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Abstract

Understanding how fluid flow and how solutes disperse in human bodies is crucial in

Biomedical Engineering. The study of blood rheology is critical as it may help in detecting,

designing a treatment for some blood related diseases and understanding them better. The

aims of the present thesis is to study the effect of rheological parameters on blood flow

and solute dispersion in a microvessel. Firstly the impact of stress jump condition and

heterogeneous reaction on velocity, temperature and concentration during Casson fluid

flow through a permeable microvessel was analysed by taking the flow to be steady. We

have used a two phase model where the radius of the microvessel is divided into two parts.

The flow nature at the clear region is defined by non-Newtonian Casson fluid and the

peripheral region is defined by Newtonian fluid. The wall of the microvessel is considered as

permeable and the nature defined by Brinkman model. Secondly we analyze steady solute

dispersion in Herschel-Bulkely fluid in a permeable microvessel. Due to the aggregation of

red blood cells at the axial in the vessel, we have continued the two phase model. Blood in

the peripheral region is taken to obey Newtonian fluid character while at the clear region

obeys the non-Newtonian Herschel-Bulkely fluid character. Nature of the microvessel’s

inner wall is considered to be permeable and characterised by Darcy model. The effect of

blood rheological parameter, permeability parameter, pressure constant, particle volume

fraction, stress jump constant, slip constant and yield stress on the process are analysed

and discussed. Lastly we analyze unsteady dispersion in Herschel-Bulkely fluid through

a mild stenosed artery and looking at the pulsatile flow of blood under the influence of

body acceleration.

iii



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

1.1 Basic introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Kinematic Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Bio-Fluid Dynamics Equations . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Concentration Equation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.4 Temperature Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Dirichlet Boundary Condition . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Neumann Boundary Condition . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Mixed Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Blood Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Structure of Blood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.3 Blood Vessel Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Bio-Fluid Flow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5.1 Two Phase Flow Model . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The impact of stress jump condition and heterogeneous reaction on ve-

locity and concentration during bio-fluid flow through a permeable mi-

iv



crovessel 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Mathematical Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Velocity Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Concentration Profile . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Steady Solute dispersion in Herschel-Bulkley fluid in a permeable mi-

crovessel 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Modelling of apparent viscosity . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Velocity of the fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Effective Longitudinal Dispersion . . . . . . . . . . . . . . . . . . . . 28

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Usteady solute dispersion in Herschel-Bulkley Fluid through a mild

stenosed artery 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Velocity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Dispersion Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Estimation of f0(t, r) and K0(t) . . . . . . . . . . . . . . . . . . . . 50

4.2.4 Estimation of f1(t, r) and K1(t) . . . . . . . . . . . . . . . . . . . 51

4.2.5 Estimation of f2(t, r) and K2(t) . . . . . . . . . . . . . . . . . . . 52

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion & Future Scope 59

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 60

v



Chapter 1

Introduction

1.1 Basic introduction

Fluid Dynamics is the study of fluids at rest and in motion. Branching from fluid dynamics,

Bio-fluid dynamics is a fascinating study which has attracted the attention of researchers

and the general public for years as it is directed towards finding solutions to some of

the human body related diseases and disorders. Understanding the concept of human

body fluid dynamics is difficult owing to the fact that in vivo experiments are not easy

to undertake. Both theoretical and computational biofluid dynamics play a major role in

the comprehension of human body biofluid dynamics.

1.1.1 Viscosity

Viscosity is the measure of how fluids can deform under the action of a shear force. In

simple terms it is the stickiness of a fluid. Viscosity is denoted by the symbol µ, It relates

to viscous shear stress τ , viscosity µ and shear rate ∂u
∂y , hence Newton’s law of viscosity.

τ = µ
∂u

∂y
. (1.1)

1.1.2 Kinematic Viscosity

Kinematic viscosity is given as the ratio of dynamic viscosity to mass density (denoted by

ν )

ν = µ/ρ, (1.2)
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where ρ is the density of the fluid and µ is dynamic viscosity.

1.2 Bio-Fluid Dynamics Equations

This section introduces governing equations for solid deformation and fluid motion, which

are the basic equations that describe flow, these are continuity equation, momentum equa-

tion, energy equation and concentration equation.

1.2.1 Continuity Equation

Figure 1.1: Continuity equation in control volume (www.continuummechanics.org)

The foundation of the conservation mass principle for fluid dynamics is that the fluid mass

can neither be created nor destroyed within the system of interest. According to Clement

et al. (2006) when using the conservation of mass concept, one should consider a cube

in Fig. 1.1 above which is of the dimensions dx1dx2dx3. The continuity equation can be

derived by adding the rate at which mass is flowing in and out of the control volume( the

cube), where net flow is equal to the rate of change of mass within it. Equating all the

net rate mass flux in and out of the control volume we get

∂

∂t
(ρdx1dx2dx3) = ρv1(dx2dx3) + ρv2(dx1dx3) + ρv3(dx1dx2)

-

(
ρv1 +

∂ρv1

∂x1
dx1

)
dx2dx3 −

(
ρv2 +

∂ρv2

∂x2
dx2

)
dx1dx3 −

(
ρv3 +

∂ρv3

∂x3
dx

)
dx1dx2.(1.3)
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Then cancelling terms and diving through by dx1dx2dx3 gives the continuity equation

∂ρv1

∂x1
+
∂ρv2

∂x2
+
∂ρv3

∂x3
= −∂ρ

∂t
. (1.4)

In cylindrical coordinates is given as

−∂ρ
∂t

=
1

r

∂

∂r
(rρvr) +

1

r

∂

∂r
(rρvθ) +

∂ρvz
∂z

. (1.5)

1.2.2 Momentum Equation

Using the same control volume in Fig. 1.1, we derive the momentum equation based on

Newton’s law, for moving fluids. The general form of the momentum equation in cartesion

coordinates((x1, x2, x3) = (x, y, z)) are as given below

Figure 1.2: Notation for stresses(www.iue.tuwien.ac)

ρ

(
∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
+ v3

∂v1

∂z

)
= ρBx −

∂p

∂x
+
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

, (1.6)

ρ

(
∂v2

∂t
+ v1

∂v2

∂x
+ v2

∂v2

∂y
+ v3

∂v2

∂z

)
= ρBy −

∂p

∂y
+
∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

, (1.7)

ρ

(
∂v3

∂t
+ v1

∂v3

∂x
+ v2

∂v3

∂y
+ v3

∂v3

∂z

)
= ρBz −

∂p

∂z
+
∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

, (1.8)

where Bi is the body force and σij are the shear stress given in the cube in Fig. 2.2
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Since in Biofluid dynamics we deal with incompressible fluid flow, the basic governing

equations are given as follows (changing the stresses to velocities)

ρ

(
∂v1

∂t
+ v1

∂v1

∂x
+ v2

∂v1

∂y
+ v3

∂v1

∂z

)
= ρBx −

∂p

∂x
+ µ

(
∂2v1

∂x2
+
∂2v1

∂y2
+
∂2v1

∂z2

)
, (1.9)

ρ

(
∂v2

∂t
+ v1

∂v2

∂x
+ v2

∂v2

∂y
+ v3

∂v2

∂z

)
= ρBy −

∂p

∂y
+ µ

(
∂2v2

∂x2
+
∂2v2

∂y2
+
∂2v2

∂z2

)
, (1.10)

ρ

(
∂v3

∂t
+ v1

∂v3

∂x
+ v2

∂v3

∂y
+ v3

∂v3

∂z

)
= ρBz −

∂p

∂z
+ µ

(
∂2v3

∂x2
+
∂2v3

∂y2
+
∂2v3

∂z2

)
, (1.11)

1.2.3 Concentration Equation

The general equation of concentration in cartesian coordinates

∂C

∂t
+ v1

∂C

∂x
+ v2

∂C

∂y
+ v3

∂C

∂z
= Dm

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
, (1.12)

1.2.4 Temperature Equation

The general equation of temperature in cartesian coordinates:

∂T

∂t
+ v1

∂T

∂x
+ v2

∂T

∂y
+ v3

∂T

∂z
= α

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
, (1.13)

where α = k/δCp.

1.3 Boundary Condition

Every Boundary value problem (differential equation) has to have boundary conditions

(restrictions). Boundary conditions are divided into three types namely Dirichlet boundary

condition, Neumann boundary condition and Mixed boundary condition.

1.3.1 Dirichlet Boundary Condition

Dirichlet boundary condition specifies the value that the unknown function needs to take

on along the boundary of the domain, For example slip condition specifies that the velocity

of a fluid at the wall of the channel is non-zero at the wall and no slip condition specifies

that that at the wall the velocity is equal to zero.
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1.3.2 Neumann Boundary Condition

Neumann boundary condition specifies that the derivative of the variable is normal to the

boundary hence it is called fixed gradient e.g ∂u/∂r = 0 at r = rp.

1.3.3 Mixed Boundary Condition

Mixed boundary condition is a combination of the Dirichlet boundary condition and Neu-

mann boundary condition, consisting of linear/ non-linear combination of the values of

the field. Its derivatives on the boundary, for example

∂u1

∂r
= µ2

(
∂u2

∂r
− βu2

)
at r = h1,

which explains the stress jump condition at the interface of two regions.

1.4 Blood Rheology

1.4.1 General Introduction

Blood is a complex body fluid (liquid tissue) consisting of several formed elements (cells)

suspended in an aqueous fluid matrix (plasma). Most human adults have 4 − 6 litres of

blood.

1.4.2 Structure of Blood

Plasma (50% to 60% of blood)

Is yellowish water like part of blood containing dissolved foods substances(nutrients) and

other substances e.g O2,CO2 etc.

Formed elements (≈ 45% of blood)

• Red Blood Cell (erythrocytes)-Responsible for carrying oxygen around the body.

• White Blood Cell (leukocytes)-Responsible for human immune response.

• Platelets-Responsible for blood clotting.

5



1.4.3 Blood Vessel Structure

Blood vessels are channels of blood transportation in human bodies. Blood vessels are

divided into three groups;

• Arteries- They transport blood to all parts of the body from the heart.

• Capillaries- Smallest blood vessels, they covey blood between arterioles and venules.

• Veins- They transport blood to the heart from different parts of the body.

1.5 Bio-Fluid Flow Models

Blood flows in different ways depending on the channel it is flowing in. The flow can be

in a closed circulatory system (arteries, veins, capillaries) or an open circulatory system

(heart etc). Nanda and Basun Mallik [25] pointed out that blood behaves like Newtonian

fluids in large blood vessels it while in narrow blood vessels behaves like Non-Newtonian

fluids (Casson, Herschely-Bulkely, Power law and Bingham fluids). The following, Table

1.1 and Fig. 1.3 demonstrates the behaviour, the types of fluids and models that define

the fluids

Table 1.1: Types of fluids and models

Fluid Model

Newtonian τ = ηγ̇

Pseudoplastic(Power law) τ = kγ̇n < 1

Dilatant(Power law) τ = kγ̇n > 1

Bingham τ = τy + ηγ̇n

Casson τ1/2 = τ
1/2
y + ηγ̇1/2

Herschel-Bulkely(Yield pseodoplastic) τ = τy + kγ̇n

where τ = shear stress, γ̇ = shear rate, η = apparent viscosity, k = consistency index, n =

flow behaviour index.

1.5.1 Two Phase Flow Model

Two phase flow is a flow pattern where either the fluid flows through two different regions

(non-porous or porous region) or two different fluids (with different viscosities). In this

6



Figure 1.3: Qualitative flow curves for different types of time-independent fluids,

(www.engineeringarchives.com)

study the Newtonian fluid and Non-Newtonian fluid model were combined and the flow

was divided into two-phases. Blood flow in microvessels demonstrates a two-phase flow

with a peripheral layer of plasma showing a Newtonian nature and a core region of vessels

showing a non-Newtonian nature.A non-Newtonian region can be represented by Casson

model/Herschel-Bulkley model/Power law model/Bingham model.

