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Abstract. The axisymmetric turbulent far wake of a long 
slender cylinder is being studied. Classical analytical 
solutions describing the wake width and the velocity 

defect are presented. The governing equations have been 
solved with appropriate boundary conditions and a 
scaling analysis to obtain a similarity equation for the 
mean velocity distributions.  Solutions of the velocity 
distributions are presented in terms of the 
hypergeometric function known as the Whittaker 
function. Validation of the analysis is done with available 
experimental data. 

Keywords. Axisymmetric flow, far wake, mean 
velocity, half wake thickness. 

I. INTRODUCTION 

The wake is the region that is produced behind an 

object placed in a freestream and manifest itself in the 
form of a velocity deficit profile. It is in this region that 

the flow is usually dominated by separation and 
reattachment or trailing edge singularities [1]. Wakes 
are known to have a nonlinear spread rate but are 

however similar to other free shear flows like jets and 
plumes which exhibit a self-similarity beyond a certain 

downstream distance such that, a characteristic length 
and velocity can be used to scale all distance and 
velocity of the flow [2].  

The wake region can be divided into three regions; the 
near wake, outer near wake and the far wake. The near 
wake and the outer near wake exist in the locus 

immediately after the trailing edge where the flow 
regime is highly influenced by the initial conditions of 

the boundary layer at the trailing edge of the body [1, 
3], whilst the far wake is the region further 
downstream of the trailing edge where the flow 

properties are generally expected to be less influenced 
by the trailing edge conditions. A schematic depiction 

of the flow regions is shown in figure 1 below. 

 

Fig. 1. Different flow regions of the wake 

The far wake is an intrinsic flow region which has 

found itself as a subject of interest. The literature 
involves both the study of the two dimensional wake 
and the axisymmetric case [4-11]. In the far wake, it is 

observed; from the mentioned studies, that there is a 
centerline velocity decay which is coupled by a wake 

extent growth. Basically, the region is characterized by 
slower rates of growth of wake width and a decay of 
the centerline velocity than in the near wake. Both 

these characteristics exist in the 2 dimensional and the 
axisymmetric case. However, in the two dimensional 

case, the wake width and the centerline velocity defect 

are known to grow linearly as �
�

�  and �
� �

� , [4-6],   

where as investigations of the axisymmetric case have 

shown that the centerline velocity defect decays as �
� �

�   

and the wake width grows as �
�

� [2,7]. Understanding 
the axisymmetric far wake has indeed attracted a lot of 
keenness; experimental studies have been conducted 

in order to explore behavioral and flow properties in 
the far wake, among them, Carmody [8], Gibson et al 
[9], Chevray [10] and Bevilaqua and Lykoudis [11]. In 

these works, similarity profiles of the flow formed 
within a particular downstream distance. Various self 

similarity distances were obtained corresponding to 
different geometries, which one could assume, the 
shape of the geometry to be the attributing factor. For 

instance, Chevray [10] obtained mean flow of a 

spheroid in the range 3 < �
�� < 6 while Carmody’s 

results indicate similarity at � �� = 15 when studying 

the axisymmetric wake of a disc,  and Gibson et al [9] 
reported decay of mean and variance of velocity and 

temperature down to �
�� = 60, when they 

investigated a sphere using hot wires and pitot tubes.  

Bevilaqua and Lykoudi’s [11] also made very 
significant observations when they studied the self 
preservation of the axisymmetric wake on a sphere and 
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a porous disc with the same drag. They observed that, 
self preservation is a process which develops gradually 

with downstream distances, and first to preserve is the 
mean velocity profile, then the Reynolds stresses and 

later the turbulent moments. Bevilaqua and Lykoudi 
[11] further challenges the common believe of 
Townsend [6] that, turbulence forgets how it was 

created. Results from [11] indicate that the self 
similarity of mean velocity and Reynolds stress 

profiles are different and are not in the same manner.  
Rind [12] also studies the effects of free stream 

turbulence on wakes using direct numerical simulation 
and wind tunnel experiments.   

