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Abstract  
 

This study proposes a new electroencephalography (EEG) biometric authentication for 

humans based on eye blinking signals extracted from brainwaves. The brainwave signal has 

been investigated for person authentication over the years because of its difficulties in 

spoofing. Due to advancing low-cost EEG hardware equipment, it has recently been 

significantly explored. Most studies in brainwave authentication focus on the use of 

imagination and mental task to authenticate a subject. Such conventional approaches are 

prone to the effect of human emotions and exercising, since this effect alters the brainwave 

signal significantly, making such approaches to be less practical in the real world. This study 

overcomes this limitation by introducing a new approach, where the effect of eye blinks on 

the brainwave is used for authentication. The eye blink effect on the brainwave signal is 

considered an artefact in EEG authentication and is usually removed at the pre-processing 

stage. However, it holds properties that are ideal for use in authentication, and it is not prone 

to human emotions and exercising, thus improving the practicality of brainwave 

authentication. Brainwaves were recorded using Neurosky Mindwave Mobile 2 headset. The 

NeuroSky blink detection algorithm was used to extract eye blinks and their properties from 

the brainwaves. A new authentication algorithm is developed based on three (3) properties: 

blink strength, blink time, and the number of blinks at a given time. The proposed 

authentication algorithm matches the eye blinking properties stored in a database at the 

enrolment stage against the one recorded at the authentication stage. The overall algorithm 

results were calculated on a range of 0 – 100. A threshold value of 70 was used to authenticate 

a subject. Three (3) experiments were conducted. In the first experiment, we evaluated the 

performance of the proposed algorithm. The second experiment evaluated the effect of 

emotions (Excitement, Calmness and Stress) on the proposed algorithm. The third experiment 

evaluated the effect of exercising on the proposed algorithm. The performance of the 

algorithm is measured using False Rejection Rate (FRR), False Acceptance Rate (FAR), and 

Accuracy (ACC). Results showed a FAR value of 5% and an FRR value of 1%. The proposed 

algorithm achieved an accuracy of 97%. These results show good performance. Results also 

indicate that more complex patterns have low FAR and high FRR, while less complicated 



xv 
 

patterns have high FAR and low FRR. Results also show that human emotions and exercising 

have no significant impact on the proposed approach.
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Chapter 1. Introduction  

1.0 Overview 

This chapter outlines a brief overview of this research. The chapter entails the introduction, 

background to the problem, problem statement, objectives, and hypothesis/research 

questions. The last section of this chapter presents a short description of how the rest of the 

document is organised. 

1.1 Introduction  

Electroencephalography (EEG) is the electrical recording and the measuring of brain activity 

from the surface of the head of an individual using electrodes. The measurement depicts a 

summation of the small electrical impulses produced by the brain’s neurons [1].  EEG devices 

are used to measure these electrical impulses through sensors (electrodes) attached to an 

individual’s head. The acquired EEG signal will then be forwarded to a computer system for 

processing. EEG forms the core of Brain-Computer Interface (BCI) technologies, and it is 

applied in various fields, including gaming [2], medical applications [3], and assisting disabled 

people [4]. EEG has also been used in biometric human authentication [5].   

Biometrics is the statistical analysis and measurement of a person’s distinct behavioural, 

physiological, biological, and structural characteristics [6]. It has been used over a long period 

for identification and authentication purposes. EEG has been used in person authentication 

and recognition field [1], [5], [7], [8], [9] as a form of human biometric, and it has attracted 

much interest because of its low likelihood of being replicated or fabricated. It has some 

security advantages over the conventional biometric modalities. For example, handwriting 

may be mimicked, and voice can be recorded, face and iris information can be photographed 

[10]. 

Authentication involves a process by which the identity claimed by a particular individual is 

accepted or rejected. It is a one-to-one matching. In contrast, identification intends to give 

the identity of a particular individual out of a group of people, therefore making it a one-to-

N matching. Blinking is a semi autonomic process of opening and closing of eyelids in a given 

short period. It is generally regarded as an artefact when extracting specific data from the 
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EEG signal. Interior brain activities are known to be linked to eye blinks [11]. When an eye 

blink occurs, the eyeball rotates in its axes, generating an electric signal of high amplitude. 

Eye blinks are visible in the brainwave signal as an EEG artefact and get recorded together via 

EEG devices like NeuroSky Mindwave. The advancement of technology has made such EEG 

devices cheap, small, portable, and wearable, making them more practical for use in various 

fields, including EEG authentication. EEG human biometric authentication using eye blink 

artefacts, involves a process where eye blinks extracted from the EEG signal are used to 

identify a particular individual using EEG devices. Such a process includes an enrolment stage 

where the EEG signal is recorded and stored, then later during authentication, the signal is 

recorded and matched using pattern matching algorithms, against the one previously stored.     

Using biometrics for authentication or person recognition requires measurable behavioural 

or physical attributes that meet the following aspects: distinctiveness, circumvention, 

universality, collectability, acceptability, permanence, and performance [12]. EEG signals, as 

a promising biometric trait, go beyond satisfying the first four aspects and is superior as 

compared to other biometric traits [13]. The privacy, acceptability, and non-invasiveness of 

this form of data acquisition make EEG based biometrics have a robust advantage of public 

tolerance. However, the performance and permeance of EEG based biometrics is a research 

area that is still being explored further [13]. 

1.2 Background to the problem 

As discussed in Section 1.1, EEG based biometric authentication provides a high level of 

security as opposed to other conventional methods like fingerprint, face, iris and passwords 

[14]. It is also a feasible alternative to other person authentication and recognition methods. 

The implicit features of EEG, which are nearly impossible to forge gives it an immanent 

advantage[13]. Many studies [7], [15], [16], [17], [18], [19] have reported high permeance and 

accuracy for EEG based authentication systems. However, many of them were conducted and 

evaluated under a controlled environment like labs and subjects in specific mental states. 

These conditions are unrealistic because, in a real-life scenario, such systems would operate 

in an uncontrolled environment like workplaces. Also, users of these systems are generally 

not in the same mental state throughout the day. For this reason, these systems face 
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significant challenges in performance when it comes to realistic conditions. In this section, we 

discuss the major problem surrounding EEG based authentication systems.  

One of the most significant challenges in implementing an EEG based biometric system is in 

its operation [13]. EEG experiments are conducted in such a way that subjects participate only 

a few times, if not once. In reality, a biometric system is often used multiple times in a day 

over several years in a way that is different from the experiments conducted in laboratories. 

Furthermore, for a biometric system to be practical and useable, it must allow users to 

operate it by themselves, without requiring an operator.  

A practical person identification or authentication system must be able to recognise enrolled 

users even after a prolonged time. [20] conducted a study on EEG based authentication 

system where half total error rate increased to 36.2% from 7.1% in just three days. The same 

trend was observed from a study by [21], where the true positive rate dropped to 83.64% 

from 94.60% after a single week and further dropped to 78.20% after six months. These 

studies indicate a template ageing challenge [22], whereby, over time, EEG based biometric 

system performance degrades.    

Other several studies used EEG signals in authentication, but using different stimuli ranging 

from imaginary motor movement to baseline relaxation, solving math problems, and 

visualisation [15].  These studies [7], [15], [23] have something in common; they depend on a 

thought or an imagination that a subject creates based on a given stimulus. [24] piloted a 

study on the effects of familiarity on the EEG signal. In this study, music was used as stimuli, 

and it was discovered that music familiarity influences both the brain functional connectivity 

and the power spectra of brainwaves to a certain level.  

[25] conducted a study to evaluate the EEG spectral asymmetry index (SASI) for discrimination 

of the effect of positive, neutral, and negative emotions on human EEG. Results indicated that 

both positive and negative evoked emotions change the EEG signal. Another study was 

conducted by [26] on examining the effect of moderate physical exercise on EEG. Results 

indicated that the amplitude of EEG power spectra, including beta, alpha, and theta frequency 

bands, significantly increased after exercise, and concluded that the EEG signal is altered by 

exercise. 
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As discussed, the effect of exercising and emotions on the EEG signal has a considerable 

negative effect on the performance of EEG based biometric systems. The performance of such 

systems tends to degrade under the mentioned conditions, therefore challenging their 

practicality and robustness. Although EEG based biometric studies report accuracies of up to 

100%, they were conducted in a laboratory setup, and subjects kept at a steady position and 

resting conditions [27]. Furthermore, they do not provide information on the performance 

under practical conditions. For such systems to be practical, they need to overcome these 

challenges.  

1.3 Problem Statement 

The problem that EEG based biometric methods have lies in the effect of physiological 

artefacts (emotions and exercising) that alter the EEG waveform, thus increasing false 

rejection rate in EEG authentication systems. 

 

1.4 Objectives 

1.4.0 General Objective 

The main objective of this study is to develop an EEG based human biometric authentication 

algorithm that is based on eye blink artefact. 

 

1.4.1 Specific Objectives 

1. To collect the EEG signal. 

2. To pre-process the acquired EEG signal. 

3. To extract relevant features from the EEG data.  

4. To develop an authentication algorithm based on eye blink artefact. 

5. To evaluate the performance of the authentication algorithm. 

 

1.5 Research Questions 

The core of this study focuses on implementing an EEG authentication algorithm based on 

eye blinks. Therefore, this research seeks to offer a comprehensive solution to the following 

research questions: 
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1. How can the EEG signal be collected? 

2. How is the acquired EEG data pre-processed? 

3. What relevant features can be extracted from the EEG signal to be used in the 

authentication algorithm? 

4. How can eye blink artefact be used to develop an authentication algorithm?  

5. How is the performance of the authentication algorithm evaluated? 

 

 

1.6 Thesis Structure 
 

There are relatively six (6) chapters in this document. The first chapter introduces our work, 

the background to the main problem, and the problem statement that this study is 

addressing. Followed by the general objective, research questions, and specific objectives. 

The second chapter introduces EEG, its practical use, and measurement, followed by a review 

of literature on EEG devices and EEG authentication methods. Chapter 3 explains in detail 

how the objectives discussed in chapter 1 are archived. It starts with an introduction and an 

overview of our proposed approach. Followed by EEG signal pre-processing methods, 

selection of relevant data features, and the development of the algorithm. Chapter 4 consists 

of the experimental setup. Chapter 5 entails results and discussion, while chapter 6 is the 

conclusion and further work.    
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Chapter 2. Literature Review 

2.0 Overview 

This chapter is an outline of the literature review. It entails an introduction to EEG, practical 

uses, and measurement of EEG, followed by a detailed description of the eye blinking process. 

A review of various EEG devices and EEG authentication methods follows. At the end of this 

chapter is a summary of the authentication methods.  

 

2.1 Electroencephalogram  

2.1.0 Introduction to EEG 

Electroencephalography is the measurement of electrical activity that occurs in the brain of a 

human being. The nervous system of a human being, including the brain, consists of nerve 

cells called neurons. These so-called neurons send electrical signals amongst each other, 

causing some voltage fluctuations. These voltage fluctuations are then measured using some 

electrodes placed on the scalp. It is mostly used in the medical field though it has much 

potential in other fields like computer security. 

 

The waves of EEG patterns are in sinusoidal form. They are categorised into several classes 

based on their frequency bandwidth. When a subject performs different activities, each 

category of these waves become visible. There are five commonly known categories of these 

waves. They are: 

 

a) Alpha Waves 

The frequency of these waves is on a range of 8Hz to 15Hz. They usually appear while the 

subject is in a relaxed state. More can also be observed when the subject’s eyes are closed. 

b) Beta Waves 

The frequency of these waves is on a range of 16Hz to 31Hz. They are usually visible when a 

subject is awake and have a low amplitude. They are also visible during concentration, active 

thinking, and arousal states. 
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c) Gamma Waves 

The frequency of these waves is above 32Hz, and they are involved during cognitive 

functioning like higher processing tasks, sight, and sound perception. The occurrence of lower 

gamma waves is found in people with disabilities. 

d) Theta Waves 

The theta waves range on a frequency of 4Hz to 8Hz. They appear as consciousness slips 

towards drowsiness. 

e) Delta Waves 

The delta waves range on a frequency of 1Hz to 4Hz. They are primarily associated with deep 

sleep. 