7



Chapter 2

The impact of stress jump

condition and heterogeneous

reaction on velocity and

concentration during bio-fluid flow

through a permeable microvessel

2.1 Introduction

The study of fluid dynamics of basic biological fluids such as blood has been considered

as a great tool of biomedical engineering in recognizing the cause of certain diseases and

making it easy to come up with ways to cure the diseases (Mazumdar [16]). Blood is a

complex body (liquid tissue) consisting of several types of formed elements (cells) sus-

pended in an aqueous fluid matrix (plasma). Blood flows in different ways depending on

the channel it is flowing in. The flow can be in a closed circulating system (veins, arteries

and capillaries) or an open circulatory system (heart etc). Nanda and Basu Mallik [25]

pointed out that blood behaves like a homogeneous Newtonian fluid in large blood vessels

while in narrow blood vessels it behaves like a non-Newtonian fluid.

The study of heat transfer in a living tissue is an interesting concept and many mathemat-

ical models have been formulated for the purpose of studying thermal regulation or other

8



phenomena where significant heat exchanges have taken place (Chen and Holmes [5]).

The bio-heat equation during blood flow through vessel has been expressed by Pennes [27]

based on his experimental outcomes. An analytical solution of the Pennes equation on

bioheat has been studied by Huang et al. [14] and Yue et al. [51].A porous medium ( ape-

ripheral layer for the microvessel) plays a vital role in the heat transfer process in blood

vessel (Khaled and Vafai [15]). Sinha et al. [38] highlighted the heat transfer for a unsteady

blood flow in a permeable vessel. They have introduced non-uniform heat source. The

effect of magnetic field on the heat transfer of two-phase blood flow through a stenosed

artery has been discussed by Ponalagusamy and Selvi [28]. The governing parameters that

influence heat transfer and corresponding mathematical models are discussed at length by

Fasano and Sequeira [10].

Solutal transport along with heat transfer are responsible for different activities such as

secretion of insulin, gastric acid etc, It is more prompted during drug delivery (Sushma

et al. [47]). The impact of both thermal diffusion and solutal reaction on blood flow plays

a vital role in the concentration difference and rate of change in heat transfer (Xu et

al. [49]). Heat and mass transfer for a physiological fluid has been studied by Misra and

Adhikary [17]. Das and Chakraborty [6] studied the electroviscous effect on the velocity,

temperature and concentration distribution of a non-Newtonian biofluid.

The purpose of this chapter is to study blood flow velocity, temperature and dispersion

through a permeable microvessel with stress jump condition and velocity slip condition.

Considering a two phase non-Newtonian fluid model, where the radius of the microvessel

is divided into two parts with clear region and peripheral layer of plasma. A clear region

is defined to be a non-Newtonian Casson fluid with blood cells, mainly Red blood cells,

while a peripheral layer of plasma is defined to be a Newtonian fluid. The concentration

profile is divided into two-phases, in the same manner as the velocity profile. However, the

temperature profile is considered as a single phase. The governing equations for velocity,

temperature and concentration are solved analytically and the results established through

graphs.

9



2.2 Mathematical Formulations

Figure 2.1: schematic diagram of the two-phase non-Newtonian Casoon model of

two-phase blood flow in a permeable microvessel

Since blood vessels are kind of circular, a cylindrical polar coordinate system (r, θ, z) is

considered where the z-axis is along the axis of the microvessel, and r and θ are coordinates

along the radial and circumferential directions respectively. The flow along the microvessel

is described by a two phase non-Newtonian Casson model and the wall of the microvessel

is assumed to be permeable following the Brinkman Model nature, with slip condition at

the wall. A clear region is taken to be a non-Newtonian Casson fluid which is of radius

h2. The radius of the plug region is h1, h−h2 being the thickness of the peripheral region

taken to be a Newtonian fluid as shown in Fig. 2.1. It is assumed that the flow is fully

developed and axi-symetric.

2.2.1 Velocity Profile

The governing equations for the two-phase Casson fluid with the Brinkman model at the

peripheral region may be written as follows

∂Up
∂r

= 0, 0 ≤ r ≤ h1, (2.1)

∂p

∂z
=
−1

r

∂

∂r

[
r

(
τ1/2
y +

(
− µ1

∂U1

∂r

)1/2)2
]
, h1 ≤ r ≤ h2, (2.2)

∂p

∂z
=
µ2

r

∂

∂r

(
r
∂U2

∂r

)
− kU2, h2 ≤ r ≤ h, (2.3)

10



where p is the pressure, Up, U1 and U2 are axial velocities in the plug region, core region

and peripheral region respectively. And τy is the yield stress, µ1 and µ2 are viscosities of

the fluid in the core region and peripheral region, respectively.

Associated boundary conditions are

∂Up
∂r

= 0, at r = 0, (2.4)

Up = U1, at r = h1, (2.5)

U1 = U2 and ∂U1
dr = µ2

(
∂U2
∂r − βU2

)
at r = h2, (2.6)

∂U2

∂r
+ γU2 = 0, at r = h. (2.7)

Solving the above governing equation analytically (as it is show in the appendix) and

using the associated boundary condition we get the velocities as follows

Up =
h2

1

4µ1

∂p

∂z
− h1τy

µ1
+

4h
3/2
1

3µ1

√
−τy

2

∂p

∂z
+B, (2.8)

U1 =
r2

4µ1

∂p

∂z
− rτy
µ1

+
4r3/2

3µ1

√
−τy

2

∂p

∂z
+B, (2.9)

U2 = m1J0(λr) +m2Y0(λr) +
κ

λ2
, (2.10)

where λ2 = −k
µ2

, κ = 1
µ2

dp
dz , m1, m2 and B is found in the appendix.

Volumetric flow rate is

Q = 2π

∫ h

0
rudr, (2.11)

expressed as

Q = 2π

[∫ h1

0
rUpdr +

∫ h2

h1

rU1dr +

∫ h

h2

U2dr

]
, (2.12)

Thus the average velocity of blood flow through the microvessel is

∪ =
Q

πh2
. (2.13)
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2.2.2 Temperature

Using the concept of the Pennes’ equation (Pennes [27], Yue et al. [51]), the one dimensional

bioheat equation for the steady state and the absence of external spatial heating can be

written as follows
∂

∂r

(
r
∂T

∂r

)
+
qm
Kb

=
WbCb
Kb

(T − TA), (2.14)

where T is the temperature which is a function of r, qm is the metabolic heat generation

per unit volume, Wb is the perfusion rate of blood, Cb is the specific heat of the blood,

Kb is the thermal conductivity of the surrounding tissue of the blood vessel and TA is the

arterial temperature. Using the method of undetermined coefficient to solve the governing

equation using the boundary conditions below

∂T

∂r
= 0 at r = 0, (2.15)

T = Tw at r = h, (2.16)

where Tw is the wall temperature due to the surrounding tissue of the blood vessel.

We get

T = L1J0(r
√
−G) + L2Y0(r

√
−G) + TA +

qm
wbCb

, (2.17)

with G = WbCb/Kb. Since Temperature is finite at r = 0 ,we have L2 is zero, Hence

T = L1J0(r
√
−G) + TA +

qm
wbCb

, (2.18)

where L1 = Tw−TA
J0(h

√
−G)

.

2.2.3 Concentration Profile

Following the approach proposed by Taylor [48], a cylindrical frame of reference (r,z), like

the one in Fig. 2.1. The governing advection-Diffusion equation is given by

U(r)

Dm

∂C

∂z
+

1

Dm

∂C

∂t
=

1

r

∂

∂r

(
r
∂C

∂r

)
+
∂2C

∂z2
, (2.19)

where u(r) is non-uniform axial velocity, C(r,z,t) is solute concentration and Dm is the

Diffusion coefficient. With the aid of Taylor’s approximation, the governing equation can

be reduced (Taylor, [48]), and the reduced equation

1

r

d

dr

(
r
dC

dr

)
=
Û(r)

Dm

dC

dz
, (2.20)

where Û(r) = U(r)− ∪ is the velocity deviation from the mean ∪ (Das et al, [6]).
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Solving the reduced equation (2.20) using the same approach used to get equation

(2.8)-(2.10) the plug, core and peripheral region velocities are used together with the

following boundary conditions

C =
∂C

∂r
= 0 at r = 0, (2.21)

C1 = Cp at r = h1, (2.22)

C1 = C2,
∂C1

∂r
=
∂C2

∂r
at r = h2, (2.23)

∂C2

∂r
+ γC2 = − 1

Dm

∂C

∂z
at r = h, (2.24)

we get

Cp =
Up
Dm

∂C

∂z

r2

4
, (2.25)

C1 =

(
r4

64µ1

∂p

∂z
− r3

9

τy
µ1

+
16

147

r
7
2

µ1

√
−τy

2

∂p

∂z
+
Br2

4

)
1

Dm

∂C

∂z
+B1lnr +B2, (2.26)

C2 =

(
m1

λ2
J0(λr)− m2

λ2
Y0(λr) +

r2

4

κ

λ2

)
1

Dm

∂C

∂z
+B3lnr +B4, (2.27)

where B1, B2, B3andB4 are found in the appendix.

2.3 Results and Discussion

The governing equations for velocity, temperature and solute concentration of blood flow

in permeable microvessel are solved analytically with the help of boundary conditions and

written in the form of general and modified Bessel functions. Subsequently, these profiles

were plotted against radius. For some fixed parameters β = 0.1, γ = 0.02, τy = 0.15, dpdz =

10 and k = 1. The impact of different parameters such as stress jump constant, slip

constant, yield stress, pressure gradient and permeability constant are shown through Fig.

2.2 - 2.16.

The blood flow through a microvessel is complicated in the present of red blood cells

which creates an additional region closer to the axis. Due to rotation nature, RBCs are

accumulated closer to the axis of the microvessel and behave as a semi-solid cylinder of

radius hp, width of the plug region. The velocity of this region is constant or rather it

has a zero velocity gradient. The width of the plug region is taken as 0.3 and hence the

constant velocity profile will be continued till r = 0.3. However, a significant change has
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been noticeable at r = 0.9, which is the interface of the clear region and peripheral region.

A similar profile of the velocity is observed for all cases.
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Figure 2.2: Velocity radius graph with different stress jump constant β
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Figure 2.3: Velocity radius graph with different slip constant γ

Stress jump condition is taken place at the interface of the fluid region and peripheral

region which in this case is a porous medium. It represents a jump of stress between two

regions. It is evident that with increase in the stress jump condition, the stress difference

between two region is increasing and it introduces an additional stress which may cause

for the reduction in velocity profile as shown in Fig. 2.2.

The slip condition at the interface of the microvessel taken place due to permeability

nature of the inner wall of the microvessel. It gives a non-zero velocity at the inner surface.

The nature of the velocity is more significant near the wall, at the peripheral region. From

Fig. 2.3, it is observed that for a higher value of slip constant (γ), the slope of the velocity

is going upwards at the peripheral region and it reduces the velocity difference. The

stiffness is more for a higher slip constant (γ = 0.5) and almost slit for γ = 0.02.
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Figure 2.4: Velocity radius graph with different permeability constant K
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Figure 2.5: Velocity radius graph with different yield stress τy

The permeability related with the porous medium which is containing the pores and

fluid passes through those pores which triggers a restriction on the flow. Hence the flow

is not faster than the clear region, as a result the fluid velocity decreases with an increase

of the permeability parameter as shown in Fig. 2.4.

Another very important parameter which appears due to the Casson fluid nature of

the blood at the clear region is yield stress; it is directly proportional to the pressure

gradient. It should be noted that with an increase in yield stress, the velocity of the fluid

increases but the slope become more stiff for the higher value of yield stress as one would

observe in Fig. 2.5.

