Rand index

for the number of pairwise agreements that would be expected to occur if the observations were

classified at random. The similarity evaluation is defined by

ARI =
RI � expectedRI

maximumRI � expectedRI
.

where RI is the rand index.

The Rand Index (RI) by Rand (1971) is an evaluation measure for a clustering problem based on

the number of pairwise class agreement (A) and the number of pairwise class disagreement(D)

between object pairs thus making a comparison of the true class labels and the predicted class

labels. The similarity evaluation is defined by

RI =
A

A+D
,

where RI 2 [0, 1], and RI=1 indicates perfect class agreement. The interpretation of the ARI is

similar to that of the RI except that an ARI value of 0 indicates classification results that would

be expected under random classification. In this thesis, the ARI will be used to cross validate the

labels assigned by model based clustering and mixture discriminant analysis techniques since the

ARI is corrected for random allocation.
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2.5 Mixture Discriminant Analysis

Mixture discriminant analysis is based on the use of finite mixtures to perform discriminant anal-

ysis. This method as explained by Hastie and Tibshirani (1996) , allocates observations following

the same distribution into the same group.

Suppose there are n observations where only the first k observations have a prior class label.

Within the mixture discriminant analysis paradigm only these k observations are used to es-

timate the model parameters via the EM algorithm. The class labels of the n � k unlabelled

observations are then predicted by posterior probability defined by

ẑjg :=
⇡̂gf(xj | ✓̂g)PG
h=1 ⇡̂hf(xj | ✓̂h)

. (2.12)

for j = k + 1, ..., n.

These ẑjg play the role of a discriminant rule. Similar to model based clustering the posterior

predicted classifications are soft and they can be hardened to MAP classifications.

2.6 The Beta Weibull G family of Distributions

Beta Weibull G Family of Distributions (BWG) was proposed by Fagbamigbe et al., (2018). It

generalizes the Weibull distribution which is widely used in survival analysis and reliability

studies.

Let X = {x1, x2, ..., xn} be a set of observations coming from a BWG family of distributions. Then

x 2 X has a probability density function (pdf) given by;

fBWG(x; a, b,↵,�, �) = ↵�
B(a,b)m(x; �)M(x;�)��1

M̄(x;�)�+1 exp

⇢
�↵b

h
M(x;�)
M̄(x;�)

i��

⇥

1� exp

⇢
�↵

h
M(x;�)
M̄(x;�)

i���a�1

, (2.13)

where x > 0, a > 0, b > 0, ↵ is a scale parameter such that ↵ > 0, � is a shape parameter

such that � > 0 , � is the parameter of the underlying baseline distribution such that � > 0.

Moreover, m(x; �) is the probability density function of the baseline distribution, M(x; �) is the

cumulative distribution function of the baseline distribution and M̄(x; �) is the survival function
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of the baseline distribution.

The BWG family of distributions models complex data with non monotone failure rates such as

bath tube and up side down bath tube. It is thus more flexible than the Weibull distributions.

Fagbamigbe et al., (2018) used the BWG family of distributions to fit the time to failure of yarn,

taking the underlying baseline distribution to be the log logistic distribution. In this thesis the

BWG distribution will be used as a component density for mixtures of reliability data with non

monotone failure rates.
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Chapter 3

Mixture of the Beta Weibull G Family

of Distributions

This chapter begins with the construction of mixtures of the Beta Weibull G family of distribu-

tions. As previously discussed in the introduction, mixtures of Beta Weibull G Family of distri-

butions are used in a heterogeneous population that has several causes of failure where each

cause of failure follows a Beta Weibull G distribution. The chapter proceeds by developing an

EM algorithm that will be used for parameter estimation in mixtures of Beta Weibull G Family of

distributions. We further develop model based clustering and mixture discriminant analysis tech-

niques that are tailored for mixtures of Beta Weibull G Family of Distributions. The chapter ends

by giving special cases of mixtures of the Beta Weibull G family of distribution being the mixture

of Beta Weibull log logistic (BWLLoG) distribution and the mixture of Beta Weibull Exponential

(BWE) distribution.

A BWG mixture follows from equation 2.1 where the component distributions follow from equa-

tion 2.13. Thus the mixture will be defined as ;

f(x | ⇥) =
GX

g=1

⇡gfBWG(x; ag, bg,↵g,�g, �g)

=
GX

g=1

⇡g↵g�g

B(ag, bg)
m(x; �g)

M(x; �g)�g�1

M̄(x; �g)�g+1
exp

(
�↵gbg


M(x; �g)

M̄(x; �g)

��g
)

⇥
"
1� exp

(
�↵g


M(x; �g)

M̄(x; �g)

��g
)#ag�1

(3.1)

The parameters in the above mixture distribution are unknown and they are estimated based on
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the complete log likelihood function.

3.1 Parametric Estimation of BWG Mixtures

The complete log likelihood function of the mixture of BWG follow from equation 2.4, thus defined

as;

``c(⇥ | x, z) :=
nX

i=1

GX

g=1

zig[log⇡g + logfBWG(xi; ag, bg,↵g,�g, �g)]

=
nX

i=1

GX

g=1

zig

⇣
log

⇡g↵g�g

B(ag, bg)
+ log[m(xi; �g)] + log


M(xi; �g)�g�1

M̄(xi; �g)�g+1

�
� ↵gbg


M(xi; �g)

M̄(xi; �g)

��g

+ (ag � 1)log

"
1� exp

(
�↵g


M(xi; �g)

M̄(xi; �g)

��g
)#⌘

+
nX

i=1

GX

g=1

ziglog(⇡g) (3.2)

The afore log likelihood function is used in the Expected Maximisation for BWG mixtures to

estimate the unknown parameters.

The EM has been explained in chapter 2 as an extension of maximum likelihood estimation. Iden-

tifiability is a necessary requirement for asymptotic theory to hold for the maximum likelihood

estimation of parameters in mixture models, as such, the identifiability of BWG mixtures has to

be proven before using the EM algorithm.

3.1.1 Identifiability of BWG mixture models

We prove the identifiability of BWG mixture models following an approach by Chandra (1977)

based on Theorems 5.4.1 and 5.4.2 of the appendix.

Let T be a random variable with a BWG pdf. Since moments functions are unique for each

distribution, define �g(s) as the s
th moment of the g

th mixture component. Then

�g(s) =
GX

g=1

1X

i,j,k=0

↵�(�1)i+j [↵(b+ i)]j�(↵)�(�j + � + k + 1)

B(a, b)i!j!k!�(↵� i)�(�j + � + 1)(�j + � + k)

Z 1

0
x
s
f�j+�+k(x)dx (3.3)

for g=1,2 and i, j, k 2 Z+. Note that D� = (��,1) for � > 0 and if �1 < �2 then D�1 ✓ D�2 .
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Let t be a value T , then from theorem 5.4.1 F1 < F2 when �1 < �2 and ↵1 = ↵2 with ↵2 < t or � = 2

but ↵1 > ↵2.