The current study is concerned with a description of 
the far wake of a long slender cylinder with a sharp 

trailing edge, with initial conditions in terms of self-
similarity solutions of the governing equations. This 

will thus provide a rationale and addressing questions 
regarding performances of similar axisymmetric 
bodies such as autonomous mobile axisymmetric 

devices in both aero and marine design and research. 
Engineers and designers could find optimal criteria in 

designing both aero and hydro driven devices from a 
better understanding and point of view and applying 

relevant knowledge such as, idyllic ways of 
minimization of drag, optimal body design enabling 
reduction of propulsive power for an efficient 

operation of an autonomous water vehicle etc. We 
present the classical results of the wake width and the 

centerline velocity by applying a reasonable 
asymptoticity on the governing equations of motion. 
The classical results are obtained which are also seen 

in the works of [2, 7, 12] when they studied an 
axisymmetric shape in the form of a sphere.  Agrawal 

and Prasad [2] used the Gaussian profile as the best fit 
to describe velocity defect and gave an equation that 
describes the streamwise velocity. Rind [12] provides 

an analysis of equations describing the development of 
shear flow for incompressible axisymmetric far wake 

where [12] applies the momentum flux equation after 
a scaling analysis to obtain similarity solutions and 

obtains expressions for the mean centerline velocity 
and the wake width growth. The analysis of [12] 
follows the general description given by Tennekes and 

Lumley [13]. This study shall follow the analysis 
presented in [13] of which we shall further obtain a 

similarity solution for the mean velocity defect of the 
far wake.  

II. ANALYSIS 

In this section, we present an analysis on the equations 
of motion to provide solutions describing the mean 

velocity defect and the wake width of the far wake. 
The analysis is also given by [13]. The equations of 

motion are given by 

                      
1

y

∂yV

∂y
+

∂U

∂x
= 0.                                      (1) 

                yU
∂U

∂x
+ yV

∂U

∂y
=

1

ρ

∂{yτ}

∂y
.                          (2) 

where the isotropic form of the shearing stress is given 

by � = ��
��

��
  and � represents the eddy viscosity. 

In the far wake stream, it can be assumed that the 
streamwise and cross stream mean velocities are small 

compared with the freestream velocity. Hence the 
minimum velocity defect which occurs at the outer 

layer of the wake should be zero, while the maximum 
velocity is measured from the centerline. It is also 

assumed that the pressure gradient is negligible. 
Hence, with these assumptions, the equation of motion 
to describe the flow in the far wake of a body of 

revolution reduces to,  

                                ��

���

��
=

1

��

�(��)

��
 .                     (3) 

Where �� = (�� − �). 

Following [USA], the assumptions made are that the 
velocity distribution in different crossections of the 

wake are similar and that the wake radial width � And 

the velocity defect on the center line vary with � 
according to some power law. The assumptions can be 

expressed as 

                                            � = ���                               (4) 

                                � = ���                                           (5) 

                                 �� = ��

�(�)

��
.                                (6) 

Where � and � are unknown constants. Applying 

Prandtl’s mixing length hypothesis, � = �� �
��

��
�, and 

the turbulent stress will be given as 

                                    � = ��� �
��

��
�

��

��
.                       (7) 

 L defines the mixing length. Using equation (6), we 

obtain  
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��

��
=

��

��� �
��(�)                            (8) 

(‘) represents differentiation with respect to �. 

Applying Prandtl’s  assumption that the mixing length 
is proportional to the wake width  

                             � ∝ � ⟹ � ∝ ��.                              (9) 

Then from equation (), 

� ∝ ��� �
����(�)

��� �
�

��

��� �
��(�).              (10) 

Or  

                      � = ������[��(�)]� .                           (11) 

Which after substitution and simplification, we get the 

expression for 
�

��

�(��)

��
 as  

1

��

�(��)

��
≈ ��(��� �) �

(�′(�))�

�

+ 2��(�)���(�)�.                       (12) 

 

Also we  have  

��

��

��
≈ ��(�� �)[��(�) + ����(�)].                 (13) 

 

From the equations above 

��(�� �)[��(�) + ����(�)]