Displayed in Fig. 2.6 the influence of the pressure gradient on the velocity profile.

Evidently, the velocity of the fluid is higher closer to the axis as increase in the pressure

gradient. The velocities for different pressure gradients coincide at one point, which is

r = 0.65 in this case. It is interesting to note that the stiffness of the velocity is higher for

a higher value of the pressure gradient.
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Figure 2.6: Velocity radius graph with different pressure gradient parameters

The concentration profile followed a zero concentration at the plug region. After that

there is an improvement in the concentration with radial direction. This profile is followed

in all the cases. The concentration of the solute is decreasing with an increase in the

stress jump condition, this is because of the decreasing in velocity which again retained

the solute concentration (see Fig. 2.7). From Fig. 2.8, it is evident that the slip constant

at the surface of the microvessel increases the concentration of the solute. The profile

of the concentration is the same as the previous. For the values of the slip constant we

considered 0.02, 0.04, 0.06 and 0.08 and it is evident that the concentration difference is

higher between the lower values of the slip constant i.e. between γ = 0.02 and 0.04. The

concentration of the solute is a decreasing function of the permeability parameter as same

as the velocity (see Fig. 2.9). Again the difference of the two consecutive concentration is

higher for the difference between two consecutive lower permeability parameter.
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Figure 2.7: Velocity radius graph with different stress jump constant β
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Figure 2.8: Concentration radius graph with different slip constant γ

The yield stress which is related to the nature of the Casson fluid acts mainly at the

clear region, enhances the concentration profile through the radius of the microvessel.

However, an opposite phenomena is observed when comparing the difference of the two

consecutive concentrations, which is higher in this case for the difference between two

consecutive higher yield stress, as visible in Fig. 2.10. Initially, the pressure gradient

enhanced the concentration of the solute but for higher values it shows a stable concentra-

tion profile. Figure 2.11, shows proof that the concentration profile did not significantly

change for dp/dz = 30 and dp/dz = 40.
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Figure 2.9: Concentration radius graph with different permeability constant K
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Figure 2.10: Concentration radius graph with different yield stress τy
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Figure 2.11: Concentration radius graph with different pressure gradient

The temperature profile bears a noteworthy difference. The temperature of the blood

(TA) and temperature at the inner surface of the microvessel which is basically due to

the temperature of the surrounding tissue, are considered different in values. Despite the

preceding, the temperature at the surface of the inner wall is considered higher than the

temperature of the blood. The motion of the RBCs is constant near the axis and they are

unable to distribute the temperature through out. As a result, the temperature decreases

significantly at the plug region and it continue at the outer region which is basically a

cell depleted region (absence of RBCs). Due to the cell depleted nature the temperature

reduction continues until r = 0.65. Afterwards, there is an increment in the temperature

profile, this goes on until the surface of the wall. This enhancement is related to the

temperature of the inner surface which is higher than the temperature of the blood, for

this reason it influences the heat transfer towards the axis and increasse the temperature

closer to the surface. This general phenomena is observed for all the cases. The nature of

the temperature profile for different values of the stress jump constant is the same as the

18



velocity and concentration profile, that is the temperature profile is increasing with every

increase in the stress jump constant (see Fig. 2.12). Notably, the temperature near the

axis is higher than the temperature at the surface except when β = 0.1.
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Figure 2.12: Temperature radius graph with different stress jump constant β
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Figure 2.13: Temperature radius graph with different slip constant γ

The temperature profile curve is more captivating and significant with respect to the

slip velocity condition at the inner surface of the wall. Initially, the temperature gradient is

negative, while after r = 0.65 the gradient becomes positive. It observed that the stiffness

of the positive gradient is higher that the stiffness of the negative gradient (see Fig. 2.13).

The temperature profile is increasing with an increase in the slip constant but the difference

is not significant.Clearly the temperature distribution is much higher at the clear region

than the peripheral region as reflected in Fig. 2.14. In all the cases, the temperature at

the axis is higher than the temperature at the surface of the microvessel.The temperature

profile is constant with respect to radial direction for K = 1 and it carried a constant

value 0.5.
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Figure 2.14: Temperature radius graph with different permeability constant K
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Figure 2.15: Temperature radius graph with different yield stress τy
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Figure 2.16: Temperature radius graph with different pressure gradient

Interestingly, the temperature at the axis is always lower than the temperature at the

surface of the microvessel under consideration of the yield stress values of 0.15, 0.30, 0.45

and 0.60 (see Fig. 2.15). The temperature at the axis is decreasing with increase in the

yield stress. As pressure gradient increases, it enhances the velocity of the solute which
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is equally responsible for the distribution of temperature. And it is very natural that

the pressure gradient enhances the temperature at the axis and through out the radial

direction. At the axis the temperature is higher than the temperature at the surface for

most of the cases (dp/dz = 20, 30, 40) while it is lower for the lower pressure gradient. As a

result, we get two different patterns of the temperature profile for larger and smaller values

of the pressure gradient as displayed in Fig. 2.16. In the case of a lower pressure gradient

(here dp/dz = 10), the temperature profile is not significant but it slightly increases with

radial direction.

2.4 Conclusion

This chapter explores the velocity, temperature and concentration of blood flow through

a permeable microvessel. The velocity and concentration profile are divided into three

regions that is, the plug region, the outer region and the peripheral region. The influence of

the stress jump condition, the slip condition of velocity and concentration , the yield stress,

the pressure gradient and the permeability of the peripheral region plays an important

role which is well reflected through graphs. In general it is observed that the velocity

and concentration at the plug region is constant while after this the velocity decreases

through out the radius. However the concentration increases continuously in the radial

direction. Velocity is non-zero at the walls of the microvessel because of the slip constant

γ and the stress jump constant causes a rapid decrease in velocity between the core region

and the peripheral region. The temperature profile is showing two different trends that is

high temperature at the wall of the microvessel with low temperature at the axis and low

temperature at the wall of the microvessel with high temperature at the axis. This works

gives an overall idea of blood flow in sense of velocity, temperature and concentration

under certain condition.

21



Chapter 3

Steady Solute dispersion in

Herschel-Bulkley fluid in a

permeable microvessel

3.1 Introduction

The dispersion of solutes has been a great topic due to its wide application in fields such as

medical engineering, chemical engineering, environmental engineering etc. A large number

of scientiests and engineers have dedicated their lives to the study of solute dispersion in

different environments, circulatory systems being one of them. Theory of solute dispersion

was first introduced by Taylor [48] around 1950’s, Taylor analytically and experimentally

studied solute dispersion in a steady laminar viscous fluid flow via a straight tube, later

Aris [1] developed Taylor’s concept using the method of moments, taking into consideration

the axial diffusion term which was neglected by Taylor [48]. Since these studies were

mainly based on the study of solute dispersion at large times but not at small times after

injection of solutes in the fluid, Gill and Sankarasubramanian [13] proposed a generalized

dispersion model of solute dispersion, which is now widely used together with Taylor-Aris

dispersion theory by many reseachers in the study of solutes dispersion. Furthermore

Sharp [41] following Taylor approach [48] studied shear-augmented dispersion in non-

Newtonian fluids and showed that the dispersion of solutes depends on specific rheological

parameter of the fluid that is yield stress. Decuzzi et al. [7], Gentile et al. [12] also revisited
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Taylor and Aris theory studying longitudinal diffusion.Different models are used to study

solute dispersion depending on the environment e.g in the cardio-vascular system blood

flows in different ways, depending on the channel it is flowing in, it can either be in closed

circulatory system(veins,ateries and capillaries) or an open circulatory system(heart). In

large blood vessels blood behaves like homogeneus Newtonian fluid and behaves like a

non Newtonian fluid in narrow blood vessels (Mazumdar [16]). Blood flow presents a

remarkable two-phase nature, when it flows via small vessels or channels, there will be

a peripheral layer of plasma (Newtonian fluid) and a core region of erythrocytes (non-

Newtonian fluid), all this was proved by Bugliarell and Sevilla [4].

Of late both unsteady and steady solute dispersion have been getting more attention

both in science and engineering research. Rana and Murthy [35] studied unsteady solute

dispersion in small blood vessels using a two phase Casson model. Gentile et al. [12] studied

the transport of nanoparticles in blood vessels; The effect of vessel permeability and blood

rheology using Casson fluid law. Shaw et al. [45] studied magnetic drug targeting in

permeable microvessel using a two-phase Casson model and later used the same model to

study dispersion characteristics of blood during nanoparticle assisted drug delivery process

through a permeable microvessel, ignoring time factor (Shaw et al, [42]). In many cases,

researchers use a two-phase casson model to study blood rheology in microvessels, since it

is more realistic and can be manipulated analyticaly. According to the author’s knowledge,

very few researchers have used a two-phase Herschel-Bulkely model. Using a two phase

Herschel-bulkely model, Nallapu and Radhakrishmacharga [18] derived analytical solutions

for velocity, flow flux, effective viscosity, core hematocrit and mean heamatocrit. Since

blood is closely decribed as Herschel-Bulkley fluid in narrow tubes (Nallapu et al, [18]),

in this study we consider the same.

The purpose of this chapter is to study the significance of the nature of microvessel

walls and rheology of blood on the dispersion of solutes. We consider a two phase Herschel-

Bulkely flow, where the microvessel is divided into peripheral region and and core region

which includes the plug region. Blood in the peripheral region obeys the Newtonian fluid

character and in the core region blood obeys the non-Newtonian Herschel-Bulkely fluid

character. The Darcy model is used to characterize the permeable nature of the mi-

crovessel’s inner wall. The effect of blood rheological parameter, permeability parameter,

pressure constant, particle volume fraction, stress jump constant, slip constant and yield

stress on the dispersion of the particles are reflected on the study. The results of this

study is important since it brings a better understanding of the effect of all rheological

23



parameters and providing new insights in biomedical engineering.

3.2 Mathematical formulation

Figure 3.1: schematic diagram of two-phase blood flow in a permeable microvessel

Since blood vessels are primarily of circular geometry, we consider a cylindrical polar

coordinate system (r, θ, z) where the z-axis is along the the axis of the microvessel, r

and θ are coordinates in the radial and circumferential directions, respectively. The flow

along the microvessel with radius h is considered as two-phase in nature, the core region

(non-peripheral) is taken to be a non-Newtonian Herschel-Bulkely fluid which is of radius

h1 with h − h1 being the thickness of the peripheral region taken to be a Newtonian

fluid as shown in Fig. 3.1. The following assumptions are made: (a) the flow is fully

developed and axi-symetric, (b) the wall of the microvessel is permeable and a Darcy

model is used to define the permeability of the wall, (c) the fluid flows laterally across the

vessel fenestration.

3.2.1 Modelling of apparent viscosity

Viscosity differs in different environments. According to Fahraeus and Lindqvist [9] the

viscosity of a fluid is directly proportional to the diameter of the tube, and this is true for

blood flowing inside a microvessel, because erythrocytes migrate to the center of the vessel,

leaving only plasma near the wall of the vessel. Pries and Secomb [29] experimentally
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determined te blood viscosity in the core region(µcore) of a microvessel as

µcore = µplasma

[
1 + (µ0.45 − 1)

(1−HD)CC − 1

(1− 0.45)CC − 1

( dv
dv − 1.1

)2]( dv
dv − 1.1

)2

, (3.1)

where µplasma = 0.0012Ns/m2 is the viscosity of the blood plasma without cells

and platelets, dv is the diameter of the blood vessel in a micron, HD is the haema-

tocrit ranging between 0.39 − 0.45, µ0.45 = 6e−0.085dv + 3.2 − 2.44e−0.06d0.645v , CC =

(0.8 + e−0.075dv)

(
1

1 + 10−11d12
v

− 1

)
+

1

1 + 10−11d12
v

.