Let s1 = ��1 +
1
n where s1 2 D�1 . When s1 ! �� then n ! 1. Thus,

lim
s!�1

�1(s) = lim
n!1

↵
��1+

1
n

1 �(1 +
��1 +

1
n

�1
) = ↵

�1
1 �(0+) ! +1. (3.4)

On the other hand when �1 < �2 and ↵1 = ↵2 < t we have

lim
s!��1

�2(s) = ↵
��1
1 �(1� �1

�2
) > 0. (3.5)

thus

lim
s!�1

�2(s)

�1(s)
=

↵
��1
1 �(1� �1

�2
) > 0

+1 = 0 (3.6)

Hence the BWG mixtures are identifiable and the EM algorithm and its extensions can be used.

3.1.2 The EM Algorithm for BWG Mixtures

A suitable approach to parameter estimation in mixture models is via the EM algorithm. The

expected step of the EM algorithm used for BWG mixtures follows from equation 2.5 and the

estimation of mixing proportions follow from equation 2.9.

E(``c(⇥ | x, z)) = E[``c(⇥, z) | x]

=
nX

i=1

GX

g=1

log(⇡gfBWG(xi; ag, bg,↵g,�g, �g))E[zig | xi], (3.7)

where

E[zig | xi] = P (zig = 1 | xi)

=
⇡gfBWG(xi | ag, bg,↵g,�g, �g)PG

h=1 ⇡hfBWG(xi | ah, bh,↵h,�h, �h)

= eig (3.8)
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thus,

E(``c(⇥ | x, z)) =
nX

i=1

GX

g=1

log(⇡gfBWG(xi | ag, bg,↵g,�g, �g))eig

=
nX

i=1

GX

g=1

(eiglog⇡g) +
nX

i=1

GX

g=1

eiglogfBWG(xi | ag, bg,↵g,�g, �g). (3.9)

The log likelihood of BWG mixtures is updated by replacing the zig by their expected values. This

is equivalent to replacing zig by

ẑig :=
⇡̂gfBWG(xi | âg, b̂g, ↵̂g, �̂g, �̂g)PG

h=1 ⇡̂hfBWG(xi | âh, b̂h, ↵̂h, �̂h, �̂h)
. (3.10)

The M step of the EM algorithm will be carried out by maximising the updated complete log

likelihood of the BWG mixture. This requires solving a system of equations of partial derivatives

of the complete log likelihood.

These partial derivatives are calculated in appendix 5.1 and given as

@``c(⇥, z | x)
@↵g

=
nX

i=1

GX

g=1

zig

⇣ 1

↵g
� bg


M(xi; �g)

M̄(xi; �g)

��g

+ (ag � 1)

"
1� exp

(
�↵g


M(xi; �g)

M̄(xi; �g)

��g
)#�1

⇥

M(xi; �g)

M̄(xi; �g)

��g

exp

(
�↵g


M(xi; �g)

M̄(xi; �g)

��g
)⌘

, (3.11)

@``c(⇥, z | x)
@�g

=
nX

i=1

GX

g=1

zig

⇣ 1

�g
+ log


M(xi; �g)

M̄(xi; �g)

�
� ↵gbg


M(xi; �g)

M̄(xi; �g)

��g

log


M(xi; �g)

M̄(xi; �g)

�

+ (ag � 1)↵g


M(xi; �g)

M̄(xi; �g)

��g

log


M(xi; �g)

M̄(xi; �g)

�

⇥ exp

(
�↵g


M(xi; �g)

M̄(xi; �g)

��g
)"

1� exp

(
�↵g


M(xi; �g)

M̄(xi; �g)

��g
)#�1 ⌘

, (3.12)

@``c(⇥, z | x)
@ag

=
nX

i=1

GX

g=1

zig

⇣
['0(ag + bg)� '0(ag)] + log

"
1� exp

(
�↵g


M(xi; �g)

M̄(xi; �g)

��g
)#⌘

, (3.13)
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@``c(⇥, z | x)
@bg

=
nX

i=1

GX

g=1

zig

⇣
['0(ag + bg)� '0(bg)]� ↵g


M(xi; �g)

M̄(xi; �g)

��g ⌘
(3.14)

and

@``c(⇥, z | x)
@�g

=
nX

i=1

GX

g=1

zig

⇣ 1

m(xi, �g)

@

@�g
m(xi, �g) +

(�g � 1)

M(xi, �g)

@

@�g
M(xi, �g)�

(�g + 1)

M̄(xi, �g)

@

@�g
M̄(xi, �g)

� ↵gbg�g

✓
M(xi, �g
M̄(xi, �g

◆�g�1✓ 1

M̄(xi, �g)

@

@�g
M(xi, �g)�

M(xi, �g)

[M̄(xi, �g)]2
@

@�g
M̄(xi, �g)

◆

+ (ag � 1)

"
1� exp

(
�↵g


M(xi; �g)

M̄(xi; �g)

��g
)#�1 "

exp

(
�↵g


M(xi; �g)

M̄(xi; �g)

��g
)#

"
↵g�g

✓
M(xi, �g
M̄(xi, �g

◆�g�1✓ 1

M̄(xi, �g)

@

@�g
M(xi, �g)�

M(xi, �g)

[M̄(xi, �g)]2
@

@�g
M̄(xi, �g)

◆#⌘
.

(3.15)

The updated estimate for ⇡̂g is obtained as

⇡̂g =
1

n

nX

i=1

GX

g=1

ẑig, (3.16)

The partial derivatives with respect to a, b, ↵, � and � do not have analytic solutions. They will

be solved by the Newton Raphson algorithm which was explained in chapter 2.

The Jacobian matrix is set up as

J(✓g | x, z) = @``c(⇥, z | x)
@✓g

= 0.

J(✓g | x, z) =

0

BBBBBBBBBBBBBB@

@``c(⇥, z | x)
@↵g

@``c(⇥, z | x)
@�g

@``c(⇥, z | x)
@ag

@``c(⇥, z | x)
@bg

@``c(⇥, z | x)
@�g

1

CCCCCCCCCCCCCCA
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and the Hessian matrix as

H(✓g | x, z) =

0

BBBBBBBBBBBBBBB@

@``
2
c(⇥, z | x)
@↵2

g
. . . . . . . . . . . .

@``
2
c(⇥, z | x)
@↵g@�g

@``
2
c(⇥, z | x)
@�2

g
. . . . . . . . .

@``
2
c(⇥, z | x)
@↵g@ag

@``
2
c(⇥, z | x)
@�g@ag

@``
2
c(⇥, z | x)
@a2g

. . . . . .

@``
2
c(⇥, z | x)
@↵g@bg

@``
2
c(⇥, z | x)
@�g@bg

@``
2
c(⇥, z | x)
@ag@bg

@``
2
c(⇥, z | x)
@b2g

. . .

@``
2
c(⇥, z | x)
@↵g@�g

@``
2
c(⇥, z | x)
@�g@�g

@``
2
c(⇥, z | x)
@ag@�g

@``
2
c(⇥, z | x)
@bg@�g

@``
2
c(⇥, z | x)
@�2g

1

CCCCCCCCCCCCCCCA

.

These gives updates to the parameter vector ✓̂g as

✓(s+1)
g ⇡ ✓(s)

g +H
�1(✓(s)

g | x, z)J(x, z | ✓(s)
g ) =

0

BBBBBBBBB@

↵
(s+1)
g

�
(s+1)
g

a
(s+1)
g

b
(s+1)
g

�
(s+1)
g

1

CCCCCCCCCA

.