≈ ��(��� �) �
(�′(�))�

�

+ 2��(�)���(�)�.                      (14) 

  For both sides of this equation to be of the same order 

of x it requires that  

            ��(�� �) = ��(��� �) .                                     (15) 

Which yields  

                          � + � = 1.                                         (16) 

We obtain a second equation between and m and n by 

making use of the equation describing the drag 
coefficient. The drag coefficient is constant and it is 
assumed that at the far wake the velocity defect is 

much smaller than the free stream velocity. The drag 
coefficient is calculated as 

                              �� =
��

1
2� ����

 .                          (17) 

�� defines the drag and the drag in this case is 
calculated by the relationship between aerodynamic 

drag and the momentum change given by, 

             �� = � � � ���������.                            (18)

�

�

��

�

 

Based on the stated assumptions equation (17) 
simplifies to 

                       �� = 2���� � ���� .                         (19)

�

�

 

From equation (6) and (19) we get after simplification 

            � �(�) �������� 

�

�

= ��.                              (20) 

Hence  

                                       ����� = 1.                            (21) 

Where �� defines a constant. Therefore 

                    2� − � = 0.                                            (22) 

Solving equations (18) and (24) gives  

                                 � =
2

3
   and � =

1

3
.                   (23) 

These values are the same as those found by [5]. Hence 

we can write the equations (4-6) as  

          � = ��
�
�.                                                              (24) 

                      � = ��
�
�.                                                  (25) 

                          �� = ��

�(�)

�
�
�

.                                    (26) 

III. SIMILARITY SOLUTION FOR 

MEAN VELOCITY PROFILE 

In this section, we seek to find a solution that will 
describe the velocity profile in the far wake region 
after making a constant assumption on the eddy 

viscosity. A second order differential equation is 
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obtained after applying appropriate transformations 
and introducing an eddy viscosity model which 

appropriately describes the flow at the far wake. In 
order to get a solution of equations (1) and (2), we seek 

a similarity of solution of the form 

      �� = �� �(�), � = ���
��(�).                            (27) 

Where �� = �� − � and � = �/�, and �� and � are 

the local velocity and length scales, respectively. From 

equation (1) we get an equation of � as  

      �

=
−�′� ��

2
+

��� 
�

�
� ��� �

−
�� ��

�
� �� ���.                                                    (28) 

Substituting the expression for � into equation (2) 

yields, 

−����
� + ��� �

�� ��

��

+
���

�

2��

− ����

− � �
��� ��

�

��
� +

���

��

−
����

�

��

�

−
��

�
��

��
�

��

��� − � ���� ���� −
(��)�

�

= 0.                                                                                      (29) 

At large distances from the body, the velocity defect is 

small, that is, �� ≪ �� , and the terms of second 

order are also small and hence the equation (5) reduces 
to; 

 ��� �
�� ��

��

� − � �
��

��� �

��
� � −

(��)�

�
= 0.         (30) 

In order to determine the velocity profile �, it is 

necessary to invoke a turbulence closure model. Thus, 
for example, we introduce a constant eddy viscosity; 

              � =
−��

�� �
��.                                                   (31) 

Under this assumption we get a solution for (30) as  

�

=
�� exp(

−����

4
)

�
�ℎ������� � �

�� + ��

2��

, 0,
−����

2
�

+
�� exp(

−����

4
)

�
�ℎ������� � �

�� + ��

2��

, 0,
−����

2
�.  (32) 

 Where �� and �� are constants.  