A few models have been developed theoretically to explain the viscosity of the particle

suspension. Einstein [8] predicted the effective viscosity (µeff ) of suspension as

µeff = µbf (1 + 2.5φ), (3.2)

where φ is the volume fraction of the nanoparticle and µbf is the base fluid viscosity.

Later Brinkman [3] generalized this model, since it is only valid for a low volume fraction

of approximately 0.02. According to Brinkman [3] the effective viscosity of the nanofluid

can be written as

µnf = µbf (1− φ)−2.5. (3.3)

Later Pasol and Feuillebois [26] gives the viscosity of the nanofluid µnf as,

µnf = µbf

(
1 + 2.5

[
1− 3.4606

dp
dv

+ 8.6065
(dp
dv

)2]
φ

)
, (3.4)

where dp is the diameter of the suspended particle. According to Shaw et al. [42] the

viscosity of the blood is influenced by the nanoparticle suspensions and the diameter of a

microvessel. Hence the viscosities of the blood with nanoparticles at the core region, µ1,

and the peripheral region, µ2, respectively can be taken as

µ1 = µcore

(
1 + 2.5

[
1− 3.4606

dp
dv

+ 8.6065

(
dp
dv

)2]
φ

)
, (3.5)

µ2 = µplasma

(
1 + 2.5

[
1− 3.4606

dp
dv

+ 8.6065

(
dp
dv

)2]
φ

)
. (3.6)

3.2.2 Velocity of the fluid

The mass continuity equation can be written as

∂Q̇

∂z
+ vpλp = 0, (3.7)
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Q̇ being the flow rate, λp being the perimeter of the permeable microvessel, vpλp he volume

rate along the permeable wall per unit length, and vp the perfusing velocity derived from

Darcy’s law, written as

vp = −Lp(πi − p), (3.8)

where Lp = k
ηδ is the hydraulic conductivity, δ is the thickness of the microvessel wall,

k is the permeability of the microvessel wall and η is the effective viscosity of the fluid.

Interstitial fluidic pressure is denoted by πi and p is for the local mean value of the vascular

pressure. p0 and p1 are inlet and outlet vascular pressures, respectively.

To calculate the flow rate, we first calculate the axial velocity using the following

equations

∂up
∂r

= 0, 0 ≤ r ≤ hp, (3.9)

∂p

∂z
= −1

r

∂

∂r

[
r

(
τy +

(
−µ1

∂u1

∂r

)n)]
, hp ≤ r ≤ h1, (3.10)

∂p

∂z
= −µ2

r

∂

∂r

(
r
∂u2

∂r

)
, h1 ≤ r ≤ h, (3.11)

with the following boundary conditions

∂u1

∂r
= 0, and up = u1, at r = hp,

∂u1

∂r
= µ2

(
∂u2

∂r
− βu2

)
, u1 = u2, at r = h1,

∂u2

∂r
+ γu2 = 0, at r = h, (3.12)

where p is the pressure, up, u1 and u2 are axial velocities in the plug region, core region

and peripheral regions, respectively. τy is the yield stress, β the stress jump constant and

γ the velocity slip constant.
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Solving Eq. (3.9)-(3.11) using boundary condition (Eq. 3.12)(working is in the ap-

pendix), the velocity in the plug region, outer region and peripheral region can be written

as

up(r) = B 0 ≤ r ≤ hp, (3.13)

u1(r) =

(
−1

2µ1

∂p

∂z

)1/n n

n+ 1
(r − hp)1+1/n +K1 hp ≤ r ≤ h1, (3.14)

u2(r) =
−1

4µ2

∂p

∂z
r2 +K2 ln r +K3 h1 ≤ r ≤ h, (3.15)

where K1,K2 and K3 are constants provided in the Appendix. Then equations (3.8)-

(3.9) are used to calculate the flow rate which is given as

Q̇ = 2π

[ ∫ hp

0
rupdr +

∫ h1

hp

ru1dr +

∫ h

h1

ru2dr

]
. (3.16)

Hence the corresponding net flow rate is

Q̇ = 2π

[
K1

h2
p

2
+

(
−1

2µ1

∂p

∂z

)1/n n

n+ 1

(
nh1

2n+ 1
(h1 − hp)1/n+2 − n2

(2n+ 1)(3n+ 1)
(h1 − hp)1/n+3

)
+
K2

2
(h2

1 − h2
p)−

1

4µ2

∂p

∂z
(h4 − h4

1) +
K2

2
(h2 lnh− h2

1 lnh1) + (h2 − h2
1)

(
K3

2
− K2

4

)]
,(3.17)

Using Eq. (3.7) and Eq. (3.8) and expressing the flow rate Q̇ as a function of the

pressure p, we get

−πh
4

8µ1

∂2p

∂z
A− Lp[πi − p] = 0, (3.18)

where A is a rheological parameter given in the Appendix.

Using the non-dimensional variables z̃ = z/lv,p̃ = p/πi, Eq. (3.10) becomes

∂2p̃

∂z̃2
+ Γ2(p̃− 1) = 0, Γ =

∏
√
A

=
4l

h

√
µ1Lp
µ2hA

, (3.19)

where
∏

is the permeability parameter and Γ(A) is a constant. Solving Eq. (3.19) using

boundary conditions: p̃(0) = p̃0, (inlet pressure) and p̃(1) = p̃1(outlet pressure), Eq. (3.19)

becomes (by ingnoring tilde )

p(Γ, z) = (p0 − 1) cos(Γz) +
(p1 − (p0 − 1)(cos(Γ)− 1))

sin(Γ)
sin(Γz) + 1. (3.20)

Hence the pressure gradient becomes

∂p

∂z
= −Γm1 sin(Γz) + Γm2 cos(Γz), (3.21)
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where m1 = p0 − 1, m2 = p1−(p0−1)(cos(Γ)−1)
sin(Γ) .

Enabling us to calculate Mean flow velocity (∪ = Q̇
πh2

) given as

∪ =
2

h2
K4

[
Γm2 cos(Γz)− Γm1 sin(Γz)

]
, (3.22)

where K4 is defined in the appendix.

3.2.3 Effective Longitudinal Dispersion

The transport of solutes within a concentrated suspension of particles can be augmented

due to the effects of shear-induced dispersive particle migrations. With the cylindrical

coordinate (r,ς,t) system, and the above assumptions, the advection- dispersion equation

can be written as Taylor [48]

∂C

∂t
+ u(r)

∂C

∂ς
=
Dm

r

∂

∂r

(
r
∂C

∂r

)
+Dm

∂2C

∂ς2
, (3.23)

where C is the solute concentration, u(r) is the axial velocity of the fluid, and Dm is

the diffusivity coefficient. Following Taylor (1953), Dm
∂2C
∂ς2

is neglected in Eq. (3.23).

Moreover, using the transformation ς = z − ∪ with auxiliary frame of reference(r, z)

moving with the mean velocity along ς, Eq. (3.23) can be written as follows

û(r)
∂C

∂z
=
Dm

r

∂

∂r

(
r
∂C

∂r

)
, (3.24)

where û(r) = u(r) − ∪ is the relative velocity about the mean. The following boundary

conditions are imposed (Decuzzi et al. [7]; Gentile et al. [12])

Cp = 0,
∂Cp
∂r

= 0, at r = 0,

C1 = Cp, at r = hp,

C1 = C2,
∂C1

∂r
=
∂C2

∂r
, at r = h1,

∂C2

∂r
= 0, at r = h. (3.25)
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Using the above conditions, the same approach for solving equation (3.9)-(3.11) ,

equation (3.24) gives Cp, C1, C2 concentration profile at the plug region (r < hp), core

region (hp < r < h1) and peripheral region (r > h1) as

Cp(r) =
Ûp
Dm

∂C

∂z

r2

4
, (3.26)

C1(r) =
1

Dm

∂C

∂z

(
nS7

2n+ 1

(
n

3n+ 1

)
(r − hp)1/n+3 − nS7

2n+ 1
I(r, hp) +

r2

4
B̄

)
+Glnr +H, (3.27)

C2(r) =
1

Dm

∂C

∂z

(
S8r

4

16
+
C

4

(
r2lnr − r2

)
+
D̄r2

4

)
+ Ilnr + J. (3.28)

Following Shaw et al. [42], the flux J of solute across a section at a fixed ẑ is given as

J =
1

πh2

[ ∫ hp

0
2rπ

(
ûpCp −Dm

∂C

∂z

)
dr +

∫ h1

hp

2rπ

(
û1C1 −Dm

∂C

∂z

)
dr

+

∫ h

h1

2rπ

(
û2C2 −Dm

∂C

∂z

)
dr

]
, (3.29)

which can be written in a simplified form as

J =
2

h2

[
T8 + T9 + T10

]
(3.30)

where T8, T9 and T10 are given in the appendix. The effective dispersion is obtained from

the above equation by introducing the Brownian contribution to diffusion

where Dapp is the apparent dispersion coefficient. The relative effective dispersion is

defined as

Deff = −J/
∂C

∂z
= Dm +Dapp (3.31)

The relative effective dispersion (non-dimensional effective dispersion) is defined as

Deff/Dm = 1 +Dapp/Dm (3.32)

3.3 Results and Discussion

The influence of the governing parameters such as the pressure parameter Ω, the perme-

ability parameter Π, the nanoparticle volume fraction φ, the slip constantγ, the stress

jump constant β, the rheology parameter ξ and the yield stress τy on relative effective

dispersion (equation 3.31) is shown in Figs. (3.2) − (3.8). Four different values of the
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power-law index (n) were considered namely, 0.5, 2/3, 1, 3/2 of the Herschel-Bulkley fluid

model (τ = τy + kγ̇n, where τ is the shear stress, γ̇ the shear rate, τy the yield stress,k

the consistency index). The value of power-law index expresses the nature of the fluid as

shear-thinning or shear-thickening, Mazumdar [16], and with an increase in the power-law

index the fluid nature changes from the shear-thinning (n < 1) to shear-thickening (n > 1)

fluid. For n = 1, the Herschel-Bulkley fluid reduced to the Bingham plastic fluid. It is

important to note that the analytical solution is possible for the above mentioned values

of n and for other values of n, therefore we need to go for a numerical solution.

The influence of the non-dimensional pressure distribution on the relative effective dis-

persion has been discussed in figure 3.2 for different power-law index. The non-dimensional

pressure depends on the inlet and outlet pressure which related as Ω = (p0 − 1)/(p1 − 1).

In the present chapter, we considered the inlet pressure p0 as a constant and p1 as

p1 = 1 + (p0 − 1)/Ω. It is clear that as Ω decreases (or negative values of Ω increases)

the outlet pressure p1 decreases which leads to a larger difference between the vascular

and interstitial pressure and reduces the mean velocity along the microvessel and reflects

the same in the dispersion of solutes (Shaw et al [42]). At the same time, the smaller Ω

pushes the section with the lower velocity downstream. Consequently, the section with the

minimum diffusion moves towards the end of microvessel length which is clearly observed

for all the consistency index shown in Fig. 3.2. It is observed that for small values of n,

a large value of the flux is archived, and for large values of n, a small value of the flux is

archived.
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Figure 3.2: Relative effective dispersion vs axial direction for different pressure

parameter when (a) n = 0.5, (b) n = 2/3, (c) n = 1 and (d) n = 3/2.
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The volume of the nanoparticles plays a vital role in the dispersion characteristics

during drug delivery. Nanoarticles are considered spherical with different sizes. In the

presence of nanoparticles, nanoparticle-nanoparticle and nanoparticle-RBCs interactions

can take place. However, we have neglected both interactions with the exception that they

are not occupying the same place (in general RBCs gather near the axis of the microvessel,

while the nanoparticles spread towards the wall of the microvessel). As Fullstone et al.