 

2.1.1 Practical uses of EEG 

EEG is mainly used in the medical field for inspecting the patient’s brain conditions. A patient’s 

brain death status, coma, and alertness are examples of its use in the medical field. It is also 

used to locate and investigate the patient’s damaged areas in the brain since abnormal 

readings of EEG can indicate the problem from or near the affected area. Also, EEG can be 

used to monitor some procedures, during operations, it can measure the depth of 

anaesthesia. Calm brainwaves indicate that patients are in a relaxed state. The other uses 

involve investigating epilepsies, seizures, and test the convulsive effects of drug use. 

 

In the medical field, the use of EEG is influenced by the advantages it has over other methods 

for monitoring brain function. The cost and size of EEG measuring devices are generally low, 

therefore making it more practical to be deployed in many hospitals and clinics. Medical 

settings usually use a sampling rate between 250Hz and 2000Hz, but other devices have the 

capability of recording at a sampling rate that is above 2000Hz. EEG does not have side effects 

like claustrophobia in contrast to other Magnetic Resonance Imaging (MRI).  

 

Another field that has attracted much interest in the implementation of EEG is Brain-

Computer Interface (BCI). EEG in BCI acts as a gateway between the users and computer 

devices through the provision of an interface that gives users the ability to interact with 

external devices through their brainwaves. Beyond just facilitating input commands to 
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computer games and software, it has been implemented in drones that are remotely 

controlled [28],[29],[30],[31]. Figure 1 shows a quad-copter parrot 2.0 drone remotely 

controlled via Emotiv EEG headsets using brainwaves. 

 

 

Figure 1. EEG controlled drone [29] 

 

2.1.2 EEG Measurement 

EEG is measured using EEG recording devices. These devices have electrodes that are 

attached to the skull to measure the electrical activity on the scalp. The electrodes are 

positioned in the desired points on the head. The number of these electrodes can range from 

1 up to 65 or even more. Each electrode measures the electrical activity at the points they are 

attached to on the scalp. In the medical field, the device is generally in a cap form, with 

electrodes attached to it. In BCI, these devices are usually in form of electronic gadgets. EEG 

measurement has two main categories of recording methods.  These methods are invasive 

and non-invasive. 

       a) Invasive EEG 

In this method of recording, electrodes are directly embedded inside the skull but on the 

surface of the brain. Surgery is a required procedure in this method since the electrodes have 

to touch the surface of the brain. Modern EEG devices usually do not require that, unless in 
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extreme cases where there is a need for the electrode to touch the brain like in some epilepsy 

surgeries. 

b) Non-Invasive EEG 

Unlike invasive EEG, where electrodes need to come in contact with the brain directly, non-

invasive EEG only requires electrodes to touch the surface of the head. However, this makes 

it prone to noise from other factors, creating a need for signal filtering and signal processing. 

Modern EEG applications mostly use EEG devices that are non-invasive and wearable, 

therefore making such applications more practical. In non-invasive EEG, electrodes are placed 

anywhere on the surface of the head for EEG measuring. However, there are international 

standards that exist for placing electrodes on the surface of the head. A system named 10-20 

for electrode placement is an accepted international standard. It consists of twenty-one 

points (21), and each point has a specific name given to it. These names are based on the 

brain lobes near the electrode position. For example, the electrodes paced near the frontal 

lobe, occipital lobe, and temporal lobe are named F, O, and T, respectively. Figure 2 indicates 

an international standard 10-20 system for EEG measurement. The percentages in the figure 

indicate the distance relative to the total distance from nasion to inion (nose to back of the 

skull) and preauricular to preauricular (ear to ear). 

 

Figure 2. 10/20 International Position System for measuring EEG [32]    
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2.2 Eye Blink 

Blinking is a process of rapid closure and opening of eyelids. It is an act that occurs 

involuntarily and voluntarily. According to [33], when an eye blink occurs, there is a rotation 

of the eyeball within its axis. This rotation causes a large amplitude of an electric signal. An 

eyeblink occurs in two (2) stages. In the first stage, the eyelids close while the eyeball rotates 

upwards, causing the cornea (positive pole) to get closer to the frontal lobe at the Fp1 

electrode in the left eye. The same process happens in the right eye, where the cornea gets 

close to the Fp2 electrode. A positive deflection in the signal is produced by this process. In 

the last stage, while the eyelids open, the eyeball rotates in the opposite direction 

(downwards). The positive pole gets far from the frontal lobe but adjacent to the ground 

(reference) electrode, thus creating a negative deflection. The signal generated can be 

detected by the electrodes of the EEG device. These positive and negative deflections can be 

seen in the EEG waveform, as depicted in Figure 3. 

Figure 3 depicts an EEG waveform altered by an eye blink. The vertical axis represents the 

voltage, while the horizontal axis represents time. Section (b) and (c) denotes eye closing and 

opening, respectively, while section (a) denotes the center position of the eyeball.    

 

 

Figure 3. Brainwave signal showing an eye blink.  
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2.3 EEG devices 

2.3.0 Emotiv Epoc+ 

The Emotive Epoc+ headset by [34] shown in Figure 4, is a wireless 14 channel EEG recording 

device. It has 14 electrodes (AF3, AF4, P7, P8, O1, O2, T7, T8,  FC5, FC6, F3, F4,  F7, F8) and 

two others which are reference electrodes (P3, P4). It uses Bluetooth connectivity, has up to 

twelve (12) hours of battery life using a USB receiver and up to six (6) hours via Bluetooth. 

The internal sampling rate is 2048. Through user configuration, it can be down sampled to 

either 256SPS or 128 SPS. The range of its bandwidth is 0.16Hz to 43Hz. It has digital notch 

filters at 60Hz and 50Hz. It also has an embedded digital fifth-order Sinc filter. 

 

 

Figure 4. Emotive Epoc+ [34].  

 

2.3.1 NeuroSky Mindwave Mobile 2 

The NeuroSky MindwaveMobile 2 headset by [35] shown in Figure 5, is a single-channel EEG 

recording device. It has a single electrode that rests above the eye at the (Fp1) position 

according to the 10/20 International Position System. The device’s EEG electrode is situated 

at the tip of the front of the sensor arm. The ground and reference electrodes are located in 

the ear-clip. It uses the TGAM1 module and has a battery life of eight (8) hours. It is a wireless 

device that uses Bluetooth. It outputs 12-bit raw brainwaves on a frequency band range of 

3Hz – 100Hz, with a sampling frequency of 512Hz. It has a built-in notch filter.  
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Figure 5. NeuroSky Mindwave Mobile 2 [35] 

 

2.3.2 Emotiv Insight 

The Emotiv Insight headset by [36], as shown in Figure 6, is a five-channel EEG recording 

device. It has five electrodes (Pz, T7, T8, AF3, AF4) and two others, which are reference 

electrodes. It is a wireless Bluetooth device with a battery life of up to eight (8) hours using a 

USB connection and up to four (4) hours using a Bluetooth connection. The sampling 

frequency of this device is 128 per channel. Its bandwidth is on a range of 0.5Hz to 43Hz with 

digital notch filters at 60Hz and 50Hz. It has a built-in digital fifth-order Sinc filter.  

 

Figure 6. Emotiv Insight 5 Channel Mobile EEG [36] 
 

2.3.3 Muse Headband 2016 

The Muse Headband by [37] shown in Figure 7, is a non-invasive four-channel EEG recording 

device. It has five electrodes (AF7, AF8, TP9, TP10, FPz) of which one (FPz) is a reference 
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electrode. It uses two electrodes on the right and the other two on the left, so it is appropriate 

for exploring hemispheric asymmetries. It is a wireless Bluetooth device with up to 10 hours 

of battery life. It has a sampling rate of 256Hz. It has no built-in notch filter.  

 

Figure 7. Left(Muse Headband), right(electrode positioning according to 10/20 system) [15] 

 

2.3.4 Other EEG Devices 

Other EEG devices include Neural Impulse Actuator, MindFlex, HiBrain, Melon Headband, 

OpenBCI, IFocusBand and Aurora Dream Headband. These devices are also used, but not as 

widely as the ones discussed section 2.3 above. A summary of these devices is depicted by 

Table 1. 

Table 1. Summary of other widely used EEG devices. 

EEG Device No of Electrodes Type of Sensor Year Released 

Neural Impulse Actuator 3 dry 2008 

MindFlex 1 dry 2009 

HiBrain 1 dry 2014 

Melon Headband 4 dry 2014 

OpenBCI 8/16 dry/wet 2014 

IFocusBand 1 dry 2014 

Aurora Dream Headband 1 dry 2015 
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2.3.5 Summary of EEG Devices 

The EEG devices stated in section 2.3 are the most commonly used, simply because of their 

portability, low cost, and their effectiveness in terms of usability. At the time of writing, Muse 

headband, Emotiv Insight, Emotiv Epoc+, and Neurosky Mindwave Mobile 2 cost $219.99, 

$299.00, $699.00, and $99.99, respectively; with Neurosky Mindwave Mobile 2 being the 

most affordable.  All of the mentioned devices use dry electrodes. According to [38], the use 

of wet electrodes is linked with high signal quality due to abrasive or conductive gels that 

reduce skin-electrode impedance.  However, such devices may not be feasible for long term 

purposes due to allergic reactions and skin irritation.    

The Emotiv Epoc+ has the largest number of electrodes (14) compared to the other three (3) 

devices. The advantage of multiple electrodes lies in the reduced or minimal loss of crucial 

data and the detection of critical clinical signals. However, crucial data is dependent on a given 

use case. It is because various brain sections perform different functions. The most substantial 

area to obtain the blinking signal is the frontal lobe (Fp1 and Fp2). Even though the Emotiv 

Epoc+ have the advantage of multiple electrodes, none of its electrodes utilises the Fp1 and 

Fp2 position. Amongst the four (4), Neurosky Mindwave Mobile 2 is the only device utilising 

at least one of these positions (Fp1).     

When these devices operate using Bluetooth, their battery life ranges from four (4) to ten 

hours (10). The Neurosky Mindwave Mobile 2 and Muse headband show the most extended 

battery life of eight (8) and ten (10) hours, respectively. Shorter battery life prohibits 

prolonged usage of the device. In comparison, longer battery life increases efficiency and the 

usability aspect of the device [39], which means that longer battery life is desirable and 

convenient. Regarding usability, other factors like the design, number, and position of 

electrodes affect user comfort. The Emotiv Epoc+ has fourteen (14) electrodes that require 

more time to install on the subject’s head since the electrodes have to penetrate the hair to 

touch the scalp. The Neurosky Mindwave Mobile 2 and the Muse headband can be quickly 

installed since all the electrodes rest on the forehead and the earlobe.  

 

2.4 EEG Authentication 

A protocol named CEREBRE, introduced by [40] authenticate users using EEG signals. Four 
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hundred images were used as stimuli, including one hundred faces of celebrities, one hundred 

food images, one hundred words with low frequency, and one hundred sine gratings. In 

addition to the mentioned categories, another category of an oddball stimulus was also 

included in order to evolve the sought EEG pattern further. This study was performed with a 

total number of fifty participants.  A device called Brain-vision BrainAmp DC that has three 

(EOG) electrodes and twenty-six (EEG) electrodes, was used to capture signals at a sampling 

rate of 500Hz. A band-pass filter (1-55Hz) was used to filter Event-Related Potentials (ERP), 

and normalised cross-correlation (discriminant function based) was deployed in classification. 

The results verified that middle occipital electrodes are activated by visual tasks. Both minimal 

(four categories and four channels) and maximal (all classifiers and channels) classifiers 

showed and accuracy of 100%, but maximum accuracy was showed when the minimal 

classifier used all trials. Results indicated that single-stimulus classifiers, relative to oddball 

and food stimuli, have the highest accuracy. Very poor performance was shown from the 

classification that was relative to resting-state EEG. Another poor performance was shown by 

an authentication method that was based on a memory recall task because of the time taken 

to recall. This study showed that ERP biometric identification within at least six months, does 

not degrade significantly. 