The updated parameter estimates are used to re estimate the latent variable zig on the E step in

the next iteration. The algorithm will alternate between the E step and M step until it reaches

convergence.

A full BWG mixture has (G⇥ p) parameters where G is the number of component densities and p

is the number of parameters in each component density. It is often advisable to explain data with

a simple model that has an optimal number of parameters. Too many parameters over fit the

data and lower explanatory predictive power. Using very few parameters will under fit the data

and lower predictive power. In finding the optimal number of parameters to be used in the model

some parameters are constrained. This will yield simple models that have a higher predictive

power .

3.2 Model Based Clustering with BWG Mixtures

Model based clustering has been identified in chapter 2 as a superior approach in clustering when

the underlying data is characterised by a mixture distribution. The parameters estimated from

the EM algorithm will be used to carry out a model based clustering technique.
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The posterior probability of an observation xi belonging to the g
th group in the BWG mixture will

follow from equation 2.11 , thus,

ẑig =
⇡̂gfBWG(xi | âg, b̂g, ↵̂g, �̂g, �̂g)PG

h=1 ⇡̂hfBWG(xi | âh, b̂h, ↵̂h, �̂h, �̂h)
. (3.17)

An observation will be assigned membership to a group in which it scores the highest ẑig.

3.3 Mixture Discriminant Analysis with BWG Mix-

tures

The labelled observations will be used for parameter estimation via the EM algorithm. The result-

ing estimates will be used to carry out a mixture discriminant analysis. The posterior probability

of an observation xi belonging to the g
th group in the mixture will follow from equation 2.12 ,thus,

ẑjg =
⇡̂gfBWG(xj | âg, b̂g, ↵̂g, �̂g, �̂g)PG

h=1 ⇡̂hfBWG(xj | âh, b̂h, ↵̂h, �̂h, �̂h)
. (3.18)

An observation will be assigned membership to a group in which it scores the highest ẑjg.

3.4 Mixture of the Beta Weibull log logistic Distribu-

tion

In this subsection the baseline distribution of the BWG is specified to be the log logistic distri-

bution, resulting in a Beta Weibull log logistic distribution (BWLLoG). Different density plots

for BWLLoG with varying parameter values are given. Subsequently, density plots of mixtures

of BWLLoG are given to depict heterogeneous reliability data with non monotone failure rate

functions. The EM algorithm for BWLLoG mixtures is developed together with the model based

clustering technique and mixture discriminant analysis rule suitable for BWLLoG mixtures.

Consider a mixture of the Beta Weibull G family of distributions when the baseline distribution

is chosen to be the log logistic distribution. The pdf, cdf and survival function of the log logistic

distribution are given by

m(x, c) = cx
c�1(1 + x

c)�2
,M(x, c) = 1� (1 + x

c)�1
and M̄(x, c) = 1� [1� (1 + x

c)�1] = (1 + x
c)�1
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respectively, where c is the shape parameter such that c > 0.

The pdf of the Beta Weibull log logistic is defined by;

fBWLLoG(x; a, b,↵,�, c) =
↵�c

B(a, b)
x
c�1(1 + x

c)�2 (1� (1 + x
c)�1)��1

((1 + xc)�1)�+1
exp

n
�↵bx

c�
o

⇥
h
1� exp

n
�↵x

c�
oia�1

, (3.19)

for x > 0, a > 0, b > 0,↵ > 0,� > 0, c > 0.

The density plots for Beta Weibull log logistic with varying parameter values is given in figure

3.1.

 

Figure 3.1: Density plots of the Beta Weibull log logistic distribution with different pa-
rameter values

A mixture of the Beta Weibull log logistic distribution will have a probability density function
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given by

fMBWLLoG(x; ag, bg,↵g,�g, cg) =
GX

g=1

⇡gfBWLLoG(x; ag, bg,↵g,�g, cg)

=
GX

g=1

⇡g↵g�gcg

B(ag, bg)
x
cg�1(1 + x

cg)�2 (1� (1 + x
cg)�1)�g�1

((1 + xcg)�1)�g+1
exp

n
�↵gbgx

cg�g

o

⇥
h
1� exp

n
�↵gx

cg�g

oiag�1
.

The density plots of mixtures of the Beta Weibull log logistic distribution is given in figure 3.2.

  

Figure 3.2: Density plots of mixtures of the Beta Weibull log logistic distribution with
different parameter values
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The corresponding complete log likelihood function of the BWLLoG mixture is defined by;

``c(⇥ | x, z) :=
nX

i=1

GX

g=1

zig[log⇡g + logfBWLLoG(xi; ag, bg,↵g,�g, cg)]

=
nX

i=1

GX

g=1

zig

⇣
log

✓
↵g�g

B(ag, bg)

◆
+ log(cgx

cg�1
i (1 + x

cg
i )�2) + log

✓
(1� (1 + x

cg
i )�1)�g�1

((1 + x
cg
i )�1)�g+1

◆

� ↵gbgx
cg�g

i + (ag � 1)log
h
1� exp

n
�↵gx

cg�g

i

oi⌘
+

nX

i=1

GX

g=1

ziglog(⇡g). (3.20)

The partial derivatives of the complete log likelihood equation of the BWLLoG mixture are calcu-

lated in appendix 5.2 and given as

@``c(⇥, z | x)
@↵g

=
nX

i=1

GX

g=1

zig

⇣ 1

↵g
� bgx

cg�g

i + (ag � 1)[1� exp

n
�↵gx

cg�g

i

o
]�1

x
cg�g

i exp

n
�↵gx

cg�g

i

o⌘
,

(3.21)

@``c(⇥, z | x)
@�g

=
nX

i=1

GX

g=1

zig

⇣ 1

�g
+ log(x

cg
i )� ↵gbgx

cg�g

i log(x
cg
i )

+ (ag � 1)↵gx
cg�g

i log(x
cg
i )exp

n
�↵g(x

cg�g

i )
o
[1� exp

n
�↵gx

cg�g

i

o
]�1

⌘
, (3.22)

@``c(⇥, z | x)
@ag

=
nX

i=1

GX

g=1

zig

⇣
'0(ag + bg)� '0(ag) + log

h
1� exp

n
�↵gx

cg�g

i

oi⌘
, (3.23)

@``c(⇥, z | x)
@bg

=
nX

i=1

GX

g=1

zig

⇣
'0(ag + bg)� '0(bg)� ↵gx

cg�g

i

⌘
, (3.24)

@``c(⇥, z | x)
@cg

=
nX

i=1

GX

g=1

zig

⇣ h
(bg↵g�gx

�gcg
i log(xi)� �glog(xi))cg � 1

i
exp

n
↵gx

cg�g

i

o

+ ((�bg � ag + 1)↵g�gx
cg�g

i log(xi) + �glog(xi))cg + 1)(cg
h
1� exp

n
↵gx

cg�g

i

oi
)�1

⌘
, 2005/06/28ver : 1.3subfigpackage

(3.25)

@``c(⇥, z | x)
@⇡g

=
nX

i=1

GX

g=1

zig

⇡g
(3.26)
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and

@``c(⇥, z | x)
@zg

=
nX

i=1

GX

g=1

⇣
log

✓
↵g�g

B(ag, bg)

◆
+ log(cgx

cg�1
i (1 + x

cg
i )�2) + log

✓
(1� (1 + x

cg
i )�1)�g�1

((1 + x
cg
i )�1)�g+1

◆

� ↵gbgx
cg�g

i + (ag � 1)log
h
1� exp

n
�↵gx

cg�g

oi⌘
+

nX

i=1

GX

g=1

log(⇡g).