[11] mentioned, laminar flow and Brownian motion (for the nanoparticles) influences the

motion of the nanoparticles and different phenomena appear at different regions of the

microvessel with respect to radius of the microvessel. In the present model, the radius

of the microvessel is divided into three regions namely, the plug region, the core region

(plasma region) and the peripheral region. Velocity of the blood is higher near to the

axis and it vastly decreases near the wall. But, it is non-zero due to the slip condition at

the inner surface of the microvessel wall; reducing slowly towards the wall of the vessel.

This scenario makes Brownian motion more significant to the displacement of the particle.

Therefore, the dispersion has highly taken place closer to the wall. This model, displays

relative effective dispersion with respect the the axial direction and it is clear that relative

effective dispersion decreases with increases in the volume fraction of the nanoparticles. An

increase in the volume fraction of solutes reduces the interparticle distance which disturbs

the deformation and rotation of the RBCs, as well as the tumbling of the nanoparticles.

The Brownian motion proves more effective for the less volume fraction of the nanoparticles

and therefore relative effective dispersion depresses with increase in the volume fraction

of nanoparticles as shown in figure 3.3.

32



(a) length(z)
0 0.2 0.4 0.6 0.8 1

D
ef

f / 
D

m

0

10

20

30

40

50
φ=0.02
φ=0.04
φ=0.06
φ=0.08

(b) length(z)
0 0.2 0.4 0.6 0.8 1

D
ef

f / 
D

m

0

2

4

6

8

10

12
φ=0.02
φ=0.04
φ=0.06
φ=0.08

(c) length(z)
0 0.2 0.4 0.6 0.8 1

D
ef

f / 
D

m

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04
φ=0.02
φ=0.04
φ=0.06
φ=0.08

(d) length(z)
0 0.2 0.4 0.6 0.8 1

D
ef

f / 
D

m

3

4

5

6

7

8

9

10
φ=0.02
φ=0.04
φ=0.06
φ=0.08

Figure 3.3: Relative effective dispersion vs axial direction for different nanoparticle

volume fraction when (a) n = 0.5, (b) n = 2/3, (c) n = 1 and (d) n = 3/2.
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Figure 3.4: Relative effective dispersion vs axial direction for different slip constant

when (a) n = 0.5, (b) n = 2/3, (c) n = 1 and (d) n = 3/2.
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The present model deals with the slip condition as a consequence of the permeable

nature of the inner surface of the microvessel. Due to the slip condition, the velocity at

the wall is non-zero and with every increase in the velocity slip condition the velocity

gradient at the inner wall of the surface increases and hence the velocity throughout the

microvessel. A similar phenomenon is observed by Sinha et al. [39]. With an increase in

the axial velocity, the transverse component of the velocity decreases which reduces the

dispersion characteristics and a similar impact on relative effective dispersion which is clear

from the Figure 3.4. Interestingly under atherosclerosis condition, the inner cross area of

the blood vessel is partially covered by an unsaturated lipid which is more permeable

than the the inner surface of the normal artery. In this case, the slip velocity is more

significant but its influence is not so effective due to the small passage of the arterial

cross section which restricted the blood flow. Hence, with atherosclerosis, the flow region

of the blood vessel reduces and restricts smooth flow. Additionally, a similar process

is observed for nanoparticle dispersion. The stress-jump condition is considered at the

interface of the clear region (defined by Herschel-Bulkley fluid) and peripheral region

(defined by Newtonian fluid). The condition is more effective due to the change in the

rheology of the fluid at different regions. With an increase in the stress-jump condition,

the shear stress at the peripheral region is comparatively higher than at the clear region.

With higher shear stress, the flow in the normal direction is restricted and reduces the

dispersion phenomena presented by relative effective dispersion. The stress-jump condition

significantly influences the relative effective dispersion; it helps in reducing relative effective

dispersion for all values of n (see figure 3.5). It is noted that the changes are much more

significant for n = 1, which represents Bingham fluid at the clear region which is basically

similar to Newtonian fluid in the absence of the yield stress. These graphs also confirms

the importance of the rheology of the fluid.
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Figure 3.5: Relative effective dispersion vs axial direction for different stress jump

constants when (a) n = 0.5, (b) n = 2/3, (c) n = 1 and (d) n = 3/2.
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The rheological parameter represents the ratio between the plug region and the ra-

dius of the microvessel. Physically it depends on the volume fraction of the RBCs or

hematocrit. The rheological parameter is proportional to the radius of the plug region

where blood velocity is constant and the system behaves as a semisolid cylinder of RBCs.

With an increase in the rheological parameter, the height of the plug region increases

which reduces the gap between the plug region and the peripheral region. Practically, the

nanoparticles do not get enough space for movement (Brownian motion) and hence reduces

the dispersion near to the surface. The impact is more significant for a smaller value of

the rheological parameter with the same difference (see figure 3.6). When nanoparticles

are injected into the blood flow they spread across the vessel under the combined effect

of diffusion and fluid flow (Shaw et al. [42]). Furthermore, the tumbling motion of RBCs

influences the diffusion of solutes from the core region towards the edge, and along the

axial direction. In addition, the axial tumbling and interaction of RBCs, solutes lead to

deformation of the RBCs, thus a decrease in rotation or tumbling of RBCs, and a reduc-

tion in solute dispersion.

The permeability constant Π is critical in the dispersion characteristics of the nanopar-

ticles displayed by Figure 3.7. The permeability nature of the wall of the microvessel is

defined by Darcy’s law. Closer to the surface endotheliam layer is a important factor, also

works as a permeable barrier (Sugihara-Seki and Fu [46]). However, the permeability of

the microvessel is different for different organs and their levels. The permeability param-

eter is smaller for the brain and higher for the glomerulus of kidney. It can be written

in ascending order as, brain < skin < skeletal muscle < lung < heart < gastrointestinal

tract < glomerulus of kidney (Deccuzzi et al. [7]). An observation is made where the

dispersion of the nanoparticle is higher for larger values of the permeability parameters.

Said another way, the dispersion of the nanoparticles during drug delivery is larger for

the glomerulus of kidney and smaller for the brain. Endothelial permeability plays a vital

role in preventing atherosclerosis. It is observed that the enhanced endothelial perme-

ability leading to intimal accumulation of low-density lipoproteins (LDL) stimulates the

formation of atherosclerotic lesions (Rozenberg et al. [37]). Clearly the dispersion of drug

particles (nanoparticles) is higher at the tumor region during atherosclerosis. An opposite

phenomena observed for n = 1, Bingham fluid, is shown in Figure 3.7c.
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Figure 3.6: Relative effective dispersion vs axial direction for different rheological

parameter when (a) n = 0.5, (b) n = 2/3, (c) n = 1 and (d) n = 3/2.
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Figure 3.7: Relative effective dispersion vs axial direction for different permeability

parameter when (a) n = 0.5, (b) n = 2/3, (c) n = 1 and (d) n = 3/2.
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Figure 3.8: Relative effective dispersion vs axial direction for different yield stress

when (a) n = 0.5, (b) n = 2/3, (c) n = 1 and (d) n = 3/2.
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The yield stress is inversely proportional to the height of the core region as well as the

pressure gradient. In the human body for a fixed vessel, the pressure gradient is a constant

component so, with an increase in the yield stress there is a decrease in the height of the

plug region. 3.8 shows that relative dispersion increases with an increase in the yield stress.

Conclusion

In this chapter we have studied the impact of the dispersion characteristics of nanoparticles

during drug delivery. The blood flow through a microvessel was considered as a two-phase

model where the core region is defined by a non-Newtonian Herschel-Bulkley fluid and the

peripheral region is defined by a Newtonian fluid. The inner surface of the microvessel

was considered as permeable in nature and defined by Darcy’s model. The effect of the

rheological parameter, the non-dimensional pressure constant, the nanoparticle volume

fraction, the permeability parameter, the slip constant, the stress jump constant and the

yield stress on the nanoparticle dispersion were analysed. From the above findings, one

can conclude that the stress jump condition at the interface reduces the dispersion charac-

teristics. A similar phenomenon follows with the rheological parameter. Permeability and

yield stress enhanced the dispersion of nanoparticle at the inlet. With this work one gets

an overall idea of the dispersion of solutes in blood flow under certain conditions which

may help in drug delivery and the treatment of the cardiovascular disorders.
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Chapter 4

Usteady solute dispersion in

Herschel-Bulkley Fluid through a

mild stenosed artery

4.1 Introduction

Studying solute dispersion in fluid flow is a captivating research topic due to its abun-

dant applications in the fields of: chemical engineering ( e.g chromatographic separation),

Biomedical engineering (e.g transportation of drugs or toxins in physiological systems),

environmental engineering (e.g pollutant transport) etc. Taylor [48] was the first to anal-

yse the dispersion of solutes in laminar viscous fluids flow through a straight tube. In the

study Taylor [48] defined Deff (effective molecular diffusion coefficient) by Deff = R2w2

48Dm

where R is the radius of the tube and wm is molecular diffusivity. He went on to eaplain

that solutes disperse due to radial molecular diffusion and axial convection. Later Aris [2]

extended Taylor’s dispersion concept by using the method of moments and defined effec-

tive molecular diffusivity(Deff ) as: Deff = Dm + R2w2

48Dm
. These two concepts however

have to be extended since it only worked for large times after solutes have been injected

into the fluid, that is when Gill and Sankarasubramanian [13] developed a generalized

dispersion model that accounts for small and large times after solutes are injected into

the fluid. Gill and Sankarasubramanian [40] later extended the analysis by showing that

the three effective transport coefficients namely: exchange coefficient (K0), convection
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coefficient (K1) and Dispersion coefficient (K2) are influenced by interphase transport.

The exchange coefficient arises due to the wall reaction at the boundary, the convection

coefficient arises due to velocity of the solute and dispersion coefficient arises due to the

molecular diffusion and the velocity of the fluid, Nagarani et al. [20].

The genereralized dipersion model brought a significant improvement into the study of

fluid dynamics. Many researchers adapted Taylor-Aris’s concept and the generalized dis-

persion model by Gill and Sankarasubramanian [40], to solve steady and unsteady flow

problems of Newtonian and non-Newtonian fluids mostly in phisiogical systems. Nanda

and Mallik [25] pointed out that blood behaves like a Newtonian fluid in large blood ves-

sels and like a non-Newtonian in small vessels. Based on Taylor-Aris’s concept Sharp [41]

analysed the fully developed steady flow of non-Newtonian fluid and Gentile et al. [12]

still on steady flow, analysed transport of nanoparticles in the blood vessels. Ganguly et

al. [42] analysed the dispersion characteristics of blood during a nanoparticle assited drug

delivery process through a permeable microvessel based on Taylor’s theory of shear disper-

sion independent of time. Nagarani et al.( [20]- [24]) studied unsteady solute dispersion in

casson fluid flow, using generalized dispersion model. Rana and Murthy [34] studied axial

solute dispersion in Carreau and Carreau-Yasuda fluid flows through a circular tube by

considering boundary absorption/reaction at the tube wall. However in studies Nagarani

et al.( [20], [21], [24]) and, Rana and Murthy [34] revealed that blood flow is pulstile

in nature with the same frequancy as the heartbeat. Following the generalized dispersion

model Rana and Murthy [33] studied usteady solute dispersion in pulstile casson fluid flow

in a tube with wall absorption. Later the study was extended and they analysed unsteady

solute dispersion in small blood vessels using two phase casson model [36]. Nagarani et

al [22] studied the dispersion of a solute in a pulstile non-Newtonian fluid (Casson fluid)

through a tube. Over the years researchers have used the Casson and the Herchel-Bulkely

model to describe the nature of blood rheology but according to information gathered,

using the Herchel-Bulkely model describes blood closely and possesses more advantages

compared to casson model. Scott (1996) and Sankar (2016) explained that the Herchel-

Bulkely fluid model is more general for blood flow and it is easy to use and explain. Tu

and Deville (1996) pointed out that the Herchel-Bulkely fluid model is more advantages

since it can be reduced to the Newtonian, power-law and Bingham fluid models simply by

change of parameters. Therefore using Herchel-Bulkely fluid model is a perfect choice de-

scribing blood rheology. According to the knowledge of the authors, analysis of unsteady

solute dispersion modeling blood as Herchel-Bulkely fluid, considering the fact that blood
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flow is pulstile in nature was studied by a few.