 

In another study by [16], a method based on EEG spectral coherence connectivity was 

suggested for finding uniqueness. The overall idea was to establish distinctiveness using the 

information that is transferred between various brain regions. A dataset used in this proposed 

method consisted of one hundred and eight subjects, collected while eyes open and closed 

resting-state conditions. The EEG signal was captured using a gadget with 64 electrodes, at a 

sampling frequency of 160Hz. Anti-aliasing low-pass filter was used to down-sample data to 

100Hz and extracted up to 50Hz. Power spectral density (PSD) and cross-spectral Coherence 

(COH) analysis methods were used for extracting spectral features. Algorithms like Match-

Score Fusion and Mahalanobis Distance-based classifiers were used separately for calculation 

of distinctiveness. The analysis was conducted over three various brain regions (P: parieto-

occipital, C: central, and F: frontal region). The PSD of eyes closed data displayed accuracy of 

90.49% from a single element classifier for the P region. An accuracy of 100% was showed by 

match-score fusion algorithm for COH features of eyes-closed data from all regions, and eyes-

open from the frontal region only. The method used is highly accurate and very robust in 
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person identification. Better accuracy was shown by match-score fusion with COH features. 

However, COH needs stationary EEG signals and 20 minutes of analysis to process. This means 

that on conventional hardware, there may be poor classification performance with a large 

number of subjects (more than 100). 

 

A study by [7] proposed Rapid Serial Visual Representation (RSVP) stimuli based 

authentication system. A BrainAmp amplifier was used to record EEG signals of 29 subjects. 

Wet and dry electrodes were separately used to collect data. Targets as a set of 3 symbols 

were used, and users asked to count the instances from a pool of trials that were created 

randomly. EEG data were collected from 600 trials comprising of 528 non-targets and 72 

targets. The calculation of significant features was done by point-biserial correlation 

coefficients. Fisher’s transformation was used to transform correlations into z-scores for each 

participant. ERP components were classified using regularised linear discriminant analysis. For 

single based trial classification, overall accuracy for 16 and 28 channel wet configurations was 

85.9% and 87.5%, respectively, and 78.2% for 16 channel dry configuration. Both setups, dry 

and wet electrodes, showed an accuracy of 100% with 27.0s and 10.7s login times, 

respectively. The knowledge-based methods presented by this study could be tuned to any 

level of TAR depending on the needed security level. The login time can be reduced by setting 

the TAR to a low level. The authors indicate that in coercion situations, subjects can easily 

hide their passwords. However, the scope of applicability is limited by the need for data 

calibration. 

 

[15], conducted a study where the number of recruited subjects was 15. A NeuroSky MindSet 

was used to capture data. The device used has only one electrode that is located at the Fp1 

(frontal polar) region on the head. Seven (7) tasks were carried out, including pass-thought 

(authentication via thoughts), breathing, colour identification, finger movement (simulated), 

audio listing, sports activity, and passage or singing recitation. Data was simplified into a single 

dimension by flattening signals in the time domain. Only beta and alpha frequency bands got 

extracted.  The similarity between pairs of signals was quantified by using the cosine similarity 

of the vector representation. The classification algorithm used was K-nearest Neighbour 

(KNN). Colour, audio, and sport tasks gave the highest classification accuracies. Nonetheless, 

the proposed method indicated an accuracy of 99% using tasks that are custom and also 
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custom acceptance thresholds for each subject. The friendliness of these tasks was checked 

through administering a questionnaire, and the results showed that the pass-thoughts task 

was the most challenging to carry out. The easiest tasks were colour, breathing, and audio. 

This study showed that it is feasible to get the best accuracy while maintaining user-

friendliness.  

 

Another study was conducted by [8], proposed a method based on Wavelet Transform and 

multi-objective Flower Pollination Algorithm to decompose the EEG signal and identify 

features that offer the best accuracy. A dataset “Motor Movement/Imaginary”, which 

includes one hundred and nine subjects, was collected using a 64-channel EEG device, and it 

was based on different cognitive tasks. MOFPA-WT performance was evaluated using FAR, 

TAR, and accuracy. The proposed approach delivered the best accuracies from cognitive tasks; 

motor movement, in comparison with motor imagination results.  

 

[41] proposed a user identification system using an Emotiv Epoc device that had 14 channels. 

The proposed approach was based on EEG data captured from six subjects. A lowpass filter 

called 5th order Butterworth (with a range of 6Hz – 35Hz) was used in the pre-processing 

phase to get a high signal-to-noise ratio. Features of the EEG signal were extracted using 

wavelet transform. Other features, including energy, mean, and standard deviation, were 

extracted from the EEG signal. User recognition was done using Learning Vector Quantization 

Neural Network in the classification phase. The calculation of recognition rate was done over 

distinct setups to observe the foremost fusion of EEG channels that can give accurate 

classification. 

The same authors carried out research on cognitive tasks later in a different study to design 

a person identification system [42]. A dataset of motor/movement and imaginary tasks was 

used. This dataset was recorded from a single-channel EEG device (Cz). Wavelet Transform 

was deployed for EEG signal decomposition into five levels for feature extraction. The 

extracted features were:  absolute energy, logarithm energy, energy, and REE energy. EEG 

signals were classified using Neural Network, from five users using two tasks from four various 

train-test scenarios. The authors found out that using motor imagination cognitive tasks can 

give high identification rates compared with motor movement results.      
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[43] Proposed an EEG based biometric identifier by extracting eye-blinking waveforms from 

the EEG signal. Neurosky Mindwave was used to record brain waves using MATLAB. In the 

pre-processing phase, two approaches were adopted. In the first approach eye-blinking signal 

was extracted by isolating the electrooculogram signal from the EEG signal using empirical 

mode decomposition. In the second approach, an eye-blinking signal was extracted directly 

from the EEG signal. Extracted features were based on time delineation of the eye blinking 

waveform, and classification was done using Linear Discriminant Analysis. A database of 25 

subjects was used to obtain high recognition rates. In identification mode, the second 

approach achieved a correct identification rate of 98.51%, whereas, in verification mode, at a 

threshold of 1.2665, Equal Error Rate of 2.5% was obtained. This study indicates that eye-

blinks are distinct and can distinguish subjects. However, the proposed method used a small 

database of only 25 subjects. Therefore, the correct identification rate may be affected in a 

negative way using a large database. 

 

Another EEG authentication method, which specifically focused on the corresponding eye 

blink on the EEG signal, was introduced by [44]. This method was able to efficiently and 

accurately distinguish between several users. The proposed approach was convenient and 

burden-less to the subjects. A dataset of EEG eye blinks collected from twenty users was used 

in this study. Their implementation was in the form of multi-class classification where SVM 

with Radial Basis Function kernel was deployed to train multiclass data. A combined set of 

features, including mean, variance, peak, duration, area, Fourier Transform, and energy were 

extracted using PCA. Results showed a True Positive Rate of 92%. When using unsupervised 

classification, a TPR value of 80% was achieved. Results indicated that blink signals could be 

used to distinguish various users accurately.  

[33] adopted a novel human authentication technique that is based on eye blinks extracted 

from electrooculogram signals. NeuroSky Mindwave headset was used to collect signals for a 

database of 25 subjects. The eye blinks were then extracted and applied for verification and 

identification tasks. They were extracted from EEG thorough empirical mode decomposition 

at the pre-processing stage. At the feature extraction stage, time delineation of the eye blink 

waveform was put to use. The classification was adopted using linear discriminant analysis. 

The accuracy and equal error rate achieved were 97.3% and 3.7%, respectively. Results 
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indicated that eye blinks carry discriminant data and can be used as a base for recognition 

tasks. However, this study assumes that maximum peaks in the EEG waveform are eye blinks. 

Therefore, their approach is prone to other EEG artefacts like seizure and epilepsy spikes, that 

can give similar peaks. Also, 25 blinks per user were averaged in order to produce a test 

sample. This frequent blinking can put more burden on the users hence lowering the level of 

practicality.    

Another human biometric authentication approach was proposed by [45]. The approach used 

a multi-level technique where brainwaves during visual stimulation and relaxation were 

combined with eye blinks. This approach was carried out to enhance the performance using 

eye blink artefacts. In this multi-level approach, feature and score level fusion techniques 

were tested. At the feature extraction stage, time delineation of the eye blinking waveform 

and Autoregressive Modelling of EEG signals was adopted. A database of 31 subjects was 

used, where subjects performed three various tasks, including eye blinking, relaxation, and 

visual stimulation. A NeuroSky Mindwave headset was used as a recording device. An 

accuracy of 99.4% was achieved. Results indicated that the contribution of eye blinking 

features had significant improvements with regards to correct recognition and error equal 

rate on the proposed multi-level approach as compared to a single-level approach that uses 

only EEG.  

Table 2 summarises the studies discussed above and other studies not discussed. It also 

summarises the characteristics used and the accuracy achieved. The precision of each 

authentication method generally relies heavily on these elements. Even if the complexity of 

tasks is very difficult to quantify, relaxation may be the simplest. Even if complicated tasks 

provide greater precision, subjects can relax more easily. In order to obtain greater precision, 

selected studies have distinct types of characteristics, such as various tasks, a variety of 

channels, and various algorithms. This table shows changes in precision-based on these 

parameters. [17] and [18] have determined that combining multiple tasks improves precision 

by examining various types of tasks. The proposed authentication method by [46] used both 

ECG and EEG signals. This study yielded high accuracy as compared to other studies that used 

the same task of relaxation. This high accuracy is because of an added extra ECG channel.  
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Table 2. Summary of related EEG authentication studies 
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[47] 18 10 Facial images as visual 

stimulation  

Negative/positive 

peaks at defined 

latencies  

Distinction of 

average signals 

SVM 86.1 

[48] 8 10 Apprehension of 

images as visual 

stimulation 

Mean amplitude, 

cross-correlation, 

coherence 

FRNN 92 

[49] 2 51 Relaxation with eyes 

closed 

AR, standard 

deviation, skewness, 

entropy, Higuchi 

fractal dimension 

LDA 97 

[9] 14 12 A cognitive task of 

imagination of a four-

digit number 

Common Spatial 

Patterns 

LDA 97 

[46] 4 - relaxation Cross correlation 

(ECG & EEG data), 

FFT, AR, Coherence, 

mutual information 

FDA 98 

[50] 61 20 common objects 

drawings as visual 

stimulation  

Multiple signal 

classification  

ENN, k-NN 98 
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[15] 1 15 Audio listening, colour 

identification, 

breathing, pass 

thoughts, simulated 

finger movement, 

passage/singing 

recitation, sport activity 

Cosine similarity of 

the vector 

representation 

KNN 99 

 
 
 
 
 
 
 
 
 

[17] 14 5 Visual counting, 

Relaxation, 

Geometric figure 

rotation, 

Limb movement 

IHPD, IHLC, SP, AR, 

PSD 

SVM 100 

[18] 6 6 Match activity, visual 

counting, relaxation, 

mental letter 

composition, geometric 

figure rotation 

AR, SP, IHPD, IHLC LDA 100 

[7] 16 29 RSVP Fisher’s 

transformation, 

point-biserial 

correlation 

coeffients 

LDA 100 

[16]  64 10

8 

Relaxation with eyes 

open and eyes closed 

PSD, COH Match-score 

fusion and 

Mahalanobis 

distance-

based 

classifier 

100 

[19] 3 50 Four hundred images as 

visual stimulation 

ERP Normalized 

cross 

correlation  

100 
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EEG based authentication methods discussed in this section have proven that they provide a 

high level of security, permanence, and recognition accuracy. However, these studies were 

conducted and evaluated under unrealistic conditions, i.e., controlled emotions and labs. 

Therefore, there are a number of challenges associated with their level of practicability and 

usability. One of the challenges associated with EEG based authentication methods is their 

robustness to physiological and psychological changes [13]. Several EEG based authentication 

studies [7], [8], [15], [16],  [41], [40], [47], [48], [49], are based on a signal generated by the 

cerebral neural activity. As stated by [13], this signal rapidly changes due to physiological and 

psychological factors, which cause a constant change in the brainwaves over time.  This causes 

EEG based authentication methods to have a high false rejection rate. 

Evidence indicates that physiological and psychological factors affecting EEG authentication-

based systems include mental state [51], emotional state [52], [53], [25], [51], exercising [27], 

[26], [54] etc. The EEG signal is altered by these factors, which are referred to as EEG artefacts. 