(3.27)

The partial derivatives yield parameter estimates for the BWLLoG mixture via the EM algorithm

given in algorithm 1.

Notation for full models

The model BWLLoG should be interpreted as a full mixture model of BWLLoG distributions

with parameters ↵, � , a , b and c. These parameters are unconstrained. Model Weibull should be

interpreted as a full mixture model of Weibull distributions with parameters ↵ and �. It should

be noted that the Weibull mixtures do not have parameters a , b and c hence �,�,�.

Notation for constrained models

Model UC2U should be interpreted as a model that is unconstrained for ↵, constrained for �

(such that we have the value for � being calculated from group2 and fixed across all component

distributions) and unconstrained for c.

Model C1UC2 should be interpreted as a model that is constrained for ↵ (such that we have the

value for ↵ being calculated from group1 and fixed across all component distributions), uncon-

strained for � and constrained for c (such that we have the value for c being calculated from

group2 and fixed across all component distributions). The parameters a and b are fixed to a con-

stant value hence f . The afore notations will be used in chapter 4.

Model Based Clustering with BWLLoG Mixtures

The parameters estimated from the EM algorithm for BWLLoG mixtures will be used to carry

out a model based clustering technique. The posterior probability of an observation xi belonging
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Algorithm 1 EM algorithm for BWLLoG mixtures
Input x = {x1, x2, ..., xn}
Set k = 1 and `(0) = 0

Set

`(s) = ``c(a
(s)
g , b(s)g ,↵(s)

g , �(s)
g , c(s)g | x, z) =

nX

i=1

GX

g=1

zig[log⇡
(s)
g +logfBWLLoG(xi; a

(s)
g , b(s)g ,↵(s)

g , �(s)
g , c(s)g )]

Initialize a(s)g , b(s)g ,↵(s)
g , �(s)

g , c(s)g and ⇡(s)
g via k means algorithm and Newton Raphson

algorithm.

Repeat
E step;

z(s)ig :=
⇡̂(s)
g fBWLLoG(xi | a(s)g , b(s)g ,↵(s)

g , �(s)
g , c(s)g )

PG
h=1 ⇡̂

(s)
h fBWLLoG(xi | a(s)h , b(s)h ,↵(s)

h , �(s)
h , c(s)h )

.

M step; Update ⇡g as

⇡(s+1)
g =

1

n

X
ẑ(s)ig ,

Set

``c(a
(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g , c(s+1)
g | x, z) =

nX

i=1

GX

g=1

z(s)ig [log⇡(s+1)
g + logfBWLLoG(xi; a

(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g , c(s+1)
g )]

Re estimate the parameters ag, bg,↵g, �g, cg with current z(s)ig and ⇡(s+1)
ig by Newton Raph-

son algorithm. This gives updated parameter estimates as a(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g , c(s+1)
g

Set

``c(a
(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g , c(s+1)
g | x, z) =

nX

i=1

GX

g=1

z(s)ig [log⇡(s+1)
g + logfBWLLoG(xi; a

(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g , c(s+1)
g )]

Calculate `(s+1)
1 = `(s) + 1

1�a(s)
(`(s+1) � `(s)) where a(s) = `(s+1)�`(s)

`(s)�`(s�1)

Until `(s+1)
1 � `(s) < ✏

Set s = s+ 1
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to the g
th group in the mixture will take calculated as

ẑig =
⇡̂gfBWLLoG(xi | âg, b̂g, ↵̂g, �̂g, ĉg)PG

h=1 ⇡̂hfBWLLoG(xi | âh, b̂h, ↵̂h, �̂h, ĉh)
. (3.28)

An observation will be assigned membership to a group in which it scores the highest ẑig.

Mixture Discriminant Analysis with BWLLoG Mixtures

Similarly the parameters estimated by the EM algorithm for BWLLoG mixtures will be used to

carry out a mixture discriminant analysis technique. The posterior probability of an unlabelled

observation xj belonging to the g
th group in the mixture will calculated as

ẑjg =
⇡̂gfBWLLoG(xj | âg, b̂g, ↵̂g, �̂g, ĉg)PG

h=1 ⇡̂hfBWLLoG(xj | âh, b̂h, ↵̂h, �̂h, ĉh)
. (3.29)

An unlabelled observation will be assigned membership to a group in which it scores the highest

ẑjg.

3.5 Mixture of the Beta Weibull Exponential Distribu-

tion

In this subsection the baseline distribution of the BWG is specified to be exponential distribution,

resulting in a Beta Weibull exponential distribution (BWE). Different density plots for BWE with

varying parameter values are given. Subsequently, density plots of mixtures of BWE are given to

depict heterogeneous reliability data with non monotone failure rate functions. The EM algorithm

for BWE mixtures is developed together with the model based clustering technique and mixture

discriminant analysis rule suitable for BWE mixtures.

Consider a mixture of the Beta Weibull G family of distributions when the baseline distribution

is chosen to be exponential distribution. The as pdf, cdf and survival function of the exponential

distribution are given by

m(x,!) = !e
�!x

,M(x,!) = 1� e
�!x

and M̄(x,!) = 1� (1� e
�!x) = e

�!x

respectively, where ! is the rate parameter such that ! > 0.
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The pdf of the Beta Weibull Exponential is defined by

fBWE(x; a, b,↵,�, �) =
↵�!

B(a, b)

(1� e
�!x)��1

(e�!x)�
exp

n
�↵b(e!x � 1)�

o
[1� exp

n
�↵(e!x � 1)�

o
]a�1

(3.30)

for , x > 0, a > 0, b > 0,↵ > 0,� > 0,! > 0.

The density plots for Beta Weibull Exponential distribution with varying parameter values is

given in figure 3.3.

 

Figure 3.3: Density plots of the Beta Weibull Exponential distribution with different
parameter values

A mixture of the Beta Weibull Exponential distribution will have a pdf defined by
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fMBWE(x; a, b,↵,�,!) =
GX

g=1

⇡gfBWE(x; ag, bg,↵g,�g,!g)

=
GX

g=1

⇡g↵g�g!g

B(ag, bg)

(1� e
�!gx)�g�1

(e�!gx)�g
exp

n
�↵gbg(e

!gx � 1)�g

o

⇥ [1� exp

n
�↵g(e

!gx � 1)�g

o
]ag�1

. (3.31)

The density plots for mixtures of the Beta Weibull Exponential distribution is given in figure 3.4.