In the present paper we analyse the effects of wall absorbtion and yield stress on unsteady

solute dispersion taking blood to behave like an Herchel-Bulkely fluid, considering the

fact that blood flow is pulsatile in nature through a mild stenosed artery, using perturba-

tion method used by Nagarani and Sarojamma [19] and the generalized dispersion model

proposed by Gill and Sankarasubramanian ( [40] [13]).

4.2 Mathematical formulation

Figure 4.1: Schematic diagram of the stenosed artery

Let us consider a fully developed laminar of Herchely Bulkley flow,axially symmetric and

pulstile blood flow in the presence of externally imposed periodic body acceleration in an

artery with mild stenosis as shown in Fig.1. Following the stenotic protuberance used by

Young [50], it is assumed to be axisymmetric surface generated by a cosine curve and the

geometry of the stenosis is given by

R̄(z̄) =


R0 − δ̄

(
1 + cos

πz̄

2z̄0

)
, for z̄ = −2z̄0 to z̄ = 2z̄0,

R0, otherwise ,

(4.1)

where R̄(z̄) is the radius of the obstructed artery, R0 is the the radius of a normal

artery, 4z̄ is the length of the stenotic region and 2δ̄ is the maximum proturberance of the

stenotic at the artery wall. The periodic body acceleration in axial direction is given by

F (t̄) = a0 cos(ωbt̄+ φ), (4.2)

where a0 is the amplitude, ωb = 2πfb,fb is the frequency in Hz. The frequency of body

acceleration fb is assumed to be small so that the wave effect can be neglected and φ is the
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lead angle of F (t̄) with respect to the heart action. The pressure gradient is represented

as follows

−∂p̄
∂z̄

= P0 + P1 cos(ωpt̄), (4.3)

where P0 is steady component of the pressure gradient, P1 is the fluctuating component,

ωp = 2πfp, fp is the frequency of the pressure pulsation and t̄ is time. The momentum

equation is given as

ρ
∂w̄

∂t̄
= −∂p̄

∂z̄
− 1

r

∂

∂r̄
(r̄τ̄) + F (t̄), (4.4)

where ρ is the density, τ̄ and w̄ are dimensional shear stress and velocity of the fluid

respectively. Following Rana and Murthy [35] the constitutive equation for a Herschel-

Bulkley fluid in one dimensional shear flow is given by

τ̄ = τ̄y + ηH

(
− ∂w̄

∂r̄

)n
if τ̄ ≥ τ̄y, (4.5)

∂w̄

∂r̄
= 0 if τ̄ ≤ τ̄y, (4.6)

where τ̄ and
∂w

∂r
are the shear stress and shear rate, respectively and τy is the yield stress,

ηH is the viscosity of the Herschel-Bulkley fluid with dimension and n is the power-law

index. Following boundary conditions taken into consideration

w̄ = 0 at r̄ = R(z̄), τ̄ is finite for r̄ = 0. (4.7)

Non-dimensional Variables

C =
C̄

C0
, w =

w̄

w0
, r =

r̄

R0
, z =

Dmz̄

w0R2
0

, e =
P1

P0
, a1 =

a0

P0
,

t = Dm
t̄

R2
0

, τ =
τ̄

η0

R0

w0
, τy =

τ̄y
η0

R0

w0
, (4.8)

where w0 = P0

(
R2

0/4η0

)
and η0 = ηH

(
w0

R0

)n−1

, is the charecteristic viscosity.

4.2.1 Velocity distribution

Using non-dimentional variables, the momentum equation(4.4) becomes

α2∂w

∂t
= 2p(t)− 1

r

∂

∂r
(rτ) (4.9)

where α2 = Dmρ/η0, p(t) = 2

[
1 + e cos

(
ωp

R2
0

Dm
t) + a1 cos(ωb

R2
0

Dm
t+ φ

)]
,
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The non-dimensional form of equation (4.5) and (4.6) for a Herschel-Bulkley fluid is

given as

τ = τy +

(
− ∂w

∂r

)n
if τ ≥ τy, (4.10)

∂w

∂r
= 0 if τ ≤ τy. (4.11)

The boundary conditions (4.7) becomes

w = 0 at r = R(z), τ is finite for r = 0. (4.12)

The non-dimensional form of equation (4.1), geometry of the stenosis is given as

R̄(z̄) =


R0 − δ

(
1 + cos

πz

2z0

)
, for z = −2z0 to z = 2z0,

1, otherwise .

(4.13)

Using the perturbation analysis, equation (4.9)-(4.11) can be solved, the velocity w, shear

stress τ , plug core radius Rp and plug core velocity wp are expanded as follows in terms

of α2(where α2 is very small and considered a perturbation parameter)

w(z, r, t) = w0(z, r, t) + α2W1(z, r, t), (4.14)

τ(z, r, t) = τ0(z, r, t) + α2τ1(z, r, t), (4.15)

Rp(z, r, t) = R0p(z, r, t) + α2R1p, (4.16)

wp(z, r, t) = w0p(z, r, t) + α2w1p. (4.17)

Substituting equation (4.14) and (4.15) into (4.9) and equating the constant terms and α2

terms we get

∂w0

∂t
=

1

r

∂

∂r
(rτ1), (4.18)

2p(t) =
1

r

∂

∂r
(rτ0). (4.19)

Integrating equation (4.9) and using fact that τ is finite, we get

τ0 = p(t)r. (4.20)
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Substituting equation (4.14) and (4.15) into (4.10) we get

−∂w0

∂r
= (τ0 − θ)1/n, (4.21)

−∂w1

∂t
=
τ1

n
(τ0 − θ)1/n−1. (4.22)

where θ = τy, Using equation (4.20) and integrating (4.21) we get

w0(r) = (p(t))1/n

(
n

n+ 1

)[
(r − k2)1/n+1 − (R−K2)1/n+1

]
, (4.23)

where k2 = θ/p(t). At r = R0p we get plug core velocity w0p as

w0p = (p(t))1/n

(
n

n+ 1

)[
(R0p − k2)1/n+1 − (R−K2)1/n+1

]
(4.24)

where R0p is the dimensionless radius of the plug region and neglecting the terms of o(α2)

and higher powers of α in Eq. (4.16) we get R0p = θ/p(t). We get w1 by integrating Eq.

(4.22) and substituting it into Eq. (4.20), we get

w1(r) = σ(t)

[
Rn4(r − k2)2/n−2 − Rn

n

(
Rn1(r − k2)1/n−2 −Rn2(r − k2)1/n−3

)
− n

1− n
I1(r)−Rn3(r − k2)1/n−2

]
, (4.25)

where pn(t) = p(t)1/n−1 and when r = R0p we get

w1p = σ(t)

[
Rn4(R0p − k2)2/n−2 − Rn

n

(
Rn1(R0p − k2)1/n−2 −Rn2(R0p − k2)1/n−3

)
− n

1− n
I1(R0p)−Rn3(R0p − k2)1/n−2

]
, (4.26)

Where Rn, Rn1, Rn2, Rn3, Rn4, I1(r) are found in the appendix.

4.2.2 Dispersion Distribution

The dispersion of the solute is governed by the unsteady convection diffusion equation

below

∂C̄

∂t̄
+ w̄

∂C̄

∂z̄
= Dm

(
1

r̄

∂

∂r̄

(
r̄
∂C̄

∂r̄

)
+
∂2C̄

∂z̄2

)
, (4.27)

where Dm is the molecular diffusivity and ¯C (̄t, z̄, r̄) is the local concentration of the

solute.
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Initial and Boundary conditions

C̄(0, z̄, r̄) = C0ψ(z̄)Y (r̄), (4.28)

C0 = M/(πR2), ψ(z̄) = δ(z̄)R, Y (r̄) = 1, (4.29)

∂C̄

∂r̄
(t̄, z̄, 0) = 0, (4.30)

−Dm
∂C̄

∂r̄
(t̄, z̄, R) = kcC̄(t̄, z̄, R), (4.31)

C̄(t̄,∞, r̄) =
∂C̄

∂z̄
(t̄,∞, r) = 0, (4.32)

where C̄(0, z̄, r̄) = C0ψ(z̄)Y (r̄), C0 = M/(πR2), and kc is the reaction rate constant

Using non-dimensionless variables, Eq.(4.27) transforms to

∂C

∂t
+ w

∂C

∂z
= Dm

(
1

r

∂

∂r

(
r
∂C

∂r

)
+
∂2C

∂z2

)
, (4.33)

where Pe = R0
w0

Dm
is the Peclet number. The initial and boundary condition becomes

C(0, z, r) = ψ({z)Y (r), (4.34)

∂C

∂r
(t, z, 0) = 0, (4.35)

∂C

∂r
(t, z, 1) = −βC(t, z, 1), (4.36)

C(t,∞, r) =
∂C

∂z
(t,∞, r) = 0, (4.37)

where ψ(z̄) = δ(z̄)/Pe, Y (r) = 1, β = kR0/Dm is the wall absorption parameter.

To solve equation (4.33) we follow the method suggested by Sankarasubramanian and

Gill [40], the solute concentration C(t, z, r) can be expanded in an infinite series as

C(t, z, r) =

∞∑
i=0

fi(t, r)
∂iCm(t, z)

∂zi
, (4.38)

where Cm(t, z) is the dimensionless mean concentration, and is given as

Cm(t, z) = 2

∫ 1

0
rC(t, z, r)dr. (4.39)
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Multiplying Eq.(4.33) by 2r and integrating with respect to r from 0 to 1, Equation (4.33)

becomes

∂Cm
∂t

=
1

Pe2

∂2Cm
∂z2

+ 2
C

∂r
(t, z, 1)− 2

∂

∂z

∫ 1

0
w(t, r)C(t, z, r)rdr. (4.40)

Substituting equation (4.38) into (4.40) we get an infinite series

∂Cm
∂t

=
∞∑
i=0

Ki(t)
∂iCm(t, z)

∂zi
, (4.41)

where

Ki(t) =
δi2
Pe2

+ 2
∂fi
∂r

(t, 1)− 2

∫ 1

0
fi−1(t, r)w(t, r)rdr i = 0, 1, 2... (4.42)

and δi2 is the kronecker delta defined by

δik =


1, if i = k,

0, if i 6= k.