However, the eye blink artefacts present in the EEG waveform are consistent despite changes 

in cerebral activity. For this reason, several studies [55], [56], [57] have emerged to investigate 

the use of a combination of EEG features and eye blinks to improve the overall accuracy and 

performance of EEG based authentication approaches. Such studies have also achieved high 

accuracies. However, their dependence on cerebral activity like thoughts and mental tasks, 

still make them prone to physiological and psychological factors. Their level of practicability 

and usability is still a concern [58]. This gap that the literature is outlining indicates that eye 

blink-based authentication needs to be explored further since this approach has the security 

advantage of EEG, yet showing the possibility of practicability and usability.   
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Chapter 3. Proposed Approach  

3.0 Introduction 

This chapter entails a detailed description of the steps carried out to formulate an approach 

that addresses the problem statement in Section 1.3 by implementing specific objectives in 

Section 1.4.1. The major problem of EEG authentication that this study addresses is its 

sensitivity to factors like human emotions and exercising. These factors significantly affect the 

performance of EEG authentication systems in a negative way. Therefore, making EEG 

authentication less practical in the real world. Researchers have come up with different 

approaches to tackle this issue, as discussed in Chapter 2, but these approaches have their 

limitations. We propose a new EEG authentication approach by implementing an algorithm 

that uses EEG artefacts (blinking). 

The next sections of this chapter include an overview of the proposed approach, EEG signal 

collection, selection of relevant data features, authentication algorithm, and summary.  

3.1 Overview 

An overview of the proposed approach entails four (4) major sections being EEG signal 

collection, pre-processing, feature selection, and proposed algorithm. These four sections are 

carried out in both the enrolment and authentication phases, as depicted in Figure 8.  The 

EEG signal was collected from subjects using a NeuroSky Mindwave Mobile 2 device. In this 

stage, necessary steps were carried out to minimise signal to noise ratio. These steps include 

cleaning the scalp and the electrode with alcohol. In the second stage, the pre-processing 

stage, the built-in noise filtering mechanism on the TGAT chip from the NeuroSky Mindwave 

Mobile device was used. Three (3) types of filters (Notch filter, Low-pass filter, and High-pass 

filter) were applied to the EEG signal. A High-pass filter was applied at a cut-off frequency of 

3Hz to clean up low-frequency noise. A Low-pass filter was applied at a frequency cut-off of 

100Hz on the EEG signal to remove high-frequency noise. A 50Hz notch filter was used to 

remove the 50Hz frequency noise caused by electric appliances and power lines. The TGAT 

chip performs some computations on the signal and outputs digital data. This data contains 

various features. Feature extraction was then performed, and relevant data features were 

selected. At the enrolment stage, the subject’s EEG data were saved in the MySQL database. 
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The same process is repeated, except at the authentication stage, where the subject’s data 

were compared with previously saved data using the pattern matching algorithm and a 

defined threshold to determine if the subject is accepted or rejected. This whole process is 

shown in Figure 8.  

 

Figure 8. An overview of the proposed approach (EEG Authentication Algorithm) 
 

3.2 EEG Data Collection 

This section entails a detailed description of the process of collecting the EEG signal. It 

includes the steps, tools, and equipment used and a justification of how they were used and 

selected. The process of collecting the EEG signal is categorised into three sections. The first 

section deals with minimising electrode impedance, which includes the tools and steps carried 

out to enhance signal quality. The second section deals with the extraction of the EEG signal, 

which includes tools and methods used and their justifications. The last section, which is the 

third section, deals with the recording of the EEG data.  

3.2.0 Minimising Electrode Impedance 

The collection of clean EEG signal takes more than just having a good device. There has to be 

a very stable connection between the scalp and the electrode. However, sweat, oily skin, and 

dead skin cells accumulate on the surface of the scalp, therefore creating a layer of electrical 

resistance. This layer hinders electrical activity from propagating well. In EEG recording, this 
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is known as impedance. It is of paramount importance to undertake necessary procedures to 

reduce electrode impedance to ensure that we acquire a cleaner signal.  For that reason, 

alcohol was used to clean the region where the electrodes come in contact with the skin. This 

region is the Fp1 (just above the left eye) and the reference electrode area (left ear lobe), as 

shown in Figure 9. These areas were scrubbed gently using an abrasive gel and a cotton pad 

to remove any dirt that might have accumulated. Then the skin was cleaned with alcohol to 

de-grease the skin to allow the electrodes to stick better. 

 

Figure 9. Electrode site position (Fp1 and left ear lobe) to be cleaned [59].     

 

3.2.1 Signal Extraction 

The second step in EEG signal collection deals with the extraction of the signal. We used the 

NeuroSky Mindwave Mobile 2 device for capturing EEG signals. Three main factors motivated 

the selection of this device. The first factor is the price. NeuroSky Mindwave Mobile 2 is a low-

cost EEG device that is easily accessible yet according to the literature [15], [33], [43], [56], it 

is one of the popular devices used in EEG research, from simple projects to advanced complex 

projects like EEG authentication. The second factor is the electrode position. NeuroSky 

Mindwave Mobile 2 has two electrodes of which one that is located at the earlobe is a 

reference electrode. The other electrode is located at the forehead, above the eye at the (Fp1) 

position according to the 10/20 International Position System (See Figure 9). One of the key 

features in this research is the eye blink, therefore the (Fp1) position is the most ideal position 

since the electrode is placed close to the frontal lobe. The choice of this electrode position 

will tremendously contribute to the low signal-to-noise ratio hence improve the overall 

performance of our authentication algorithm. The third factor is portability. This device is very 
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portable, easily adjustable and light in weight. Its adjustability makes it to perfectly fit well in 

any human head size. The lightweight factor reduces discomfort in users. 

EEG signals were captured from the subject using NueroSky Mindwave Mobile 2 headset. 

These signals were then pre-processed. The details of the pre-processing stage are discussed 

in Section 3.3. The pre-processed data is transmitted over Bluetooth to the computer that has 

a ThinkGear Connector tool installed. The specifications of the computer used are as follows, 

a Dell Laptop with 8GB of RAM, 500GB of Hard disk, and Intel(R) Dual-Core (TM) i5-2540M 

CPU @ 2.60. These hardware specifications were motivated by the recommended 

specifications for running Microsoft Visual Studio by Microsoft.  

The ThinkGear Connector tool manages communication between the computer and the 

connected NeuroSky Mindwave Mobile 2 device. This tool offers a daemon-like service to 

manage the two connected devices. It continuously runs in the background and maintains an 

open socket between the computer and NeuroSky Mindwave Mobile 2 headset, to allow 

applications to connect and read data. It is provided for the Windows platform as an 

executable file. Every NeuroSky product has a ThinkGear technology embedded in it. This 

technology allows the wearer’s brain signals to be interfaced with the ThinkGear device.  The 

ThinkGear chip calculates the eSense meters, like attention & meditation, and raw 

brainwaves. The calculated values are output to the PC through the headset by the ThinkGear 

chip. Table 3 indicates a list of all the output values.   

 

3.2.2 Signal Recording 

In the signal recording stage, Microsoft Visual Studio (MVS) is used to read and record data 

from the headset. Neurosky Mindwave device has great support for “.Net” libraries. For this 

reason, MVS becomes an ideal software for acquiring EEG data from the Neurosky Mindwave 

headset. MVS has many features, including “Nugget console” that is more efficient and time- 

saving. Nugget console is a feature that allows simple and easy addition of Frameworks and 

DDLs to one’s project by just using a simple single command. The recorded data was then 

stored in the MySQL database. 
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3.3 EEG Signal Pre-processing 

The NeuroSky Mindwave Mobile 2 EEG device has a ThinkGear AM (TGAM) PCB module that 

receives raw EEG signals from the sensors and filters out extraneous noise as well as electrical 

interference. The TGAM has an embedded TGAT chip, which comes programmed with filters 

that filter noise and separate EEG signals into different types of brainwaves. As the EEG signal 

enters the TGAM chip, it passes through a built-in Low-Pass Filter, High-Pass Filter, and Notch 

Filter. It is then divided by other filters according to the brainwave, for example, Gamma. 

Sampling is then performed at 512 Hz before 12-bit resolution data is sent to the analogue-

to-digital converter (ADC). This process outputs final digital values for each type of brainwave. 

The processor then calculates Power FFT using the outputted digital values of each type of 

brainwave.  

3.3.0 Low-Pass Filter  

The EEG signal rarely reaches a frequency of 100Hz and anything above that is entirely noise.  

A low-pass filter was applied by default at a frequency cut-off of 100Hz on the EEG signal to 

remove high-frequency components or noise. This is a built-in process, of which further 

details are not availed by the manufacture. 

 3.3.1 High-Pass Filter  

The EEG signal rarely goes below 3Hz, and anything below that is regarded as noise. A high-

pass filter was applied by default at a cut-off frequency of 3Hz to clean up low-frequency noise 

and to remove DC components and drifts. This is also a built-in process, of which further 

details are not availed by the manufacture. 

3.3.2 Notch Filter  

A notch filter is a type of filter, which its function is to filter out noise at a predefined 

frequency instead of a range of frequency.  The noise is caused by alternating current (AC) 

from standard electric sockets or outlets and appliances. The AC oscillates at 50Hz in our 

country Botswana. The 50Hz produced by the electrical appliances in our environment 

contaminates the EEG signal. The built-in notch filter was applied by configuring the TGAM 

chip’s M pin. The M pin was connected to the ground pin to set the filter at 50Hz.  
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3.4 Feature Extraction  

This section entails a feature extraction process that implements a specific objective stated in 

section 1.4.1. The first part of this section describes the data retrieved from the TGAM 

module, followed by the feature selection process. The third part describes in detail all the 

steps and methods used in the feature extraction process. 

 According to [35], data received from the TGAM module is converted into easily accessible 

data using the TGParser class from the NeuroSky SDK. This data is contained in a dictionary 

data structure. Table 3 below shows the EEG data as well as its description. The first column 

indicates a list of data features, while the second and last column indicates a description of 

these features and their data type, respectively.   

Table 3. Description of EEG data received from NeuroSky Mindwave Mobile 2. 

Data Features Description Data Types 

Raw Raw EEG data short 

Time Timestamps of the packet received double 

EEGPowerTheta Theta Power int 

EEGPowerGamma Gamma Power int 

EEGPowerDelta Delta Power int 

EEGPowerAlpha Alpha Power int 

EEGPowerBeta Beta Power int 

Attention The level of the user’s mental focus double 

Meditation The level of user’s mental calmness  double 

PoorSignal Signal quality status double 

BlinkStrength The strength of a detected blink int 

MentalEffort How hard the brain of the subject is working double 

Familiarity How well a new task is learned by the subject double 

 

The authentication algorithm focuses on the use of eye blink properties, and for this reason, 

the blink data features become relevant. This includes blink strength. The blink strength value 

indicates the intensity of an eye blink. These values range from 1 to 255, where 1 indicates 

the weakest blink, and 255 indicates the strongest blink. According to [35], the blink strength 
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value is directly dependent on the poor signal (signal quality status) value. This is the value 

that indicates how poor or good the signal received at the sensor is. The value ranges from 0 

to 128. This range indicates that the headset is worn by the user, whereas a value greater 

than 128 indicates otherwise. The lower the value, the higher the signal quality. The blink 

strength value is only relevant and is calculated when the poor signal value is less than 51 

[35]. The other important aspect is the time at which an eye blink occurs since it forms part 

of the authentication pattern. This qualifies the selection of the time feature to be useful and 

relevant in developing the authentication algorithm. This feature indicates the timestamp of 

the packet received and is represented in milliseconds. 

 After all relevant features were identified and selected, the next stage was the feature 

extraction process. As already discussed, the blink strength value ranges from 1 to 255. From 

this data, we extracted three (3) important features being “soft blink”, “normal blink” and 

“hard blink”. A soft blink is a blink which its value ranges from 1 to 50. A normal blink has a 

value that ranges from 51 to 90, whereas a hard blink value range from 91 to 255. In order to 

extract these features, we used the “SetBlinkDectection()” function from the NeuroSky API to 

enable blink strength data to be output. We then retrieved the blink strength value using the 

“BlinkStrength” key from the tgParser dictionary object as depicted by the code snippet in 

Figure 10. 

 

Figure 10. Extracting the blink strength value from the tgPaser dictionary object 

  

Figure 10 above shows a code snippet where the blink strength value was retrieved from the 

tgParser dictionary object using BlinkStrength as the key, as shown in the first line of code. 

The second line of code indicates the value stored in variable bs.  