 

Figure 3.4: Density plots of mixtures of the Beta Weibull Exponential with different
parameter values
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The corresponding complete log likelihood function of the BWE mixture is defined by;

``c(⇥ | x, z) :=
nX

i=1

GX

g=1

zig[log⇡g + logfBWE(xi; ag, bg,↵g,�g,!g)]

=
nX

i=1

GX

g=1

zig

⇣
log


⇡g↵g�g!g

B(ag, bg)

�
+ log


(1� e

�!gxi)�g�1

(e�!gxi)�g

�
� ↵gbg(e

!gxi � 1)�g

+ (ag � 1)log[1� exp{�↵g(e
!gxi � 1)�g}]

⌘
+

nX

i=1

GX

g=1

ziglog(⇡g) (3.32)

The partial derivatives of the complete log likelihood equation of the BWE mixture are calculated

in appendix 5.3 and defined as

@``c(⇥ | x, z)
@↵g

=
nX

i=1

GX

g=1

zig

⇣ 1

↵g
� bg [e

!gxi � 1]�g + (ag � 1)
h
1� exp

n
�↵g [e

!gxi � 1]�g

oi�1

⇥ [e!gxi � 1]�g
exp

n
�↵g [e

!gxi � 1]�g

o⌘
, (3.33)

@``c(⇥ | x, z)
@�g

=
nX

i=1

GX

g=1

zig

⇣ 1

�g
+ log [e!gxi � 1]� ↵gbg [e

!gxi � 1]�g
log [e!gxi � 1]

+ (ag � 1)↵g [e
!gxi � 1]�g

log [e!gxi � 1] exp
n
�↵g [e

!gxi � 1]�g

oh
1� exp

n
�↵g [e

!gxi � 1]�g

oi�1 ⌘
,

(3.34)

@``c(⇥ | x, z)
@ag

=
nX

i=1

GX

g=1

zig

⇣
'0(ag + bg)� '0(ag) + log

h
1� exp{�↵g[e

!gxi � 1]�g}
i ⌘

,

@``c(⇥ | x, z)
@bg

=
nX

i=1

GX

g=1

zig

⇣
'0(ag + bg)� '0(bg)� ↵g[e

!gxi � 1]�g

⌘
,

@``c(⇥ | x, z)
@!g

=
nX

i=1

GX

g=1

zig

⇣1� xi!g

!g
+

(�g � 1)xi
(e!gxi � 1)

+ (�g + 1)xi � ↵gbg�g(e
!gxi � 1)�g�1(xi + e

!gxi � 1)

+ (ag � 1)[1� exp

n
�↵g(e

!gxi � 1)�g

o
]�1[exp

n
�↵g(e

!gxi � 1)�g

o
]

⇥ ↵g�g(e
!gxi � 1)�g�1[xi + xi(e

!gxi � 1)]
⌘
, (3.35)
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@``c(⇥ | x, z)
@⇡g

=
nX

i=1

GX

g=1

1

⇡g
+

nX

i=1

GX

g=1

zg

⇡g
(3.36)

and

@``c(⇥, z | x)
@zg

=
nX

i=1

GX

g=1

log

⇣
↵g�g

B(ag, bg)
!ge

�!gxi
(1� e

�!gxi)�g�1

(e�!gxi)�g+1
exp

n
�↵gbg [e

!gxi � 1]�g

o

⇥
h
1� exp

n
�↵g [e

!gxi � 1]�g

oiag�1 ⌘
+

nX

i=1

GX

g=1

log(⇡g). (3.37)

The partial derivatives will yield parameter estimates for the BWE mixture via the EM algorithm

in algorithm 2.

Model Based Clustering with BWE Mixtures

The parameters estimated from the EM algorithm for BWE mixtures will be used to carry out a

model based clustering technique. The posterior probability of an observation xi belonging to the

g
th group in the mixture will be calculated as

ẑig =
⇡̂gfBWE(xi | âg, b̂g, ↵̂g, �̂g, !̂g)PG

h=1 ⇡̂hfBWE(xi | âh, b̂h, ↵̂h, �̂h, !̂h)
. (3.38)

An observation will be assigned membership to a group in which it scores the highest ẑig.

Mixture Discriminant Analysis with BWE Mixtures

Similarly the parameter estimated via the hybrid EM algorithm for BWE mixtures will be used

to carry out a mixture discriminant analysis technique. The posterior probability of an labelled

observation xj belonging to the g
th group in the mixture will be calculated as

ẑjg =
⇡̂gfBWE(xj | âg, b̂g, ↵̂g, �̂g, !̂g)PG

h=1 ⇡̂hfBWE(xj | âh, b̂h, ↵̂h, �̂h, !̂h)
. (3.39)

An observation will be assigned membership to a group in which it scores the highest ẑjg.
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Algorithm 2 EM algorithm for BWE mixtures
Input x = {x1, x2, ..., xn}
Set k = 1 and `(0) = 0

Set

`(s) = ``c(a
(s)
g , b(s)g ,↵(s)

g , �(s)
g ,!(s)

g | x, z) =
nX

i=1

GX

g=1

zig[log⇡
(s)
g +logfBWE(xi; a

(s)
g , b(s)g ,↵(s)

g , �(s)
g ,!(s)

g )]

Initialize a(s)g , b(s)g ,↵(s)
g , �(s)

g ,!(s)
g and ⇡(s)

g via k means algorithm and Newton Raphson
algorithm.

Repeat
E step;

z(s)ig :=
⇡̂(s)
g fBWE(xi | a(s)g , b(s)g ,↵(s)

g , �(s)
g ,!(s)

g )
PG

h=1 ⇡̂
(s)
h fBWE(xi | a(s)h , b(s)h ,↵(s)

h , �(s)
h ,!(s)

h )
.

M step;
Update ⇡g as

⇡(s+1)
g =

1

n

X
ẑ(s)ig ,

Set

``c(a
(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g ,!(s+1)
g | x, z) =

nX

i=1

GX

g=1

z(s)ig [log⇡(s+1)
g + logfBWE(xi; a

(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g ,!(s+1)
g )]

Re estimate the parameters ag, bg,↵g, �g,!g with current z(s)ig and ⇡(s+1)
ig by Newton Raph-

son algorithm. This gives updated parameter estimates as a(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g ,!(s+1)
g

Set

``c(a
(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g ,!(s+1)
g | x, z) =

nX

i=1

GX

g=1

z(s)ig [log⇡(s+1)
g + logfBWE(xi; a

(s+1)
g , b(s+1)

g ,↵(s+1)
g , �(s+1)

g ,!(s+1)
g )]

Calculate `(s+1)
1 = `(s) + 1

1�a(s)
(`(s+1) � `(s)) where a(s) = `(s+1)�`(s)

`(s)�`(s�1)

Until `(s+1)
1 � `(s) < ✏

Set s = s+ 1
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Chapter 4

Discussion of results

In this chapter six data sets are simulated to mimic reliability data with non monotone failure

rates functions. These data sets were used to mimic heterogeneous reliability data with two

classes. Additionally, one real life reliability data set is provided for analyses. Results for fitting

the full BWLLoG and BWE mixture models discussed in chapter 3 are provided. Corresponding

results for fitting constrained mixture models of the BWLLoG and BWE family of distributions

are also presented. The utility of the proposed model based clustering and mixture discriminant

analysis approaches is demonstrated.

Notations

U represents an unconstrained parameter.

C1 represents a parameter constrained to the density associated with the first component.

C2 represents a parameter constrained to the density associated with the second component.

f represents a parameter that is fixed to a constant value.