(4.43)

Due to significance only K0(t), K1(t) and K2(t), exchange coefficient, convection coef-

ficient and dispersion coefficient respectively are considered. In that case equation (4.38)

and (4.41) now finite series, are given as

C(t, z, r) =

2∑
i=0

fi(t, r)
∂iCm(t, z)

∂zi
, (4.44)

∂Cm
∂t

=

2∑
i=0

Ki(t)
∂iCm(t, z)

∂zi
, (4.45)

where

Ki(t) =
δi2
Pe2

+ 2
∂fi
∂r

(t, 1)− 2

∫ 1

0
fi−1(t, r)w(t, r)rdr, i = 0, 1, 2. (4.46)

Substituting equation (4.44) and( 4.45) into equation (4.33) and equating coefficients

of
∂iCm
∂zi

, we get a partial differential equation

∂fi
∂t

=
1

r

∂

∂r

(
r
∂fi
∂r

)
− w(t, r)fi−1 +

1

Pe2
fi−2 −

i∑
i=0

Kn(t)fi−n, for i = 0, 1, 2, (4.47)

where f−1 = f−2 = 0
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Deriving initial and boundary conditions for equation (4.47), we use equation (4.38)

and (4.39) with initial and boundary conditions (4.34)-(4.37), we get

Cm(0, z) = 2ψ(z)

∫ 1

0
rY (r)dr, (4.48)

f0(0, r) =
Y (r)

2
∫ 1

0

rY (r)dr, (4.49)

fi(0, r) = 0, i = 1, 2, (4.50)

∂fi
∂r

(t, 0) = 0, i = 0, 1, 2, (4.51)

∂fi
∂r

(t, 1) = −βfi(t, 1), i = 0, 1, 2, (4.52)

Cm({t,∞) =
∂Cm
∂z

(t,∞) = 0. (4.53)

Using equation (4.38) into (4.39) we get an additional condition∫ 1

0
rfi(t, r)dr =

1

2
δi0, i = 0, 1, 2, (4.54)

with the initial and boundary conditions the differential equation (4.47) can be solved

using Sturm Louville Theory to get f0, f1, f2,K0,K1 and K2.

4.2.3 Estimation of f0(t, r) and K0(t)

Let i=0 then equation (4.47) reduces to

∂f0

∂t
=

1

r

∂

∂r

(
r
∂f0

∂r

)
−K0(t)f0. (4.55)

The initial and boundary condition are given in (4.49), (4.51) and (4.52), for i=0 (4.54)

becomes ∫ 1

0
rf0(t, r)dr =

1

2
. (4.56)

Using the following transformation (4.55) is made easier

f0 = exp
(
−
∫ t

0
K0(s)ds

)
g0(t, r). (4.57)

Reducing (4.55) to

∂g0

∂t
=

1

r

∂

∂r

(
r
∂g0

∂r

)
. (4.58)
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Solving (4.58) and subtituting back into (4.57) and using the additional condition we get

f0(t, r) as

f0(t, r) =

∑∞
i=0AiJ0(µir)e

−µ2i t∑∞
i=0(Ai/µi)J1(µi)e

−µ2i t
, (4.59)

where µi(i =, 1, 2...) are the roots of the transcendental equation µiJ1(µi) = βJ0(µi) and

the constant Ai is given as

Ai =
µ2
i

∫ 1
0 rY (r)J0(µir)dr

(µ2
i + β2)J2

0 (µi)
∫ 1

0 rY (r)dr
, i = 0, 1, 2.., (4.60)

The exchange coefficient is independent of velocity field and K0(t) is given as

K0(t) = 2
∂fi
∂r

(t, 1) = −2βf0(t, 1)) =

∑∞
i=0Ai−µiJ1(µi)e

−µ2i t∑∞
i=0(Ai/µi)J1(µi)e

−µ2i t
. (4.61)

4.2.4 Estimation of f1(t, r) and K1(t)

Using equation (4.47) we get the governing equation for f1(r, t) by setting n = 1 and is

given as

∂f1

∂t
=

1

r

∂

∂r

(
r
∂f1

∂r

)
−K0f1 −

(
w(t, r) +K1

)
f0. (4.62)

Initial and Boundary conditions

f1(0, r) = 0, (4.63)

∂f1

∂r
(t, 0) = 0, (4.64)

∂f1

∂r
(t, 1) = −βf1(t, 1). (4.65)

Additional condition ∫ 1

0
rf1(t, r)dr = 0. (4.66)

Using Sturm–Liouville theory the solution for f1(t, t) satisfying the initial, boundary con-

ditions and the additional condition is given as

f1(r, t) = −
∑∞

j=0Aje
−λ2j tJ0(λjr)Dmn(t)

2
∑∞

i=0(Ai/µi)e
−µ2i tJ1(µi)

, (4.67)

where

Dmn(t) =

∫ t

0
e−λ

2
jsγ(s)ds, (4.68)
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Ai =
µ2
i

∫ 1
0 rY (r)J0(µir)dr

(µ2
i + β2)J2

0 (µi)
∫ 1

0 rY (r)dr
, (4.69)

γ(s) =

∞∑
i=1

AiAj

∫ t

0
e−(µ2i−λ2j )sMnm(s)ds+

∞∑
i=1

AiAj

∫ t

0

1

2
(J2

0 (µi) + J2
1 (µi))F1(t), (4.70)

Mnm(s) =

∫ 1

0
rw(r, s)J0(µir)J0(µjr)dr, (4.71)

F1(t) =

∫ t

0
k1(s)ds = −2

∑∞
i=1

∑∞
j=1Ai(A

2
j/λj)e

−λ2j t
∫ t

0 e
−(µ2i−λ2j )sMnm(s)dsJ1(λj)∑∞

i=1

∑∞
j=1A

2
j (Ai/µi)J1(µi)e

−µ2i t(J2
0 (µi) + J2

1 (µi))
.(4.72)

From equation (4.46) the convection coefficient K1(t) is

K1(t) = 2
∂f1(1, t)

∂r
(1, t)− 2

∫ 1

0
rw(t, r)f0(r, t)dr, (4.73)

where

∂f1

∂t
(1, t) =

∑∞
j=0Aje

−λ2j tλjJ1(λj)Dmn(t)

2
∑∞

i=0(Ai/µi)e
−µ2i tJ1(µi)

, (4.74)

∫ 1

0
rw(t, r)f0(r, t)dr =

∑∞
i=0Aie

−µ2i t
∫ 1

0 rw(r, t)J0(µir)dr∑∞
i=0(Ai/µi)e

−µ2i tJ1(µi)
. (4.75)

4.2.5 Estimation of f2(t, r) and K2(t)

Using equation (4.47) we get the governing equation for f2(r, t) by setting n = 2 and is

given as

∂f2

∂t
=

1

r

∂

∂r

(
r
∂f2

∂r

)
−K0f2 −

(
w(t, r) +K1

)
f1 +

( 1

Pe2
−K2

)
f0. (4.76)

Initial and Boundary conditions

f2(0, r) = 0, (4.77)

∂f2

∂r
(t, 0) = 0, (4.78)

∂f2

∂r
(t, 1) = −βf2(t, 1). (4.79)

Additional condition ∫ 1

0
rf2(t, r)dr = 0. (4.80)
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Using Sturm–Liouville theory the solution for f1(t, t) satisfying the initial, boundary con-

ditions and the additional condition is given as

f2(r, t) = −
∑∞

k=0AkJ0(βkr)P (t)

2
∑∞

i=0(Ai/µi)e
−µ2i tJ1(µi)

, (4.81)

where

P (t) = −
∞∑
j=0

AkAje
−β2

kt

∫ t

0
e−β

2
ks

[
b(s)Mjk(s) + FλjK(s)

]
ds

−
∞∑
i=0

AiAke
−µ2i tFµiF2(t), (4.82)

Fλj =
(J2

0 (λj) + J2
1 (λj))

2
, Fµi =

(J2
0 (µi) + J2

1 (µi))

2
, (4.83)

F2(t) =
∫ t

0

(
K2 −

1

Pe2

)
ds, (4.84)

Mjk(s) =

∫ 1

0
rw(s, r)J0(λjr)J0(βkr)dr, (4.85)

b(t) = −
∫ t

0
e−λ

2
j (t−s)γ(s)ds, (4.86)

γ(s) =
∞∑
i=1

AiAj

∫ t

0
e−(µ2i−λ2j )sMnm(s)ds+

∞∑
i=1

AiAj

∫ t

0

1

2
(J2

0 (µi) + J2
1 (µi))F1(t). (4.87)

From equation (4.46) we get dispersion coefficient K2(t) as

K2(t) =
1

Pe2
+ 2

∂f2(1, t)

∂r
(1, t)− 2

∫ 1

0
rw(t, r)f1(r, t)dr, (4.88)

where

∂f2(1, t)

∂r
(1, t) = −

∑∞
k=0AkβkJ1(βk)P (t)∑∞
i=0(Ai/µi)e

−µ2i tJ1(µi)
, (4.89)

2

∫ 1

0
rw(t, r)f1(r, t)dr =

−2
∑∞

k=0Ake
−λ2j tD

mn
∫ 1
0 rw(t,r)f1(r,t)dr

(t)
∫ 1

0 rw(t, r)J0(λjr)dr∑∞
i=0(Ai/µi)e

−µ2i tJ1(µi)
.(4.90)
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4.3 Results and Discussion

The dispersion process is described by the three transport coefficients: exchange coefficient

(K0), convection coefficient (K1) and dispesion coefficient (K2). In this study all the three

are calculated analytically and only the exchange coefficient (K0) and the convection

coefficient (K1) are analysed. Negative exchange coefficient (−K0) is analysed following

analysis by Sankarasubramanian and Gill [40], Rana and Murthy [33,34,36]. It should be

noted that the negative exchange coefficient ( −K0) does not depend on velocity unlike

other transport coefficient, it depends more on the wall absorption parameter (β) as it can

be seen in equation (4.61). The convection coefficient (K1) and the dispesion coefficient

(K2) both depend on the yield stress (τy). To accomodate for small and large absorption

rate, range of 0− 100 was suggested by Sankarasubramanian and Gill [40], and, Rana and

Murthy [33].

10-4 10-3 10-2 10-1 100
10-2

10-1

100

101

102

 = 0.01 (Present study)
Rana and Murthy [33]

 = 1 (Present study)
Rana and Murthy [33]

 = 100 (Present study)
Rana and Murthy [33]

Figure 4.2: Negative exchange coefficient (−K0) vs time for different value of wall

absorption parameter (β) with a fixed flow index n = 1/2

A varying wall absorption parameter (β), −K0 (negative exchange coefficient) with

time variation is shown in Fig. 4.2. As β increases −K0 increases, for small β the negative

exchange coefficient (−K0) is constant with time and low for large β value. The negative

exchange coefficient (−K0) is high and decreases with time after a long time −K0 value

becomes constant. This is the same for different values of n(flow index), this is because

−K0 is independent of velocity and pulsutility of the blood vessels hence independent of

yield stress. A small value of the wall absorption parameter causes low reaction rate at

the wall of the microvessel hence low −K0 and as it increases −K0 the reaction rate at

the wall of a microvessel also increases.

Unlike the exchange coefficient (K0), convectional coefficient depends on velocity, so

it depends on β, τy, e, and the graphs below show how all these parameters affect the
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negative convectional coefficient and results are discussed.
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Figure 4.3: Negative convection coefficient −K1 vs time t for different values of flow

index n when τy = 0.05, e = 0.5, β = 0.01
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Figure 4.4: Negative convection coefficient −K1 vs time t for different values of β

when n = 0.5, n = 2/3, n = 1, n = 2 respectively

In Fig. 4.4(a-d) the variation of negative coefficient for small time is graphed for

different values of β when n = 0.5, n = 2/3, n = 1, n = 2 (a-d), respectively. It is observed
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that when n is less than 1, β increases −K1 decreases and for n greater or equal to 1 −K1

increases with β. The same results (of −K1, increasing with β) were noticed by Rana

and Murthy [33–35], this can be attributed to the shear thinning nature becoming more

prominent in the fluid. Consequently, the velocity of the fluid increases so does −K1. For

n greater or equal to 1, it is noticed that as β increases the amplitude of the fluctuation

and the magnitude of −K1 increases and becomes stable after some time.
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Figure 4.5: Negative convection coefficient −K1 vs time t for different values of τy

when n = 0.5, n = 2/3, n = 1, n = 2 respectively

In Fig. 4.5(a-d) the variation of negative coefficient for small time is graphed for

different values of τy when n = 0.5, n = 2/3, n = 1 and n = 2 , respectively. Results

shows that for all n, τy there is a significant effect on −K1. When τy increases −K1

decreases, owing to the effect of τy on velocity, τy reduces velocity of the fluid hence solutes

are convected at low fluid velocity. The same results were observed by Sankasubramanian

and Gill [40], Rana and Murthy [35]
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Figure 4.6: Negative convection coefficient −K1 vs time t for different values of e

when n = 0.5, n = 2/3, n = 1, n = 2 respectively

In Fig. 4.6 the variation of negative coefficient for small time is graphed for different

values of e when n = 0.5, n = 2/3, n = 1, n = 2 (a-d) respectively. It is observed that

when n increases −K1 decreases, and it is also noticed that as e increases K1 increases.