The features soft blink, normal blink, and hard blink were derived using the isBetween 

custom function. This function uses the blink strength value as the first parameter in order to 

check if it falls between the range specified in the second and third parameters. Figure 11 

below depicts the said function.  
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Figure 11. A custom function used to extract soft, normal & hard blink features 

 

The other feature being “blink time”, is the time represented in milliseconds, which indicates 

the time at which a blink occurred from the start of the session. It was derived by finding a 

time difference between the blink timestamp and the session timestamp. Another feature is 

the blinking number, which indicates the total number of blinks that occurred between the 

start and end of a session. It was derived by getting the size of the collection that stored blink 

timestamps. 

  

3.5 Proposed Authentication Algorithm  

3.5.0 Overview 

This section outlines how the specific objective mention in section 1.4.1, which reads “To 

develop an authentication algorithm based on eye blink artefact” is achieved. The first section 

(3.5.1) describes the architecture of the algorithm and the second section (3.5.2) outlines the 

implementation of the algorithm. 

3.5.1 Algorithm Description 

The proposed algorithm access data output by the TGAT chip through the NeuroSky SDK. On 

a defined timeframe, data was recorded from the user during the enrolment phase and then 

compared with the data recorded during the authentication phase. The experimental setup 

of the enrolment and authentication is further explained in section 4.2. 

3.5.1.0 Enrolment Phase 

At the enrolment phase, data was recorded from the user in a given 10 seconds timeframe. 

From the start of this timeframe, blink information being “blink timestamp” and “blink 

strength” is continuously saved in memory in a data structure until the 10 seconds period 
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elapses. At the end of the 10 seconds, this data (total number of blinks, blink timestamp, and 

blink strength) was stored in a MySQL database. Figure 12 and 13 below depicts the said 

analogy.  

 

Figure 12. Capturing and recording data at the enrolment phase. 

3.5.1.1 Authentication Phase 

At the authentication phase, the same approach for data recording from the enrolment phase 

was carried out. At the end of the 10 seconds, the authenticating user’s data was pulled from 

the database, that data was compared or matched with the data obtained from the user/EEG 

device. The matching algorithm calculated the difference and gave scores/results on a scale 

of 0 – 100, where 0 indicates no match, and 100 depicts a full match. The user was either 

accepted or rejected based on a defined threshold value. Figure 14 below depicts the said 

analogy. 

 

Figure 13. Capturing, recording, and matching data at the authentication phase. 
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3.5.2 Pattern Matching Algorithm 

Data from the NeuroSky Mindwave Mobile 2 device is compared with data previously stored 

in a database using the matching algorithm. This algorithm has three major sub algorithms. 

The first one compares the total number of blinks from the NeuroSky Mindwave Mobile 2 

device during authentication with the total number of blinks previously stored in the 

database. The second sub-algorithm compares the timestamps, and the third sub-algorithm 

compares the blink strength. These sub algorithms are discussed below in detail.  

 

Figure 14. Pseudocode for the proposed pattern matching algorithm. 

Figure 14 indicates that a collection D holds input data streamed by the EEG device in realtime. 

Another collection C holds input data from the database for the same subject. Both collections 

C and D hold the same type of data, which is: timeStamp, blinkStrength, and blinkNumber. 

A variable score holds the algorithm output results. The algorithm begins by initialising 

timestamp, blinkStrength, and blinkNumber to 0. A variable counter, which keeps track 

of session time in seconds, is initialised to 10. This indicates that the duration of the algorithm 

time is initially set to  10 seconds. In line 3, a loop begins and data that is streamed by the EEG 

device is continuously saved in collection D. A counter variable is decremented by 1, every 

second. This process repeats until the counter variable is less than 0. 

A function getUserDatafromDatabase(subject_s) is invoked to fetch the user data and 

store it in collection C. Another function, matchBlinkNumber(C,D), a sub-algorithm that 
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matches the blink number in collection C against collection D, is invoked, and the returned 

results are added to the variable score. The detailed operations of this sub-algorithm are 

further elaborated in section 3.5.2.0. In line 8, function matchBlinkStrength(C,D), a sub-

algorithm that matches the blink strength in collection C against collection D, is invoked and 

the returned results are added to variable score. Also, its detailed operations are further 

elaborated in section 3.5.2.1. Lastly, function matchBlinkTime(C,D), a sub-algorithm that 

matches the timestamps of blinks in collection C against collection D, is invoked and the 

returned results are added to variable score. The detailed operations of this sub-algorithm 

are further elaborated in section 3.5.2.2.  

3.5.2.0 Blink Number Matching Algorithm 

The total number of blinks obtained during the authentication phase was calculated, and the 

database was queried to fetch the value of the number of blinks previously stored in the 

database for the same user. Both values were compared, and if the match was one hundred 

percent, a ten (10) points score was awarded. Otherwise, 0 points were awarded. Upon a 

successful match, the algorithm invokes another algorithm and relinquishes the comparison 

task. The blink-number feature takes 10% of the overall score. Figure 15 shows the code 

snippet of the mentioned blink number matching algorithm. 

Code Snippet 

 

Figure 15. Code snippet for matching blink number.  
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3.5.2.1 Blink Time Matching Algorithm 

At the start of the authentication phase, a timestamp was recorded to indicate the beginning 

of an authentication phase. After that, the timestamp of every eye blink that occurred was 

recorded. The time difference between the start of the authentication phase and the 

occurrence of a blink was calculated, and the new value “blink time”, was recorded (in 

milliseconds) for every blink stored in a collection. At the end of the authentication, a 

database was queried to fetch a collection that was previously stored for that particular user 

at the enrolment phase. Both collections were iterated, and each value was compared with 

the corresponding value in the other collection.  

The comparison matches a value from the EEG device against a corresponding value from the 

database, in a range of 800 milliseconds (plus and minus). Meaning, a value “x” is matched 

against a corresponding value “y”, where “y” is on a range of values as depicted by Equation 

(1). 

 
(𝑦 − 800) < 𝑦 < (𝑦 + 800) 

 

(1) 

  

Equation (1) is translated into a function that takes three (3) parameters. The first parameter 

being the value of y, the second parameter depicting the minimum range value (y -800) while 

the third parameter indicates the maximum range value (y + 800). The function is shown in 

Figure 16. 

 

Figure 16. Code snippet for the function that validates a given range of values.  

Upon a successful match, a score is awarded. Unlike the blinking number that gets 10% of the 

overall score, the blink time takes 60% of the overall score. This 60% score is divided evenly 

based on the total number of blinks a collection has, using Equation (2). Variable “s” depicts 

the maximum score each item in a collection can have, while variable “b” depicts the total 

number of items in a collection. This score distribution formula is depicted in Equation (2). 
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𝑠 =

60

𝑏
 

 

(2) 

All the scores awarded by this sub-algorithm are summed up, and the resulting value is added 

to the main score. 

a) Pseudo Code 

 

Figure 17. Pseudocode for blink time matching algorithm. 

Figure 17 indicates a sub-algorithm that matches blink strength data. A collection D holds blink 

strength input data streamed by the EEG device while collection C holds input data from the 

database for the same subject. A variable score holds the algorithm output results. The 

algorithm begins by executing a score distribution formula depicted by Equation (2). Results 

are stored in variable S. Both collection D and C are iterated, and each value in collection D is 

matched against a corresponding value in collection C. The corresponding values are found 

where index i in collection D is equal to index y in collection C.  Then a value at index i in 

collection D is evaluated to check if it falls within a range depicted by Equation (1) on the 

corresponding index y in collection C. If the expression returns true, then the score S is added 

to the variable score. The variable score is then printed to the console. The same process 
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repeats until all elements in both collections are compared. The algorithm then returns the 

variable score to the calling function.      

b) Code Snippet.  

 

Figure 18. Code snippet for blink time matching algorithm. 

 

3.5.2.2 Blink Strength Matching Algorithm 

For every occurrence of a detected eye blink during authentication, the blink strength value 

is recorded and stored in a collection. A query is performed on the database to fetch the user’s 

blink strength data previously recorded at the enrolment stage. Both collections are iterated, 

and each value is compared with the corresponding value from the other collection. The 

comparison matches a value from the EEG device against a corresponding value from the 

database, on a range of 15 units (plus and minus). Meaning, the value “x” is matched against 

a corresponding value “y”, where “y” is on a range of values as depicted by Equation (3).  

 (𝑦 − 15) < 𝑦 < (𝑦 + 15) (3) 
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Upon a successful match, a score is awarded. The blink strength takes 30% of the overall 

score. This 30% score is divided evenly across the total number of blinks a collection has, using 

a formula shown by Equation (4). Variable “s” depicts the maximum score each item in a 

collection can have, while variable “b” depicts the total number of items in a collection. 

 
𝑠 =

30

𝑏
 

 

(4) 

All the scores awarded by this sub-algorithm are summed up, and the resulting value is added 

to the main score. 

a) Pseudo Code 

 

Figure 19. Pseudocode for blink strength matching algorithm. 

Figure 19 indicates a sub-algorithm that matches blink time data. A collection D holds blink 

strength input data streamed by the EEG device while collection C holds input data from the 

database for the same subject. A variable score holds the algorithm output results. The 

algorithm begins by executing a score distribution formula depicted by Equation (4). Results 

are stored in variable S. Both collection D and C are iterated, and each value in collection D is 

matched against a corresponding value in collection C. The corresponding values are found 
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where index i in collection D is equal to index y in collection C.  Then a value at index i in 

collection D is evaluated to check if it falls within a range depicted by Equation (3) on the 

corresponding index y in collection C. If the expression returns true, then the score S is added 

to the variable score. The variable score is then printed to the console. The same process 

repeats until all elements in both collections are compared. The algorithm then returns the 

variable score to the calling function.       

b) Code Snippet.  

 

Figure 20. Code snippet for blink strength matching algorithm. 

 

3.6 Summary 

This chapter focused on the approach used to achieve specific objectives 1, 2, 3, and 4 

specified in section 1.4.1.   

To achieve objective 1, EEG signal collection was done using the NeuroSky Mindwave headset. 

The process involved three key steps. The first step involved minimising electrode impedance 

to improve signal quality. The second step involved extracting the EEG signal from the headset 
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using the ThinkGear connector. The third step involved recording the signal using Microsoft 

Visual Studio (MVS) and MySQL database. The signal pre-processing process was carried out 

to achieve objective 2. This process was done through the application of three (3) filters. The 

first one, which is a low-pass filter, was applied to remove high-frequency noise. A high-pass 

filter was applied to remove low-frequency noise while a notch filter was applied to filter 

noise caused by electrical appliances. Feature selection and extraction were carried out to 

achieve objective 3. These features, poor signal, blink strength, blink timestamp, and blink 

number, were selected. Soft, normal, and hard blink features were extracted from the 

TgPaser object using “isBetween” function.  

To achieve objective 4, an authentication algorithm was developed. The algorithm matched 

the authentication pattern recorded at the authentication phase against the pattern recorded 

at the enrolment stage. It comprises of three key parts. The first part matched the number of 

blinks by computing if the values are equal, and upon a successful match, a score was 

awarded. The second part matched the blink time. The blink timestamp recorded at the 

enrolment stage is matched against the corresponding blink timestamp at the authentication 

phase using Equation (2) discussed in section 3.5.2.1. The third part matched the blink 

strength using Equation (4) discussed in section 3.5.2.2.  The algorithm awarded scores for 

every successful match, and these scores were summed up to give an overall score. This score 

was evaluated against a defined threshold of 70 to authenticate or reject a subject. The 

developed algorithm forms the main contribution of this study.        
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Chapter 4. Experimental Setup 
 

4.0 Introduction 

In order to meet the research objective of evaluating the performance of the developed 

authentication algorithm, there is a need to fulfil one important aspect of biometric 

authentication, which is performance. This study focuses on using the most common 

performance metrics being false acceptance rate and false rejection rate. The other important 

aspect of this study is validating the signal used for authentication against human emotions 

and exercise. We conducted three main experiments over a span of three (3) days with each 

experiment per day (see Appendix D, Figure 36); the first experiment focused on the 

performance of the algorithm and the second experiment focused on the validation of the 

signal against emotions. The third experiment focused on the effect of excessive exercise on 

the signal used in this study.    