4.1 Mixture models for simulated BWLLoG distribu-

tions (A-B data)

The acceptance rejection method was used to simulate 100 data points from the BWLLoG

distribution with parameters ↵ = 5,� = 3, a = 2, b = 4, c = 2. Similarly another set of 100

data points from the BWLLoG distribution with parameters ↵ = 2, � = 1, a = 3, b = 2, c = 1
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were simulated. These data points were assigned to group A and B respectively. A random

sample of n=50 was selected from each group, forming a heterogeneous population (A & B). A two

component mixture of the BWLLoG distribution was fitted to the heterogeneous population. The

mixing proportions for group A and group B were 0.5. The EM algorithm for BWLLoG mixtures

was used for parameter estimation. The data points from the random sample (A & B) were given

class labels using the model based clustering technique for BWLLoG mixtures. A two component

Weibull mixture model was also fitted to the data points and class labels were assigned using the

model based clustering technique for Weibull mixtures.

The heterogeneous population (A & B) was used to carry out mixture discriminant analysis. The

training to test ratios were chosen to be 70:30, 80:20 and 90:10 respectively. The data points in

the training sets were used to infer class labels of the data points in the test sets using mixture

discriminant analysis technique for the BWLLoG mixtures and mixture discriminant analysis

technique for Weibull mixtures.

Table 4.1 shows the BIC, ARI for model based clustering and ARI for mixture discriminant anal-

ysis for two component full mixture of Weibull and BWLLoG distribution where the data is from

a sample of heterogeneous simulated Beta Weibull log logistic distributions (A & B). The two

component full mixture of BWLLoG distributions has a higher BIC value as compared to the

two component mixture of Weibull distributions. This is an indication that the two component

full BWLLoG mixture fits the A & B data better than the Weibull mixture. The two component

full mixture of BWLLoG distributions has a higher value of the ARI for both MBC and MDA as

compared to the two component mixture of Weibull distributions. This indicates that the two com-

ponent full mixture of BWLLoG distributions performs better than the two component mixture of

Weibull distributions in model based classification of the A & B data.

Table 4.1: Two component full mixtures for BWLLoG (A & B)

MODEL ↵ � a b c BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

Weibull U U - - - 113.08 0.57 0.60 0.66 0.81
BWLLoG U U U U U 118.01 0.86 0.58 0.84 1.00
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4.2 Constrained mixture models for simulated BWL-

LoG distributions (A-B data)

To curb the problem of identifiability, some constraints were set on parameters a and b such that

a = b = 2.5. The remaining parameters were constrained or unconstrained to come up with

possible parsimonious models.

Table 4.2 shows the best parsimonious models based on the BIC, ARI for model based clustering

and ARI for mixture discriminant analysis where the data is from the simulated Beta Weibull log

logistic distributions (A & B). The two component constrained mixtures of BWLLoG distributions

also have higher values of the BIC than the two component mixture of Weibull distributions.

These indicate that the two component constrained mixtures of BWLLoG distributions fit the A

& B data better than the two component mixture of Weibull distributions. The two component

constrained mixtures of BWLLoG distributions also perform better in model based classification

of the A & B data than the two component mixture of Weibull distributions. This is indicated by

high values of the ARI in both MBC and MDA using the two component constrained mixtures of

BWLLoG distributions as compared to using the two component mixture of Weibull distributions.

Table 4.2: Two component constrained mixtures for BWLLoG (A & B)

MODEL ↵ � a b c BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

UC2U U C2 f f U 116.5 0.74 0.54 0.67 0.92
UUC2 U U f f C2 196.1 0.70 0.55 0.74 0.83
C1UC2 C1 U f f C2 198.5 0.60 0.58 0.71 0.86

4.3 Mixture models for simulated BWLLoG distribu-

tions (B-C data)

The acceptance rejection method was used to simulate 100 data points from the BWLLoG distri-

bution with parameters ↵ = 2, � = 1, a = 3, b = 2, c = 1. Similarly another set of 100 data points

from the BWLLoG distribution with parameters ↵ = 5, � = 3, a = 2, b = 4, c = 2 were simulated.

These data points were assigned to group B and C respectively. A random sample of n=75 was se-

lected from each group, forming a heterogeneous population (B & C). A two component mixture of
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the BWLLoG distribution was fitted to the heterogeneous population. The mixing proportions for

group B and group C were 0.5. The EM algorithm for BWLLoG mixtures was used for parameter

estimation. The data points from the random sample (B & C) were given class labels using the

model based clustering technique for BWLLoG mixtures. These data points were also be fitted to

the Weibull mixtures and assigned class labels with model based clustering technique for Weibull

mixtures.

The heterogeneous population (B & C) was used to carry out mixture discriminant analysis. The

training to test ratios were chosen to be 70:30, 80:20 and 90:10 respectively. The data points in

the training sets were used to infer class labels of the data points in the test sets using mixture

discriminant analysis technique for the BWLLoG mixtures and mixture discriminant analysis

technique for Weibull mixtures.

Table 4.3 shows the BIC, ARI for model based clustering and ARI for mixture discriminant analy-

sis for two component full mixtures of Weibull and BWLLoG distributions where the data is from

a sample of heterogeneous simulated Beta Weibull log logistic distributions (B & C). The two

component full mixture of BWLLoG distributions has a higher BIC value as compared to the two

component mixture of Weibull distributions. This is an indication that the BWLLoG mixture fits

the B & C data better than the two component Weibull mixture. The two component full mixture

of BWLLoG distributions has a higher value of the ARI for both MBC and MDA as compared to

the two component full mixture of Weibull distributions. This indicates that the two component

full mixture of BWLLoG distributions performs better than the two component mixture of Weibull

distributions in model based classification of the B & C data.

Table 4.3: Two component full mixtures for BWLLoG (B & C)

MODEL ↵ � a b c BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

Weibull U U - - - 156.16 0.65 0.72 0.74 0.82
BWLLoG U U U U U 133.04 0.78 0.66 0.85 0.86
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Table 4.4: Two component constrained mixtures for BWLLoG (B & C)

MODEL ↵ � a b c BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

UC2U U C2 f f U 110.7 0.72 0.66 0.78 0.92
UUC2 U U f f C2 160.7 0.68 0.60 0.79 0.82
C1UC2 C1 U f f C2 160.3 0.70 0.62 0.76 0.89

4.4 Constrained mixture models for simulated BWL-

LoG distributions (B-C data)

To curb the problem of identifiability we set constraints to the parameters a and b such that

a = b = 2.5. The remaining parameters were constrained or unconstrained to come up with

possible parsimonious mixture models.

Table 4.4 shows the best parsimonious models based on the BIC, ARI for model based clustering

and ARI for mixture discriminant analysis where the data is from the simulated Beta Weibull log

logistic distributions (B & C). The two component constrained mixtures of BWLLoG distributions

also have higher values of the BIC than the two component mixture of Weibull distributions. This

indicates that the two component constrained mixtures of BWLLoG distributions fit the B & C

data better than the two component mixture of the Weibull distributions. The two component

constrained mixtures of BWLLoG distributions also perform better in model based classification

of the B & C data than the two component mixture of Weibull distributions. This is indicated by

high values of the ARI for both MBC and MDA using the two component constrained mixtures of

BWLLoG distributions as compared to using the two component mixture of Weibull distributions.

