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Abstract— Despite the fact that machine learning approaches
have demonstrated to efficaciously model the perturbations tan-
gled within the weather patterns, they are still under deployed
in under represented countries. This proves the existence of
gaps between the weather service providers and institutions
that advocate for the data driven approaches of modelling
stochastic systems like weather. For instance, the Botswana
Department of Meteorological Services is currently looking for
new avenues that can be deployed to compliment the conven-
tional weather models; particularly for one-to-three months
step-ahead of localised minimum and maximum temperature
forecasts. Thereto, this work applies predictive analytics on local
climatological data harvested, using Perl, from the Shakawe
automated weather station starting from 01 July 2014 to 28
February 2019. First, statistical metrics such as scatter plots,
box-plots, and correlation coefficients are used to infer patterns
and relationships hidden within the collected numerical data.
The same process, coupled with Random Forests, is deployed
to reduce dimensions of the collected data, hence redundant
variables are discarded. In the first phase, the models (Multi-
Layer-Perceptron (MLP), k-Nearest neighbourhood, Random
Forests) are built using the available data. In the second
phase, the selected variables (average air temperature, diurnal
temperature range, average wind speed, humidity, minimum
temperature and barometer pressure) are used to build and
compare the proposed models. The models were fit to 70 %
of the training data, and validated on 30 % testing data.
The results show that MLP outperforms other models based
on the correlation coefficient, Root Mean Squared Error and
Minimum Absolute Error.

Index Terms— Machine learning models, data analytics, pre-
diction, automated weather stations, climatological data

I. INTRODUCTION

Weather systems are simulated using sophisticated phy-
sical based computations. Such models are imperfect for
regional and local weather forecasts due to coherent biases
in both spatial and temporal model resolution. As a result,
these models have limited information about extremely local
terrain conditions. Local phenomena like maximum and
minimum temperatures in winter seasons are intricate to
replicate by global models [1]. These variables are less
handled by the size of the grids of the numerical models
since they can occur as a result of small perturbations at a
local level, or can be influenced by a large spatial event such
as El-niño.

II. BACKGROUND INFORMATION

This work is focused on the study of minimum and maxi-
mum air temperature trends and variations for the Shakawe
Automated Weather Stations in Botswana. Botswana is a
land-locked country in the southern part of Africa sharing
borders with Namibia to the west, South Africa to the south,
Zimbabwe to the north east and Zambia to the north.

Fig. 1. Location of Shakawe in the northern west of Botswana

The country is characterised by a semi-arid climate, with
great differences in day and night temperatures, low overall
humidity and high pressure systems interacting with dry
soils over the entire land [2], [3]. These have been repor-
ted to be associated with temperature trends, particularly
high temperatures [4]. Botswana’s mean monthly maximum
temperatures range from 32 °C to 35 °C. Daily maximums
can reach as high as approximately 43 °C; particularly from
October to March. The country is predicted to experience
harsh climate variability with local warming and drying
above the global warming average of 1.5 °C [5].
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III. SIGNIFICANCE OF STUDY AND ENVISIONED
PRODUCTS

Small geographic changes in minimum and maximum air
temperature can have significant impacts on human health,
society and the economy [4]. Some researchers linked air
temperature with mortality [6] resulting from severe weather
and climate variations such as heat waves [4]. Botswana as
a semi-arid country is also expected to have approximately
“40 more days of heat waves at 1.5°C global warming, and
about 75 more heatwave days at 2.0°C global warming”
[7]. The re-occurrence of heat waves at recent has led to a
number of studies regarding the analysis of temperatures.
For instance, daily maximum temperature observational
data was used in the study [4] to investigate the heat waves
characteristics in the context of climate change.

Various human activities including electricity load
forecasting [8], [9], agriculture and water management
[10] depend much on these environmental systems. This
underlines the value of weather modelling in operational
services such as health sciences.

All these invite resilient avenues like the data driven
approaches to compliment the physically based ones.
Meanwhile, Botswana’s environmental data science is still
under-exploited despite the fact that climatological data
collection has been going on in the country for long [11]. As
a result, powerful models go un-explored [12] and potential
data remain virgin; while the weather and climate change
impacts continue to perpetuate the livelihoods of people.

This project aims to make use of the available open-
source resources to add value to existing weather models in
Botswana and the SADC region. The knowledge extraction
process is particularly important for local to regional weather
and climate studies. It presents cheaper and competitive
modeling approaches to complement the convectional
environmental models that deploy enormous computing
systems with lower resolution than desired at regional and
local level. Part of this work includes the implementation of
recipes to analyse, visualize and assimilate climatological
data. The data assimilation process will assist in filling the
missing values in weather data.