4.1 Performance Metrics 

[60] indicated that biometric systems should measure False Rejection Rate (FRR) and False 

Acceptance Rate (FAR). Therefore, we adopt the same criteria to measure the performance 

of our proposed algorithm.  FAR is the rate at which a system authorises illegitimate users, 

and FRR is the rate at which a system rejects a legitimate user [61].  For every authentication 

system, there are four possible outcomes, (1) a legitimate user is authorised, commonly 

denoted as True Positive (TP), (2) an illegitimate user is authorised, commonly denoted as 

False Positive (FP), (3) an illegitimate user is rejected, commonly denoted as True Negative 

(TN) and (4) a legitimate user is rejected, commonly denoted as False Negative (FN) as 

indicated in Table 4. According to [61], these four possible outcomes are the fundamental 

components for all performance metrics.    

Table 4. A summary of the fundamental components of performance metrics. 

 
Legitimate User 

(True) 
Illegitimate User 

(False) 

System Accept 
(Positive) 

TP FP 

System Reject FN TN 
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(Negative) 

 
 

False rejection rate, also known as false negative rate (FNR), defines the rate at which a 

system rejects a legitimate user as already discussed above. It is the total number of false 

rejections or false negative (FN) over the total number of attempts (False Negative + True 

Positive), as depicted by Equation (5).  

 𝐹𝑅𝑅 =
𝑁𝑜. 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑁𝑜. 𝑜𝑓 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
∗ 100 (5) 

Equation (5) above is translated to Equation (6). 

 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

(6) 

False Acceptance Rate, also known as False Positive Rate (FPR), defines the rate at which a 

system authorises illegitimate users. It is the total number of false acceptances or False 

Positive (FP) over the total number of impostor attempts (False Positive +True Negative), as 

depicted by the Equation (7) below, which translates to Equation (8).  

 
𝐹𝐴𝑅 =

𝑁𝑜. 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝐼𝑚𝑝𝑜𝑠𝑡𝑜𝑟 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠
∗ 100 

 

 (7) 

 
 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

(8) 

The relative accuracy of a system is calculated using the Equation (9) below [60]. It defines 

the total number of denied illegitimate attempts (TN) and authorized legitimate attempts (TP) 

over the total number of all attempts made (FP, FP, TN & TP).  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =

𝑇𝑁 + 𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 + 𝑇𝑃
∗ 100 

 

(9) 

 

4.2 Performance Evaluation: FRR 

This section entails an experimental setup to evaluate the FFR of the proposed authentication 

algorithm. In this experiment, we recruited ten (10) subjects. Five (5) of them are adult 
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females aged between 20 – 35 years. The other five (5) are adult males in the same age range. 

Figure 21 depicts the flowchart of the experiment.  

 

Figure 21. Experimental setup flowchart for evaluating FRR. 

 

4.2.0 Briefing of Subjects 

The first part of the experiment started with briefing the subject on the overall purpose of the 

experiment.  The duration of the experiment was clearly stated. We explained to the subjects 

the tools that they were to use for the experiment and how those tools work.  The tools 

included a NeuroSky Mindwave Mobile 2 headset and a Dell laptop. We acknowledged 

subjects for being part of the experiment. Consent forms were given to subjects to fill and 

sign, serving as a formal agreement of subjects to participate in the experiment. A sample of 

these forms is attached to this document (see Appendix B). 

4.2.1 Giving Instructions 

Before the experiment session, we distributed a guideline document that entailed detailed 

instructions for subjects (see Appendix C). Subjects were instructed to blink during the 

experiment. When subjects were in training, enrolment phase, or authentication phase, every 

eye blink detected (intentional or unintentional) from them was captured by the system. 
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Therefore, all the eye blinks from the subjects during the enrolment and authentication 

phase, are captured. We gave instructions on the kind of body movements and facial 

expressions permitted. Intensive head movement can alter the position of the EEG headset 

on the head. Therefore, only slight head movements were allowed where necessary. Some 

facial expressions, like extensively raising eyebrows during the experiment, negatively affect 

the EEG signal since it leads to a poor signal. Subjects were advised not to make such facial 

expressions.   

4.2.2 EEG Headset Installation On The Subject 

Before installing the EEG headset on the subject, the electrodes, together with the area where 

the electrodes come in contact with the subject’s skin, was cleaned with alcohol and cotton 

wool to remove dirt, oil, and dead skin cells that contribute to electrode impedance as 

discussed in Section 3.2. This procedure improves signal quality. The EEG headset was 

attached to the subject’s head, and it was adjusted to securely and adequately fit the subject. 

The reference electrode was attached to the ear lobe, and the other electrode was positioned 

just above the subject’s left eyebrow. This position is referred to as Fp1, according to the 

10/20 International Position System, as shown in Figure 22. The device was turned on and 

connected to the computer wirelessly via Bluetooth.  The results of the connection status 

were output by our custom application, as shown in Figure 23. 

 

Figure 22. Headset installation position [62]. 
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Figure 23. NeuroSky Mind Wave mobile Bluetooth connection results.  

 

4.2.3 Enrolling Subjects 

At this stage, we registered subjects into the system. Basic information like name, surname, 

email, and profile image was input by the subject into the system. The information was saved 

in the database. The email field was used for uniquely identifying a subject in the system. This 

was the same field required during the authentication phase. Figure 24 below shows an 

interface used on the system to capture the subject’s basic information. 

 

Figure 24. Registration Form for Capturing Basic Details. 
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4.2.4 Demonstration of Pattern Formation 

We demonstrated to the subjects how a pattern (password) is made. There are three 

important aspects taken into account. The first aspect is the number of blinks in a given 

timeframe. Each subject was given ten (10) seconds to form a pattern from eye blinking. This 

pattern was the password for the subject. The number of blinks on a given timeframe of 10 

seconds formed part of the password attributes. The other aspect was blink strength. Every 

eyeblink has a value that indicates its strength. Therefore, how soft or strong the blink is, is 

determined by this value. The third aspect is the blink time. As discussed in the previous 

chapter, this is the timestamp of a recorded eye blink within the given 10 seconds timeframe. 

Therefore, based on these three aspects, we demonstrated how an authentication pattern is 

formed. We made this demonstration in words and diagrams. Figure 25 below shows the 

diagram used in the demonstration.   

 

Figure 25. Demonstration of Pattern Formation 

Figure 25 above shows a demonstration of pattern formation. The numbers 1 to 10 indicate 

the duration of the session in seconds. The coloured dots symbolise a blink that occurred at 

a given time. The colours of the dots depict the type of strength a blink has. A blue dot 

indicates a soft blink. A maroon dot indicates a normal blink. An orange dot indicates a hard 

blink. Figure 25 indicates that there was a normal blink a second from the start of the session, 

followed by two hard blinks in the second and third seconds. Another normal blink occurred 

at the 6th and 8th seconds, followed by a soft blink at the 9th second.  
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4.2.5 Training Subjects 

When a thorough demonstration of the pattern formation process was completed, subjects 

were trained on how to form a pattern on a real-life system. They were given time to 

familiarize themselves with the system. They were walked through the system.  Every part of 

the system was explained in detail how it works. Then they were given time to practise their 

pattern as many times as they felt confident and comfortable. Figure 26 shows important 

parts of the system that the subjects need to be familiar with. 

 

Figure 26. Important Sections of the System. 

 

Part A: This is the area where the subject selects his email. This email field is crucial when 

saving the subject’s data to the database since it forms a unique identifier for the subject. 
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Part B: This area consists of two (2) modes, “non-training” and “training”. The training mode, 

or the practice mode, is the mode where the subject familiarises himself with the system. 

None of the subject’s data is recorded when this mode is selected. The subject can perform 

as many trials as possible to get a feel of how the application and the device respond to his 

actions. The non-training mode is the mode where the subject makes the pattern that is to 

be saved in the database. This mode gives the subject the actual feel of what to expect when 

he/she is later authenticating into the system. It gives the subject a timeframe of 10 seconds 

to formulate a pattern. 

Part C: This is the area where training data is displayed. Every data that is recorded from the 

subjects is displayed here, including blink time and blink strength. 

Part D: This is where the non-training data were displayed. Every data recorded from the 

subject was displayed here, including blink time and blink strength. This part serves the same 

purpose as “part-c”, but they have been separated to reduce confusion on the subject. The 

difference between the two is that this “part d” only displays data within 10 seconds. After 

that, whatever data comes is disregarded unless another 10 seconds session is started. 

 Part E:  This part consists of four sections. The first one being the “save as final” button which 

saves the 10-seconds data in the database. The second section being the “save session” 

button, does the same function as the “save as final” button, except that it saves data on a 

separate table in the database, and multiple session data can be saved. The “start new 

session” button clears data displayed in “part d” and resets the 10 seconds timer. This is useful 

in case the subject makes a mistake while trying to do his final trial. The last section being the 

“analyse” button, calls the authentication algorithm to match the previously saved data 

against the current session data. 

Part F:  This part indicates that a blink has been detected. It changes colour with every 

occurrence of a detected blink. It helps the subject to easily notice the blink has been detected 

while he is focused on the countdown timer. 

Part G: This part indicates the duration of the session. It is a countdown timer. Subjects use it 

to time their blinking while forming a pattern.  
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Save Session Data 

At this stage, the subject is confident enough about the pattern he formed. He uses the “save 

as final” button to save the session data. 

4.2.6 Authentication 

The login screen was presented to the subject. This screen has some of the features that are 

similar to the one at the enrolment phase. This includes the countdown timer and the field 

where the subject inputs the email. The subject was given a timeframe of 10 seconds to 

repeat the pattern previously saved in the system at the enrolment stage. At the end of the 

10 seconds, the subject clicked the log in button. Then the authentication algorithm matched 

the data previously stored in the database with the data captured while the subject was 

logging in. The system then presents the subject with a “Login successful” message if the 

subject got the pattern correct. Otherwise, an “Unsuccessful Login” message was displayed. 

 

4.3 Performance Evaluation: FAR  

This section entails an experimental setup to evaluate FAR of the proposed authentication 

algorithm. The experiment involved an impostor who observed a true subject login into the 

system. The impostor attempted to mimic a true subject. Figure 27 shows a flowchart of this 

experiment.   
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Figure 27. Experiment 2 flowchart for evaluating FAR. 
 

4.3.0 True Subject Authentication 

The experiment starts with a true subject login to the system. These are the subjects 

previously recruited and trained to use the system.   

4.3.1 Impostor Observation 

One of the ten recruited participants was selected to act as an impostor. For each session, a 

different subject was used as an impostor. The reason for selecting an already existing subject 

is that he is familiar with the system and has gone through training. In a real-life scenario, an 

impostor takes time to study and learn the system. Therefore it would not be ideal to use a 

subject who has no idea of how the system works.  The subject who acts as an impostor is 

allowed to observe a subject who is authenticating.  



50 
 

4.3.2 Impostor Authentication 

After an impostor has observed a true subject login to the system, he was allowed to log in to 

the system. The impostor was given ten (10) tries to log into the system. If the impostor failed 

to log into the system, it was recorded as a false negative (FN). Otherwise, a false positive (FP) 

was recorded.  The same scenario was repeated for the other nine (9) subjects, each with a 

distinct impostor such that every subject also acted as an impostor. 

4.4 Effect of Emotions on Our Proposed Approach Experiment 

One of the significant challenges in EEG authentication is its sensitivity to emotions, which 

negatively affects the performance of EEG based authentication systems [52]. In this 

experiment, we analysed the effect of emotions on our proposed approach. We focused on 

three key emotions being sadness, excitement, and calmness [52]. We used a 2D model that 

is suitable for the analysis of emotions using psychological signals, according to [63] and [28]. 

This model presents emotions in a two-dimensional space, where arousal is in the vertical axis 

and valance in the horizontal axis [63], as depicted in Figure 28.  Valence, in this case, refers 

to an individual’s judgment on a given situation in terms of positivity and negativity, while 

arousal refers to the expression of one’s degree of excitation [29]. 

This model is commonly used in EEG-based emotion recognition [64],[65],[66]. Therefore we 

use it in this research to refer to the meaning of distinct emotional states. 

 

Figure 28. Emotion analysis 2D model [52].  
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4.4.0 Experimental Setup 

In this experiment, subjects were shown short music video clips intended to change their 

emotional state. These videos were played on a Dell Laptop, and a subject was put on a 

comfortable office chair. The laptop was placed a meter away from the face in an office set-

up. Three categories of videos were used, and each category consisted of two (2) music 

videos. The first category consisted of videos that stimulated emotions of excitement on the 

subject. The second and third category consisted of videos that stimulate the subject’s 

emotional state to sadness and calmness, respectively. After every category, we asked 

subjects to authenticate, and their authentication results were recorded.   