4.5 Mixture models for BWLLoG distributions (Yarn

data)

The data set used in this analysis is from Shanker, Fasshaye and Selvaraj (2015). It is a reliability

data set corresponding to time to failure of polyester yarn in a textile experiment for testing the

tensile fatigue characteristics of yarn. It has 100 observations of yarns exposed to 2.5 % strain

level. The k-means algorithm was used to split the yarn data set into two sub-populations being

sub-population 1 and sub-population 2.
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A two component mixture of BWLLoG distribution was fitted. Parameter estimation was carried

out by the EM algorithm for BWLLoG mixtures and the observations in the random sample were

assigned class labels using the model based clustering technique for BWLLoG mixtures. These

data points were also fitted to Weibull mixtures and assigned class labels with model based clus-

tering technique for Weibull mixtures.

The yarn data composing of sub-population 1 and sub-population 2 was used to carry out mixture

discriminant analysis. The training to test ratios ere chosen to be 70:30, 80:20 and 90:10 respec-

tively. The data points in the training sets were used to infer class labels of the data points in the

test sets using mixture discriminant analysis technique for the BWLLoG mixtures and mixture

discriminant analysis technique for Weibull mixtures.

Table 4.5 shows the BIC, ARI for model based clustering and ARI for mixture discriminant anal-

ysis for two component full mixture of Weibull and BWLLoG distributions where the yarn data

used is from Shanker, Fasshaye and Selvaraj (2015). The two component full mixture of BWL-

LoG distributions has a higher BIC value as compared to the two component mixture of Weibull

distributions. This is an indication that the BWLLoG mixture fits the yarn data better than the

Weibull mixture. The two component full mixture of BWLLoG distributions has a higher value of

the ARI for both MBC and MDA as compared to the two component full mixture of Weibull distri-

butions. This indicates that the two component full mixture of BWLLoG distributions performs

better than the two component mixture of Weibull distributions in model based classification of

the yarn data.

Table 4.5: Two component full mixtures for BWLLoG (Yarn data)

MODEL ↵ � a b c BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

Weibull U U - - - 1053.09 0.57 0.64 0.68 0.73
BWLLoG U U U U U 1077.94 0.87 0.57 0.60 0.79

4.6 Constrained mixture models for BWLLoG distri-

butions (Yarn data)

To curb the problem of identifiability constraints were set on parameters a and b such that a =

b = 2.5. The remaining parameters were constrained or unconstrained to come up with possible

parsimonious models.

46



Table 4.6 shows the best parsimonious models based on the BIC, ARI for model based clustering

and ARI for mixture discriminant analysis where the yarn data used is from Shanker, Fasshaye

and Selvaraj (2015). The two component constrained mixtures of BWLLoG distributions also

have higher values of the BIC than the two component mixture of Weibull distributions. This

indicates that the two component constrained mixtures of BWLLoG distributions fit the yarn data

better than the two component mixture of Weibull distributions. The two component constrained

mixtures of BWLLoG distributions also perform better in model based classification of the yarn

data than the two component mixture of the Weibull distributions. This is indicated by high

values of the ARI for both MBC and MDA using the two component constrained mixtures of

BWLLoG distributions as compared to using the two component mixture of Weibull distributions.

Table 4.6: Two component constrained mixtures for BWLLoG (Yarn data)

MODEL ↵ � a b c BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

UC1C1 U C1 f f C1 1448.3 0.76 0.55 0.60 0.76
C1UC1 C1 U f f C1 1409.2 0.60 0.58 0.64 0.79
C2C1U C2 C1 f f U 2220.5 0.70 0.53 0.77 0.81

4.7 Mixture models for simulated BWE distributions

(A-B data)

The acceptance rejection method was used to simulate 100 data points from the BWE distribution

with parameters ↵ = 1,� = 2, a = 1, b = 2,! = 2. Similarly another set of 100 data points from

the BWE distribution with parameters ↵ = 3, � = 1, a = 2, b = 1,! = 1 were simulated. These

data points were assigned to group A and B respectively. A random sample of n=50 was selected

from each group, forming a heterogeneous population (A & B). A two component mixture of the

BWE distribution was fitted to the heterogeneous population. The mixing proportions for group A

and group B were 0.5. The EM algorithm for BWE mixtures was used for parameter estimation.

The data points from the random sample (A & B) were given class labels using the model based

clustering technique for BWE mixtures. These data points were also fitted to Weibull mixtures

and assigned class labels with model based clustering technique for Weibull mixtures.

The heterogeneous population (A & B) was used to carry out mixture discriminant analysis. The

training to test ratios were chosen to be 70:30, 80:20 and 90:10 respectively. The data points in
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the training sets were used to infer class labels of the data points in the test sets using mixture

discriminant analysis technique for the BWE mixtures and mixture discriminant analysis

technique for Weibull mixtures.

Table 4.7 shows the BIC, ARI for model based clustering and ARI for mixture discriminant anal-

ysis for two component full mixtures of Weibull and BWE distributions where the data is from

a sample of heterogeneous simulated Beta Weibull Exponential distributions (A & B). The two

component full mixture of BWE distributions has a higher BIC value as compared to the two

component mixture of Weibull distributions. This is an indication that the BWE mixture fits the

A & B data better than the Weibull mixture. The two component full mixture of BWE distri-

butions has a higher value of ARI for both MBC and MDA as compared to the two component

mixture of Weibull distributions. This indicates that the two component mixture of BWE distri-

butions performs better than the two component mixture of Weibull distributions in model based

classification of the A & B data.

Table 4.7: Two component full mixtures for BWE (A & B)

MODEL ↵ � a b ! BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

Weibull U U - - - 30.36 0.55 0.60 0.71 0.82
BWE U U U U U 39.38 0.64 0.53 0.73 0.91

4.8 Constrained mixture models for simulated BWE

distributions (A-B data)

To curb the problem of identifiability constraints were set on parameters a and bsuch that a =

b = 2.5. The remaining parameters were constrained or unconstrained to come up with possible

parsimonious models.

Table 4.8 shows the best parsimonious models based on the BIC, ARI for model based clustering

and ARI for mixture discriminant analysis where the data is from a sample of heterogeneous

simulated Beta Weibull Exponential distributions (A & B). The two component constrained mix-

tures of BWE distributions also have higher values of the BIC than the two component mixture of

Weibull distributions. This indicates that the two component constrained mixtures of BWE dis-

tributions fit the A & B data better than the two component mixture of Weibull distributions. The
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two component constrained mixtures of BWE distributions also perform better in model based

classification of the A & B data than the two component mixture of Weibull distributions. This is

indicated by high values of the ARI for both MBC and MDA using the two component constrained

mixtures of BWE distributions as compared to using the two component mixture of Weibull dis-

tributions.

Table 4.8: Two component constrained mixtures for BWE (A & B)

MODEL ↵ � a b ! BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

UUC1 U U f f C1 30.5 0.73 0.54 0.86 0.85
C1UC1 C1 U f f C1 41.9 0.60 0.59 0.83 0.95

4.9 Mixture models for simulated BWE distributions

(B-C data)

The acceptance rejection method was used to simulate 100 data points from the BWE distribution

with parameters ↵ = 3, � = 1, a = 2, b = 1,! = 1. Similarly another set of 100 data points from

the BWE distribution with parameters ↵ = 3, � = 1, a = 2, b = 1,! = 1 were simulated. These

data points were assigned to group B and C respectively. A random sample of n=75 was selected

from each group, forming a heterogeneous population (B & C). A two component mixture of the

BWE distributions was fitted to the heterogeneous population. The mixing proportions for group

A and group B were 0.5. The EM algorithm for BWE mixtures was used for parameter estimation.