                                    �� =
�����

��

                             (33) 

 

                              �� =
��

�����

����

                               (34) 

Following [14], The Whittaker functions are solution 

to the differential equation (34), defined by  

�ℎ��������

= �
�����

� �
�
�� �−

��

2��

, 1,
−����

2
�.                    (35) 

And  

�ℎ��������

= �
�����

� �
�
�� �−

��

2��

, 1,
−����

2
�                      (36) 

M and U are related to the Kummer function and are 
given by  

� �
−��

2��

, 1,
−����

2
�

= � �
−��

2��

�
�

 
(
−����

2
� )�

(�!)�

�

���

                           (37) 

� �
−��

2��

, 1,
−����

2
�

=
1

Γ(��)
�� �

−��

2��

, 1,
−����

2
� ln(

����

2
�

+ � �
−��

2��

�
�

 
(
−����

2
� )�

(�!)�

�

���

 [� �
−��

2��

+ ��

+ �(1 + �)]}                                               (38)  

 

Here � �
���

���
+ �� is the logarithmic derivative of the 

gamma function Γ and is given by 

� �
−��

2��

+ �� =
1

(� − 1) + �
−��

2��
�

+
1

(� − 2) + �
−��

2��
�

+ ⋯ +
1

�
−��

2��
�

+ � �
−��

2��

�                          (39) 

And  
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�
−��

2��

�
�

= �
−��

2��

� �
−��

2��

− 1� … �
−��

2��

+ �

− 1�.                                             (40) 

In the neighborhood of � = ∞, the functions 

� �
���

���
, 1,

�����

�
� and � �

���

���
, 1,

�����

�
� behave 

asymptomatically and for � → ∞, their behavior are 
given by  

� �
−��

2��

, 1,
−����

2
�

=
1

Γ �
−��

2��
�

�
�����

� �
−����

2
�

���
���

��

[1

+ �(���)]                                                                    (41) 

And  

� �
−��

2��

, 1,
−����

2
�

= �
−����

2
�

��
���

[1

+ �(���)].                                                                 (42) 

Hence our solution for large � becomes 

� = �
−����

2
�

���
���

�
�����

�  �
��

��Γ
�

−����

2
�

��

�
�����

�

+ �
−����

2
�

��
�� ��

��
�

+ �(���)                                   (43) 

 

From equation (43), it is clear that the exponential term 
will dominate more than the other terms in the 

equation. Hence we can conclude that the similarity 
mean velocity defect decays exponentially for large 

values of the similarity variable � for very large 

streamwise distances. 

 

IV. COMPARISON WITH EXPERIMENTAL 
DATA 

Analytical results given by the analysis in section 2 are 
compared with experimental data of Jimmenez et al 
[15]. They conducted experimental studies on 

axisymmetric body with a Reynolds number ranging 

between 1.1 × 10� and 67 × 10�. For this study, the 

data pertaining to the Reynolds number of  1.1 × 10�  

was used. In the experimental study, the pressure 
gradient was negligible hence the data sets are best suit 

for validating this work. 

 

Fig. 2. Mean velocity profiles in similarity variables, 

         x/d= 15,        x/d= 12,          and x/d= 9,                     

exponential decay,             analysis. 

Figure 2 shows mean velocity profiles in the far wake 
flow of the data set of the three stream wise distances. 

Also shown in the figure is the exponential curve given 
by equation (46).  The data fits well with the similarity 
equation. 

  

 

Fig. 3. Streamwise development of the wake half 
thickness,           analysis. 

Figure 3 shows the variation of the wake half thickness 
given by equation (25). In figure 3, it is seen that there 

is a disagreement in the data pertaining to the region 
of the stations in the near wake, however the data 
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pertaining to the “later wake” the figure 3 shows good 
agreement between the data and the analytical results.  

 

Fig. 4. Streamwise development of inverse of 
maximum velocity defect ,            analysis. 

Figure 4 show the variation of inverse of maximum 

velocity defect. They show the relationship for the 
inverse maximum velocity deficit as given by equation 
(28). The experimental data shows agreement for data 

pertaining to the far wake region.   

V. CONCLUSIONS 

A theoretical analysis of the governing equations in 
the axisymmetric far wake of a long slender cylinder 

has been carried out and compared with experimental 
data. The results obtained show the self-similarity of 

the axisymmetric far wake. The half wake thickness 
and inverse maximum velocity defect agree very well 

with the data of Jimmenez et al [15]. Also shown is 
good agreement of the experimental data with the 
similarity solution to the mean velocity which is 

shown to decay exponentially. All in all, the results of 
self-similarity analysis agree well with the available 

experimental data of the far wake. 
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