The videos used in this experiment were from the DEAP dataset [67]. A formal request was 

sent to seek consent to use the videos in our study. This request is attached (see Appendix A, 

Figure 34), and proof of authorisation mail is also attached (see Appendix A, Figure 35). The 

dataset consisted of 120 YouTube music videos collected using online self-assessment and 

were rated from an experiment. The experiment consisted of 14 – 16 volunteers, and it was 

based on arousal, valance, and dominance. From a pool of one hundred and twenty (120) 

videos, we selected six (6) videos under the category of “exciting”, “calm” and “sad”. Each 

category had two videos that were selected based on the highest ratings.  

We used subjects already enrolled in the system because they were trained on how to use 

the system. Figure 29 depicts the flow chart of the experiment process mentioned above. 
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Figure 29. A flowchart for the effect of emotions experiment. 

 

At the beginning of the experiment, we presented three different videos to the subject. The 

videos are played on a Dell Laptop with an external keyboard and mouse attached to it while 

the subject is seated on a comfortable office chair. The specifications of the laptop used for 

playing videos are mention in Section 3.2.1. The laptop was placed on a computer desk such 

that the face of the subject was approximately one meter from the display.   A set of two (2) 

videos that fall in the same category were played, and the subject watched them. The first 

category contained two (2) videos that, according to a study by [32], trigger excitement 

emotions in an individual.  
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At the end of each video watching session, a subject was requested to rate the effect of the 

videos on his emotions. This task was necessary as it acted as a confirmation of a triggered 

emotion. If the subject confirmed that the videos excited him, the authentication session 

followed. Otherwise, another group of two (2) videos were selected from the “DEAP dataset 

[32]” and the watching session repeated. At the authentication phase, a subject was given 

three trials, and another group of videos that trigger sadness was presented. The same 

process is repeated for the sad and calm video categories. In the end, results were recorded.       

 

4.5 Effect of Exercise on Our Proposed Approach Experiment 

The effect of exercising has an impact on the brainwave signal [26], [54], [27]. Therefore, the 

performance of authentication algorithms that use this signal can be affected by this effect.  

We conducted an experiment on the effect of exercising on our proposed authentication 

algorithm. We used the same ten (10) subjects used for the other two experiments. Subjects 

were engaged in a rope skipping exercise, with a smart bracelet attached to their wrist for 

heart rate capturing. We used the heart rate to determine how intensive the exercise was.  

After the rope skipping exercise, subjects immediately authenticated into the system and 

their authentication results were recorded.   
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4.5.0 Experimental Setup 

Flow Chart 

 

Figure 30.  Flow chart for the effect of exercising experiment. 
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The first part of the experiment started with determining the ideal heart rate of the subject 

for an exercise. We used Equation (10) by [68], to calculate the maximum heart rate of the 

subject. 

 𝐻𝑅𝑚𝑎𝑥 = 208 − 0.7 ∗ 𝑎𝑔𝑒 (10) 
 

To determine the subject’s ideal heart rate for a vigorous exercise, we used 70% of the 

subject’s maximum heart rate as the target heart rate and recorded it as depicted by Table 5. 

At the beginning of the exercise, we attached a smart bracelet to the subject’s hand and 

paired it with a mobile phone via Bluetooth. The bracelet used was an M3 Smart Bracelet 

Fitness Tracker with a built-in Heart Rate sensor and monitor. The FitPro android application, 

downloaded from Google Playstore, was installed on the mobile phone and paired with the 

bracelet. We used the FitPro app to capture heart rate recordings from the smart bracelet. 

The M3 smart bracelet and the FitPro application are shown in Figure 31. The subject started 

the rope skipping exercise, and the heart rate recording started. The exercise continued until 

a defined desired heart rate value was reached. The subject was then given three (3) trials to 

authenticate, and the results were recorded.   

Table 5. Heartrate results after the robe skipping exercise 

Subject Age Max Heart Rate Target Heart Rate 

(70%) 

Actual Heart Rate 

S1 19 194.7 136.29 155 

S2 21 193.3 135.31 150 

S3 20 194 135.8 148 

S4 28 188.4 131.88 145 

S5 28 188.4 131.88 152 

S6 33 184.9 129.43 149 

S7 29 187.7 131.39 145 

S8 23 191 133.7 143 

S9 29 187.7 131.39 149 

S10 29 187.7 131.39 151 
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Figure 31. M3 Smart Bracelet Fitness Tracker (left) and FitPro App (right) 
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Chapter 5. Results and Discussion  
 

5.0 Introduction 

This chapter presents detailed results of the experiments conducted in Chapter 4. A discussion 

of these results is also done in this chapter. Three main experiments were conducted in the 

previous chapter. The first experiment investigated the performance of the proposed 

algorithm. The results and discussion of that experiment in Section 4.2 and 4.3 form the first 

section of this chapter. The second section of this chapter entails results and discussion of the 

experiment investigating the effect of emotions on the proposed algorithm in Section 4.4 of 

the previous chapter. The third section of this chapter entails results and discussion of the 

experiment that investigated the effect of exercise on the proposed algorithm in Section 4.5 

of the previous chapter. The last section of this chapter outlines a summary of results and 

discussions. 

5.1 Performance Results 

The algorithm performance results are shown in this section. Table 6 below depicts 

authentication results for ten (10) subjects and ten (10) impostors for the experiment 

mentioned in Section 4.2 and 4.3 of Chapter 4. These results are plotted in a bar graph, as 

depicted in Figure 32. 

Table 6 depicts the authentication results recorded from the experiment mentioned above. 

It shows the ten (10) trials that each participant was engaged in. Two (2) categories of 

participants are shown in the table, denoted as “s_#” and “i_#” for subject identification 

number and impostor identification number, respectively. The table depicts authentication 

results for the ten subjects and ten impostors. The last column shows the average results of 

the ten (10) trials of each participant. The second column depicts the total number of blinks 

per trial used to formulate an authentication pattern.    
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Table 6. Authentication algorithm results 
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s_ 1 4 77 77 91 77 70 70 77 77 84 25 72.5 

i_1 - 61 46 68 61 76 61 62 69 54 54 61.2 

s_2 11 94 97 94 97 94 85 94 97 97 88 93.7 

i_2 - 0 0 0 82 0 0 63 0 0 63 20.8 

s_3 8 84 87 84 81 84 90 87 87 78 84 84.6 

i_3 - 33 0 0 33 26 0 57 29 32 32 24.2 

s_4 6 85 85 90 95 90 90 95 95 100 100 92.5 

i_4 - 60 55 60 55 0 60 45 40 50 30 45.5 

s_5 8 92.5 92.5 96.25 88.75 92.5 92.5 92.5 92.5 100 96.25 93.6 

i_5 - 47.5 25 62.5 58.75 28.75 25 58.75 25 73.5 62.5 46.7 

s_6 8 92.5 92.5 88.75 88.75 88.75 92.5 96.25 96.25 92.5 96.25 92.5 

i_6 - 58.75 58.75 40 32.5 47.5 28.75 32.5 32.5 40 17.5 38.7 

s_7 6 85 100 90 95 90 90 90 100 100 100 94.0 

i_7 - 30 90 30 55 40 35 40 35 50 40 45.5 

s_8 9 88.75 85 88.75 88.75 85 92.5 88.75 88.75 92.5 92.5 89.1 

i_8 - 0 55 66.5 58.75 62.6 47.5 0 62.5 47.5 51.25 45.1 

s_9 8 85 92.5 92.5 92.5 85 81.25 96.25 96.25 100 96.25 91.7 

i_9 - 0 0 58.75 0 0 0 58.75 66.25 58.75 70 31.3 

s_10 5 82 70 94 88 82 88 82 88 88 100 86.2 

i_10 - 64 40 58 46 40 64 34 82 64 0 49.2 

 

Figure 32 shows a summary of the authentication results in Table 6. The vertical axis 

represents the average algorithm score of ten (10) trials per subject. The horizontal axis 

represents the subjects who took part in the experiment.   

 



59 
 

 

Figure 32. Authentication algorithm results (summary) 

The blue bars in Figure 32 represent the algorithm results of a true subject who authenticated 

over an average of 10 trials per session. The orange bars represent the algorithm results of an 

impostor who attempted to authenticate over an average of 10 trials per session. The chart 

summarizes the authentication results of ten (10) subjects, of which ten (10) were true 

subjects, and ten (10) were impostors. The total number of authentication attempts was two 

hundred (200). The chart shows a record for the results obtained from an experiment 

discussed in sections 4.2 and 4.3. It shows the results of all the ten (10) trials that each “true 

subject” and “impostor” obtained. The average of all the ten (10) trials is displayed in the 

average column in Table 6. This average was used to plot the chart above.  

The highest average score for the impostor is “61.2” and “49.2” for impostor 1 and 10, 

respectively. The scores obtained are related to the complexity of the authentication pattern 

of a subject. The number of blinks for a particular person is related to the complexity of the 

pattern. A fewer number of blinks in a pattern indicates a less complex pattern. It can be 

observed from Table 6 that the highest recorded impostor scores have the lowest number of 

blinks associated with a pattern. Subject 1 recorded the lowest number of blinks of four (4), 

and impostor 1, who corresponds to subject 1, scored the highest score of “61.2”. Similarly, 

subject 10 with the second-lowest number of blinks of five (5) corresponds to impostor 10 
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with the second-highest scores of 49.2. This indicates that the complexity of the pattern 

affects the performance of the algorithm. 

It can also be observed that the last two (2) sessions being “trial 9” and “trial 10”, recorded 

higher scores for subjects other than impostors. Subject 4, 5, 7, and 9, recorded maximum 

scores of 100 in trial 9. Subject 4, 7, and 10 recorded maximum scores in trial 10. This scores 

indicates that the more subjects practice their pattern, the more they get better at getting it 

right. These results imply that for better performance or higher accuracies, subjects need 

more training sessions, as it can be seen that it improves their scores. 

Table 7 shows the True Positive, False Negative, False positive, and True Negative denoted as 

TP, FN, FP, and TN, respectively. These are the four (4) fundamental performance metric 

components, as discussed. The figures in the table below are derived from Table 6.  They are 

the figures that are essential for calculating FAR, FRR, and Accuracy. 

Table 7. Performance metric results (TP, FN, FP, TN) 

Subject TP FN FP TN 

1 9 1 1 9 

2 10 0 1 9 

3 10 0 0 10 

4 10 0 0 10 

5 10 0 1 9 

6 10 0 0 10 

7 10 0 1 9 

8 10 0 0 10 

9 10 0 1 9 

10 10 0 0 10 

Total 99 1 5 95 

 

Table 8 shows the False Acceptance Rate, False Rejection Rate, and Accuracy denoted as FAR, 

FRR, and ACC, respectively. These values are calculated using the formulas discussed in 

Section 4.1. The table shows the FAR, FRR, and ACC for each of the ten (10) subjects who took 

part in the experiment.   
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Table 8. Performance metric results (FAR, FRR & ACC) 

Subject FAR FRR ACC 

1 10% 10% 90% 

2 10% 0% 95% 

3 0% 0% 100% 

4 0% 0% 100% 

5 10% 0% 95% 

6 0% 0% 100% 

7 10% 0% 95% 

8 0% 0% 100% 

9 10% 0% 95% 

10 0% 0% 100% 

 

Table 9 depicts the mean results for all the ten (10) subjects. It shows the mean False 

Acceptance Rate, False Rejection Rate, and Accuracy.  

Table 9. Mean performance metric results (FAR, FRR & ACC) 

Performance Metric Results 

FAR 5% 

FRR 1 % 

ACC 97% 

 

Results depicted by Tables 7, 8, and 9 carry significant insights. It can be observed in Table 8 

that at least 50% of subjects being subject 3, 4, 6, 8, and 10 achieved an accuracy of 100% 

with 0% FAR and FRR. This performance indicates that the proposed approach has the 

potential of achieving the maximum average accuracy. These are the expected results since 

similar studies [7], [16], [17], [18], and [19] indicated in Chapter 2 also achieved the same 

maximum accuracy. It is difficult to compare the performance with other studies because 

various studies evaluate performance differently. However, with the few studies that 

evaluated their performance similar to this study; ACC, FAR, and FRR, [47] reported ACC of 

86.1%; FAR of 13.9%; FRR of 13.9%. Our study showed better mean performance. Another 
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study by [55], reported ACC of 97.5%, FAR of 3.9%, and FRR of 3.87%. The performance is 

higher in terms of ACC and FAR; however, our study reported a better FRR of 1%.  