The data points from the random sample (B & C) were given class labels using the model based

clustering technique for BWE mixtures. These data points were also fitted to Weibull mixtures

and assigned class labels with model based clustering technique for Weibull mixtures.

The heterogeneous population (B & C) was used to carry out mixture discriminant analysis. The

training to test ratios were chosen to be 70:30, 80:20 and 90:10 respectively. The data points in

the training sets were used to infer class labels of the data points in the test sets using mixture

discriminant analysis technique for the BWLLoG mixtures and mixture discriminant analysis

technique for Weibull mixtures.

Table 4.9 shows the BIC, ARI for model based clustering and ARI for mixture discriminant anal-

ysis for two component full mixtures of Weibull and BWE distributions where the data is from
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a sample of heterogeneous simulated Beta Weibull Exponential distributions (B & C). The two

component full mixture of BWE distributions has a higher BIC value as compared to the two

component mixture of Weibull distributions. This is an indication that the two component full

BWE mixture fits the B & C data better than the Weibull mixture. The two component full mix-

ture of BWE distributions has a higher ARI for both MBC and MDA as compared to the two

component mixture of Weibull distributions. This indicates that the two component full mixture

of BWE distributions performs better than the two component mixture of Weibull distributions in

model based classification of the B & C data.

Table 4.9: Two component full mixtures for BWE (B & C)

MODEL ↵ � a b ! BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

Weibull U U - - - 11.9 0.57 0.72 0.68 0.85
BWE U U U U U 14.15 0.78 0.56 0.79 0.91

4.10 Constrained mixture models for simulated BWE

distributions (B-C data)

To curb the problem of identifiability some constraints were set on parameters a and b such that

a = b = 2.5. The remaining parameters where constrained or unconstrained to come up with

possible parsimonious models.

Table 4.10 shows the best parsimonious models based on the BIC, ARI for model based clustering

and ARI for mixture discriminant analysis were the data is from a sample of heterogeneous simu-

lated Beta Weibull Exponential distributions (B & C). The two component constrained mixtures of

BWE distributions also have higher values of the BIC than the two component mixture of Weibull

distributions. This indicates that the two component constrained mixtures of BWE distributions

fit the B & C data better than the two component mixture of the Weibull distributions. The two

component constrained mixtures of BWE distributions also perform better in model based clas-

sification of the B & C data than the two component mixture of Weibull distributions. This is

indicated by high values of the ARI for both MBC and MDA using the two component constrained

mixtures of BWE distributions as compared to using the two component mixture of Weibull dis-

tributions.
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Table 4.10: Two component constrained mixtures for BWE (B & C)

MODEL ↵ � a b ! BIC ARI for
MBC

ARI for
MDA
70:30

ARI for
MDA
80:20

ARI for
MDA
90:10

C2C1U C2 C1 f f U 29.97 0.64 0.57 0.78 0.93
UC2C1 U C2 f f C1 21.46 0.97 0.58 0.83 0.91
C2UC1 C2 U f f C1 28.33 0.64 0.61 0.78 0.87
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Chapter 5

Conclusion

This chapter highlights the conclusions reached from this work. It further makes suggestions for

future work.

In this thesis, mixtures of the Beta Weibull G family of distributions were introduced. These

mixtures were motivated by scarce literature on mixtures of reliability data. They fill the gap

particularly when the underlying reliability data has hazard rates that are non monotone. A

detailed account on how parameter estimation was carried out by EM algorithm was given. Model

based clustering and mixture discriminant analysis within the framework of mixtures of the Beta

Weibull G Family of Distributions was discussed in detail.

In chapter 3, some special cases of mixtures of the BWG family of distributions being the mix-

tures of Beta Weibull log logistic distribution and mixtures of Beta Weibull Exponential distribu-

tion were developed. For each special case, an EM algorithm that could be used for parameter

estimation was developed. A detailed explanation on how model based clustering and mixture

discriminant analysis would be carried out in these special cases was also given.

In chapter 4, different data sets were simulated to mimic different populations from the BWG

family of distributions. A contrast between BWG mixtures, constrained BWG mixtures and

Weibull mixtures was made based on the BIC and the ARI.

The findings of this thesis demonstrate that mixtures of the BWG family of distributions fit het-

erogeneous population with non monotone hazard rates better than mixtures of the Weibull dis-

tributions as evidenced by higher values of BIC for BWG mixtures. The BWG mixtures performed

better than Weibull mixtures in both model based clustering and mixture discriminant analysis

as evidenced by high values of the ARI.
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More work can be done in comparing mixtures of generalisations of Weibull distributions to mix-

tures of the Weibull distributions. These could include mixtures of Weibull G family of distri-

butions and mixtures of generalised modified Weibull distributions which model reliability data

with fewer parameters than the BWG family of distributions. Other maximisation algorithms

such as the Broyden-Fletcher-Goldfard-Shanno (BFGS) algorithm or it0s variations could be con-

sidered for carrying out the M-step in the EM algorithms. The BFGS is known to be more robust

than Newton Raphson algorithm, so it might give better results. It could also be interesting to

develop a multivariate BWG distribution and explore its utility in model based techniques.
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Appendix

5.1 The partial derivatives of the complete log likeli-

hood function of BWG mixture
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Note that B(a, b) =
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, thus,
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5.2 The partial derivatives of the complete log likeli-

hood of the BWLLoG mixture
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5.3 The partial derivatives of the complete log likeli-

hood of the BWE mixture
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5.4 Identifiability of mixture models

Chandra (1977) proposed the following theorems to prove weak condition for identifiability of

mixture models.

5.4.1 Theorem

Let there be a transform �g associated with each Fg 2 � having the domain of definition D�g , and

suppose that the mapping M : Fg ! �g is linear. Suppose also that there exists a total ordering ()

in � such that

i. F1  F2, (F1, F2 2 �) implies D�1 ✓ D�2

ii. For each F1 2 �, there exists some t1 in the closure of T1 = t : �1(t) 6= 0 such that

lim
t!t1
t2T1

�2(t)

�1(t)
= 0

for each F1 < F2, (F1, F2 2 �). Then the class ⇤ of all finite mixing distributions is identifiable

relative to �.

5.4.2 Theorem

Let F be a family of distributions. Let M be a linear mapping which transforms any F 2 F into a

real function �F with domain D(F ) ⇢ Rd
. Let D0(F ) = {s 2 D(F ) : �F (s) 6= 0}. Suppose that there

exists a total order � on F, such that for any F 2 F there exists s(F ) 2 D0(F )0 verifying:

a) If F1, F2, ..., Fm 2 F with F1 � Fg for 2  g  m, then

s(F1) 2 [D0(F1) \ (
m\

g=2

D(Fg))]
0
.

b) If F1 � F2, then lims!s(F1)
�F2 (s)
�F1 (s)

= 0. Then the class M of all finite mixture distribution of F is

identifiable.
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