This is because an increase in e increases the fluctuating pressure gradient hence the

increase in the amplitude of fluid velocity leading to increase in −K1 fluctuation Rana

and Murthy [34].
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4.4 Conclusion

In this study we analysed the effect of wall absorption and yield stress on the dispersion

process in a mild stenosed artery, considering the flowing fluid as a Herschel-Bulkely fluid

and looking at the pulsatile flow of blood under the influence of body acceleration. Three

coefficients namely: exchange coefficient, convection coefficient and dispersion coefficient

are calculated analytically and only two are analysed, that is the exchange coefficient and

the convection coefficient. It is observed that the exchange coefficient K0 is not affected

by the motion of fluid i.e it is independent of fluid velocity, and is only affected by wall

absorption. Unlike K0, the convectional coefficient K1 is affected by the velocity of the

fluid hence a great significant effect of wall absorption β, yield stress τy and pulsatile

pressure gradient e on K1.
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Chapter 5

Conclusion & Future Scope

5.1 Conclusion

The first chapter gives the basics and principles of bio-fluid dynamics. The second chapter

is based on the study of velocity, temperature and the concentration of blood flow through

a microvessel contain peripheral layer. The velocity and concentration profile are divided

into three regions e.g., plug region, outer region and peripheral region. The influence of

the stress jump condition, the slip condition of velocity and the concentration , the yield

stress, the pressure gradient and the permeability of the peripheral region play crucial

roles which are reflected through graphs. In general it is observed that the velocity and

concentration at the plug region is constant while after that velocity decreases through

out the radius but concentration increases continuously in radial direction. Velocity is

non-zero at the walls of the microvessel because of the slip constantγ and the stress jump

constant causes a rapid decrease in velocity between the core region and the peripheral

region. Temperature profile is challenging for all the parameters. This work may give an

overall idea of blood flow in the sense of velocity, temperature and concentration under

certain condition.

The third chapter is based on the analysis of the effect of rheological parameter ,non-

dimensional pressure constant, nanoparticle volume fraction, the slip constant, the stress

jump constant, the permeability parameter and the yield stress on the nanoparticle disper-

sion has been analysed. From the above findings, one can conclude that relative effective

dispersion is heavily affected by all these parameters. This works may give an overall idea

of dispersion of solutes in blood flow and how it is affected by certain conditions.
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In the forth chapter, we analyse the effect of wall absorption and yield stress on dispersion

process in a mild stenosed artery, considering the flowing fluid as a Herschel-Bulkely fluid

and looking at the pulsatile flow of blood under the influence of body acceleration. Three

coefficients namely: the exchange coefficient, the convection coefficient and the dispersion

coefficient are calculated analytically. And only two are analysed, that is exchange coef-

ficient and convection coefficient. It is observed that the exchange coefficient K0 is not

affected by the motion of the fluid that is it is independent of fluid velocity hence it is only

affected by wall absorption. And unlike K0, the convectional coefficient K1 is affected by

the velocity of the fluid. So, a great significant effect of wall absorption β, yield stress τy

and pulsatile pressure gradient e on K1.

5.2 Future Scope

In the present thesis we mainly focus on the effect of blood rheological parameters (slip

constant, stress jump constant, yield stress, wall absorption constant, non-dimensional

pressure constant, nanoparticle volume fraction etc) on solutes dispersion through perme-

able microvessel and mild stenosed artery. Considering both steady and unsteady flow of

Casson fluid and Herschel-Bulkely fluid. Furthermore, the present work can be extended

as follows;

• The study of unsteady dispersion in a Herschel-Bulkely fluid through a mild stenosed

artery with a pulsatile flow of blood under the influence of body acceleration which

is in the forth chapter, can in future be extended by changing single mild stenosed

artery to multi stenosed artery.

• Casson fluid and Herschel-Bulkely fluid model are widely used in bio-fluid, but in

some special cases, Carreau and Carreau-Yasuda fluid model can be used since it

also describes the behavior of the viscosity of blood at low and high shear rate

regions.

• The artery of the cardiovascular system is not always shaped like a circular straight

cylinder the shape depends on the position at different organs, it may be curved or

bifurcated. In future, the present problem can be extended with the above men-

tioned complex geometries.
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APPENDIX

Chapter 2 Appendix
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Working for equation (2.1) to (2.3)

Solving equation (2.1) to (2.3), we use the Casson model shown below

τ1/2 = τ
1/2
y +

(
− µ1

∂U1
∂r

)1/2

Making ∂U1
∂r the subject, the Casson model gives

∂U1
∂r = 1

µ1

(
τ − 2

√
ττy + τy

)
Using equation (2.2) on the above equation, we get

∂U1
∂r = r

2µ1
dp
dz −

τy
µ1

+ 2
µ1

√
−rτy

2
dp
dz

Hence equation (2.9) when the above equation is integrated once. Using the boundary

condition (2.5) we get (2.8). Furthermore, using the method of undetermined coefficient

on the equation (2.7), it gives out equation (2.10)
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1

16
−

K2

4
(h2

1 lnh1 − h2
1)− K̄3h

2
1

4
+
K̄1h

2
1

4

)

T6 =
h1∂C

Dm∂z

(
s8h

3
1

4
+K2(

h1

2
lnh1−

h1

4
)+
K̄3

2
− ns7

(2n+ 1)
(h1−hp)1/n+2+

ns7

(2n+ 1)

1

h1

n

3n+ 1
(h1−

hp)
1/n+3 − h1

K̄1

2

)

T7 =
−h∂C
Dm∂z

(
s8h

3

4
+K2(

h

2
lnh− h

4
) +

K̄3

2

)
G=T6 + T7, H = T4 −G lnhp, J = T5 − I lnh1 +G lnh1 +H, I = T7

T8 =
π

16

Û2
p

Dm

∂C

∂z
h4
p

T9 = G1s7I21−G1s7I22+G2s7I23+Gs7I24+Hs7I25+K̄1

(
G1I26−G1I27 +G2I28 +GI29 +HI30

)
I21 = s

∫ h1
hp
r(r − hp)2/n+4dr, I22 =

∫ h1
hp
I(r, hp)r(r − hp)1/n+1rdr, I23 =

∫ h1
hp
r3(r − hp)1/n+1dr

I24 =
∫ h1
hp
r(r − hp)1/n+1(ln r)dr, I25 =

∫ h1
hp
r(r − hp)1/n+1dr, I26 =

∫ h1
hp
r(r − hp)1/n+3dr

I27 =
∫ h1
hp
I(r, hp)rdr, I28 =

1

4
(h4

1 − h4
p), I29 =

∫ h1
hp
rln rdr, I30 =

1

2
(h2

1 − h2
p)

G1 =
1

Dm

∂C

∂z

n2s7

(1 + 2n)(1 + 3n)
, G2 =

1

Dm

∂C

∂z

K̄1

4

Working for equation (3.9) to (3.11)

Solving equation (3.9) to (3.11), we use the Herchel-Bulkely model shown below

τ = τy +

(
− µ1

∂U1
∂r

)n
Making ∂U1

∂r the subject, the Casson model gives

∂U1
∂r =

(
1
µ1

)1/n(
τ − τy

)1/n

Using equation (3.10) on the above equation, we get

∂U1
∂r =

(
−1

2µ1

∂p

∂z

)1/n(
r − hp

)1/n

Hence equation (3.14) when the above equation is integrated once. Using the boundary

condition (3.12) we get (3.13). Furthermore, intergrating twice on the equation (3.11), we
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get equation (3.15)

Chapter 4 Appendix

ωb = 2πfb

ωp = 2πfp

τ1 = pn(t)p′(t) 1

n+ 1

(
n(r − k2)1/n − r(R − k2)1/n+1 − n2

(1− n)

1

r
(r − K2)1/n−1 − r

2
(R −

k2)1/n+1

)
pn(t) = p(t)1/n−1, p(t) = 2

(
1 + e cos(ωp

R2
0

Dm
t) + a1 cos(ωb

R2
0

Dm
t+ φ)

)
, p′(t) = ∂p(t)

∂t

σ(t) = p′(t)
(
p(t)

)2

/(n+ 1)

Rn = (R− k2)1/n+1

Rn1 =
n

1− 2n

Rn2 =
n2

(1− 2n)(1− 3n)

Rn3 =
n

(2n− 4n2)
(R− k2)1/n+1

Rn4 =
n

2− 2n
I1(r) =

∫
1
r (r − k2)2/n−2dr

Ai =
µ2
i

∫ 1
0 rY (r)J0(µir)dr

(µ2
i + β2)J2

0 (µi)
∫ 1

0 rY (r)dr

Dmn(t) =
∫ t

0 e
−λ2jsγ(s)ds

γ(s) =
∑∞

i=1AiAj
∫ t

0 e
−(µ2i−λ2j )sMnm(s)ds+

∑∞
i=1AiAj

∫ t
0

1

2
(J2

0 (µi) + J2
1 (µi))F1(t)

Mnm(s) =
∫ 1

0 rw(r, s)J0(µir)J0(µjr)dr

F1(t) =
∫ t

0 k1(s)ds = −2

∑∞
i=1

∑∞
j=1Ai(A

2
j/λj)e

−λ2j t
∫ t

0 e
−(µ2i−λ2j )sMnm(s)dsJ1(λj)∑∞

i=1

∑∞
j=1A

2
j (Ai/µi)J1(µi)e

−µ2i t(J2
0 (µi) + J2

1 (µi))∫ 1
0 rw(t, r)f0(r, t)dr =

∑∞
i=0Aie

−µ2i t
∫ 1

0 rw(r, t)J0(µir)dr∑∞
i=0(Ai/µi)e

−µ2i tJ1(µi)

P (t) = −
∞∑
j=0

AkAje
−β2

kt

∫ t

0
e−β

2
ks

[
b(s)Mjk(s) +

K1(s)

2
(J2

0 (λj) + J2
1 (λj))

]
ds

−
∞∑
i=0

AiAke
−µ2i t

(J2
0 (µi) + J2

1 (µi))

2
F2(t)

F2(t) =

−
∑∞

k=0

∑∞
j=0Aj(A

2
k/βk)e

−β2
kt
∫ t

0 e
−β2

ks

[
b(s)Mjk(s) +

K1(s)

2
(J2

0 (λj) + J2
1 (λj))

]
dsJ1(βk)∑∞

k=0

∑∞
i=0Ai(A

2
k/µi)J1(µi)

(J2
0 (µi) + J2

1 (µi))

2
e−µ

2
i t

Mjk(s) =
∫ 1

0 rw(s, r)J0(λjr)J0(βkr)dr

b(t) = −
∫ t

0 e
−λ2j (t−s)γ(s)ds
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γ(s) =
∑∞

i=1AiAj
∫ t

0 e
−(µ2i−λ2j )sMnm(s)ds+

∑∞
i=1AiAj

∫ t
0

1

2
(J2

0 (µi) + J2
1 (µi))F1(t)

2
∫ 1

0 rw(t, r)f1(r, t)dr =
−2
∑∞

k=0Ake
−λ2j tD

mn
∫ 1
0 rw(t,r)f1(r,t)dr

(t)
∫ 1

0 rw(t, r)J0(λjr)dr∑∞
i=0(Ai/µi)e

−µ2i tJ1(µi)

70