With regards to ACC alone, studies [47] and [48] reported ACC of 86.1% and 92%, respectively. 

The said studies showed lower accuracy than our proposed authentication algorithm. 

However, there are other EEG based authentication studies [7], [19], [46], and [50]  that 

recorded and accuracy above 97%. In comparison with existing studies, the accuracy we 

achieved is good and is promising. Training sessions can be increased to improve the overall 

performance of the proposed algorithm.   

5.2 Effect of Emotions Results 

The results of an experiment discussed in Section 4.4 regarding the effect of emotions on the 

performance of the proposed algorithm are shown and discussed in this section. Table 10 

depicts the recorded results from the said experiment.  

Table 10. Authentication results for excited, sadness, and calm emotions 
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S1 77 70 70 72.3 70 80 70 73.3 70 77 70 72.3 

S2 97 94 88 93 94 97 88 93 88 94 97 93 

S3 81 84 90 85 87 78 84 83 81 84 90 85 

S4 90 90 95 91.7 90 100 85 91.7 90 95 95 93.3 

S5 96.25 88.75 92.5 92.5 92.5 92.5 96.25 93.75 92.5 96.25 92.5 93.6 

S6 88.75 92.5 96.25 92.5 92.5 92.5 88.75 91.25 92.5 92.5 92.5 92.5 

S7 85 100 100 95 90 95 95 93.3 90 100 90 93.3 

S8 88.75 85 92.5 88.75 88.75 88.75 92.5 90 85 92.5 92.5 90 

S9 92.5 96.25 85 91.25 85 92.5 96.25 91.25 92.5 92.5 96.25 93.75 

S10 82 94 82 86 82 82 94 86 88 100 82 90 

 

Table 10 shows authentication results for the ten (10) subjects who participated in the said 

experiment. The first column indicates subject identification. The second, third, and fourth 
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columns denoted as “t_1”, “t_2” and “t_3” indicate the subject’s scores for the “excited” 

category during trials 1, 2, and 3, respectively. The fifth column is the average of the scores 

for the mentioned three (3) trials. The same analogy applies to the rest of the two categories 

being “calm” and “sadness”.  

From Table 10, it was observed that the average algorithm score for all the three emotions is 

not equal for all trial sessions except for subject 2. That is expected. It is important to note 

that the difference does not necessarily imply that emotions impacted the performance of 

the algorithm. The difference is caused by how hard or complex the authentication pattern 

was for the subject. It has been observed during the training session that subjects had a 

challenge in matching their pattern with the pattern previously recorded in the database. For 

this reason, with every attempt, subjects strived to improve their performance, therefore 

making some adjustments to score the best possible scores hence the difference.  

However, this research presents an ideal way to analyse these results despite the challenge 

mentioned above. We shy away from using the average as a basis for comparison; instead, 

we compare individual values for every trial conducted.  It can be observed that subject 1 

scored 70 at least twice in each category (excitement, calm, sadness). Subject 2 scored the 

same scores on average across all the three categories. It was observed that in subject 4 

scored 90 for every first attempt in each category. Based on these facts, we can conclude that 

if emotions had an impact on the performance of the algorithm, we could not be having these 

matching scores across every category of emotions. 

Furthermore, subject 4 obtained a score of 100 in the excited and sadness category. These 

scores indicate that the emotions of excitement and stress have no impact on the 

performance of the algorithm. Adding on to that, subject 4 also scored 100 in the calm 

category. This score also indicates that the emotion of calmness does not have a negative 

impact on the performance of the algorithm.  Based on these facts, we can conclude that 

emotions of excitement, calmness, and stress have no significant negative impact on the 

performance of our proposed algorithm because the experiment recorded a maximum score 

for that particular emotion and subject. 
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5.3 Effect of Exercise Results 

This section shows and discusses the experiment results mentioned in Section 4.5 regarding 

the effect of emotions on the performance of the proposed algorithm. Figure 33 depicts the 

recorded results from the said experiment.  

 

Figure 33. Subjects authentication results after exercise 

Figure (33) depicts results recorded after a rope skipping session for the ten (10) subjects who 

took part in the experiment. The vertical axis represents the average algorithm score, while 

the horizontal axis represents the subjects who took part in the experiment for the three (3) 

exercise sessions. The blue, orange, and grey bars in the chart above represent the algorithm 

results for sessions 1, 2, and 3 respectively for a given subject. The chart summarizes the 

authentication results of 10 subjects, where each subject took three (3) trials for each session. 

The total number of trials for the results shown in the chart above is 30. From the graph 

above, this study observed that for a specific subject, scores obtained from each trial were 

not consistent. However, this does not imply that exercising affects the scores. It is associated 

with the complexity of the subject’s authentication pattern, as already discussed. 

In all trials conducted as depicted in the graph above, all subjects were able to authenticate. 

Furthermore, the subject “s4”, “s5” and “s7” recorded at most 100. Therefore, we can safely 

conclude that exercising conducted for this experiment had no negative impact on the 
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performance of our proposed approach. However, this does not mean that exercising has no 

impact at all. It may have a positive impact since it is associated with improved mental focus. 

The positive impact of exercising cannot be discussed because it is beyond the scope of this 

study. 

5.4 Summary 

The overall results for our proposed authentication algorithm depict an accuracy of 97%. EEG 

based authentication studies [47] and [48] reported an accuracy of 86.1% and 92%, 

respectively. The said studies showed lower accuracy than our proposed authentication 

algorithm. However, there are other EEG based authentication studies [7], [19], [46], and [50]  

that recorded and accuracy above 97%. In comparison with existing studies, the accuracy we 

achieved is good and is promising. We found out that more training sessions have a significant 

improvement in the performance. We found out that the major contributing factor in the 

performance lies in the complexity of the authentication pattern. Simple patterns are more 

prone to false positive (FP) which means illegitimate users being accepted by the system. 

Furthermore, our proposed approach was evaluated against the effect of emotions and 

exercise and results showed that there was no significant negative impact on the 

performance. This indicates that our approach has proven its practicability and usability.    
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6.0 Conclusion & Further Work 
 

In this chapter, we review a summary of the work performed in this study and present 

suggestions for further work. 

6.1 Conclusion 

EEG based biometric authentication methods face a significant challenge that arises from the 

effect of physiological artefacts being emotions and exercising. These physiological artefacts 

inherently alter the EEG waveform leading to an increase in false rejection rate for EEG 

authentication systems. Therefore, making them less practical despite their high-security 

advantage. This study was set out to address this gap by using the EEG blink artefact to 

formulate a biometric authentication method that has the security advantage of conventional 

EEG authentication methods, yet overcoming the challenges of emotions and exercising. 

Experimental results described in Chapter 5 depicts that we achieved the specific objectives 

outlined in Chapter 1. 

The EEG signal was collected using a Neurosky Mindwave Mobile 2 device. The acquired signal 

went through the pre-processing stage where Notch filter, High-pass filter, and Low-pass filter 

were applied. The data were sampled at a rate of 512Hz. Three data features being blink time, 

blink number, and blink strength were selected. A pattern-matching algorithm 

(authentication algorithm) was developed. This algorithm matched the data recorded at the 

authentication phase against the data from the database that was previously recorded at the 

enrolment stage, and authentication results were output on a scale of zero to one hundred 

(0 - 100). The algorithm is comprised of three sub-algorithms. The first sub-algorithm matched 

the number of blinks, and the second algorithm matched blink strength while the third sub-

algorithm matched the blink time. A score distribution was defined at 10%, 30%, and 60%, 

respectively, and an overall score threshold of 70 was set to authenticate a subject.  

 Three sets of experiments were conducted to evaluate the performance of the developed 

algorithm. In the first experiment, we used the False Acceptance Rate and False Rejection rate 

as the performance metric. The results achieved were 5% and 1%, respectively. The accuracy 

was also calculated, and the results showed an accuracy of 97%. In the second and third 

experiments, we evaluated the performance of the algorithm against the effect of human 
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emotions and exercise, respectively. The three emotions that we focused on included stress, 

calmness, and excitement. Subjects authenticated against these emotions, and the algorithm 

results were recorded. We also made an investigation against the effect of exercising. We 

engaged subjects in a vigorous rope skipping exercise, and immediately after exercise, they 

were asked to authenticate. There was no significant change in the results obtained. 

The accuracy of 97% shows good performance as compared to other related studies already 

discussed in Chapter 2. However, three aspects can be modified to improve overall accuracy. 

The first aspect is increasing training session. Results indicated that in the last three trials, 

most subjects recorded their highest scores. This indicates that more training help subjects to 

master their authentication pattern. The second aspect is the threshold. As training session 

duration is increased, the threshold can also be increased coherently, reducing FAR and FRR. 

The third aspect is the recording device. A device with more electrodes in the frontal lobe 

may increase blink detection accuracy, making it even easier for subjects to seamlessly 

formulate their authentication pattern. We conducted an experiment to evaluate the effect 

of emotions and exercise on our proposed approach. Results indicated that emotions and 

exercising have no significant effect on the performance of our proposed algorithm. The 

overall results of this study indicate that our proposed approach is ideal and practical with 

regards to biometric authentication for real-world use.  

Although significant work has been done in this study, it is important to outline the limitations 

encountered throughout this study. One of the significant limitations was time constraints. 

The availability of subjects at the desired time was a limitation since subjects had other 

engagements elsewhere. This restricted us to limited time to conduct our experiments. Since 

our EEG recording device is not a common thing to the subjects, a considerable amount of 

time was dedicated to the description and familiarisation of the device to the subjects. The 

other limitation was the budget. Due to limited funds, we resorted to engaging subjects who 

willingly volunteered to be part of the study without being paid. This resulted in having 

subjects less committed to availing themselves at a time of need, therefore also limiting us in 

the number of subjects to participate in this study. The scope of our study was also a limitation 

in investigating the effect of emotions and exercising on the performance of the proposed 

approach. The emotions were limited to only excitement, calmness, and sadness, while the 
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type of exercise was limited to robe skipping exercise. Other types of emotions, like anger as 

well as other types of prolonged exercises, could be further investigated.        

6.2 Further Work 

The use of more advanced, sophisticated EEG recording devices could be investigated. Such 

devices like Emotive Epoc+ have more frontal lobe electrodes, more processing power, 

advanced built-in filters, more processed data. All these features can have a considerable 

impact on the performance of the algorithm and the accuracy of results. A device used in this 

study was a limitation in terms of outputting fewer data features, which inherently limited 

our algorithm design, hence the need for further investigation of advanced recording devices. 

As already discussed, it has been observed that subjects recorded the highest scores in their 

last trials. This indicated that the more trials, the higher the scores. We concluded that this 

was because the more subjects practised their pattern, the more they got better at it. Another 

factor could be that the more they used the recording device, the more they got familiar with 

how to use it. These two factors possess a common variable, which is the duration of the trial 

or training session. Therefore, we state that the duration of the trial or training session per 

subject be investigated further as these two aspects could have a significant impact on the 

performance or accuracy of the algorithm. 

As already discussed, the scope of this study was limited to the robe skipping exercise within 

a short period of time (approximately 5 minutes). A number of studies indicated that regular 

exercise is related to improved concentration, mental focus, and performance. One of the key 

aspects of our pattern formation is concentration and focus during the experiment session. 

Since regular exercise affects these aspects, they may affect the performance and accuracy 

of the proposed algorithm. Further investigation can be conducted regarding regular exercise 

and other types of exercise.  

The eye blink data used in this study is output by the TGAM module as calculated values, as 

discussed in section 3.4. Therefore, other EEG artefacts like epilepsy and seizure that may 

produce a peak similar to that of eye blinks in the EEG waveform were not investigated, even 

though they are likely to trigger false positive. Further investigation may be conducted to 

evaluate the effect of these artefacts in the performance of the proposed algorithm. 
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Appendix A 

 

Figure 34.  DEAP dataset application form. 
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Figure 35. DEAP dataset request approval. 
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Figure 36. Experiment session timeline 