Thus, the data driven models can be used to benchmark the
level of detail that current regional models should be aiming
for. In fact, ensembles models can improve model accuracy,
robustness, confidence, efficiency, efficacy, reliability, and
reduced costs. Lastly, but not least, the developed recipes
and model products can be scaled to cater for the Southern
African Community and hence facilitating knowledge
sharing: all towards the transformation from resource based
economies to knowledge based ones.

IV. LITERATURE REVIEW

Chauhan and Thakur presented a review of Data Mining
Techniques to forecast several weather phenomena such

as temperature, thunderstorms, and rainfall [13]. They
found that major techniques like decision trees, lazy
learning, artificial neural networks, clustering and regression
algorithms are suitable to predict weather phenomena.
They concluded that decision trees yield good results for
this weather forecasting, followed by the ANN. They also
suggested that DM can be considered as an alternative to
traditional meteorological approaches.

Olaiya and Adesesan [14] applied decision trees (C4.5,
CART) and artificial neural networks in their studies of
weather prediction and climate change. They used a 10 years
dataset with 4 variables (temperature, rainfall, evaporation,
and wind speed) and 36000 instances to acquire an 82 % of
accuracy via the percentage split. Meanwhile, their results
show that the accuracy varies highly with the training
dataset size. They concluded that given enough training
data, data mining techniques can be efficiently used for
weather prediction and climate change studies.

Petre used decision trees to predict the temperature
values around Hong Kong. A 4 years data set with 48
instances was used, comprised of pressure, clouds quantity,
humidity, precipitation, and temperature. The accuracy
obtained was of 83 % [15]. They reported the need to
increase weather variables for input, as well as the increase
of data instances. The work also required the transformation
of data. Maqsood presented the applicability of ensemble
models [16] based on neural networks for one-day-ahead
weather forecasting of temperature, humidity, and wind
speed for winter, spring, summer and fall. The developed
ensemble models generalized better than conventional
regression with higher accuracy.

Kumar and Jha [17] used an ANN to predict minimum
and maximum temperatures. They used a 100 year data set
composed of monthly average min and max temperatures
using the percentage split with 60 % for training and the
remaining 40 % for testing. Their results showed that ANN
may be an important tool for temperature forecasting.
Meanwhile, they used only two input variables to compute
two target variables.

V. CONTRIBUTION OF THIS WORK

Most of these studies discussed so far do not mention the
methods used for: data collection, data cleaning and dataset
generation as well as the data mining platforms used, or
they use commercial platforms like Matlab [17]. The feature
extraction and dimensionality reduction is also not explicit
[15], [17]. All these make it difficult for reproducibility of
results. For that main reason, the applicability of data driven
approaches is lagged behind in operational meteorological
services. If the data is not available, or the data mining
platforms are not accessible, then no models will be develo-
ped [12]. Motivated by these, this work deploys the whole
processes of predictive analytics or just data science to bridge
this gap.
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VI. METHODOLOGY

VI-A. Data Collection

The data used for modelling was harvested from
http://www.sasscalweathernet.org/. Data cleaning and for-
matting was done using Perl scripting to transform it in-
to consumable formats for Weka, R and RWeka. This
was achieved using the Gnumeric spreadsheet applica-
tion which comes with a command line utility called
ssconvert to convert between a variety of file formats
(.xls to .csv) as shown below:

ssconvert InputF ile.xlsx OutputF ile.csv

The basics of file handling were done by associating a
named internal Perl structure, a filehandle, with an external
entity (a .xls file). A variety of operators and functions within
Perl were used to read and update the data stored within
the data stream associated with the filehandle. The following
syntax was used:

open(DATA, “< file.xlsx”) or die “Couldn’t open file
file.txt!”;

The source files included unwanted texts values, requiring
some additional data processing to get rid of them. The array
data structure was used to contain the data input and several
Perl operating functions (shift, pop, split and join)
were applied to manipulate the input data. A complete script
was coded to automate the process, adding the shebang line
to the code to extract a stream of data from an excel to
csv, then prepare an .arff and .csv data sets. The code
can then be used to extract data from the any file from any
SASSCAL website then generate datasets.

VI-B. Data Pre-processing

Since some machine learning algorithms make assum-
ptions about the data, the data transformation was done to
map each point in the input data set X to selected functional
output of that point.

outputi = Transformer(Xi) (1)

The Transformer() functions are discussed below:
The Min-Max (Equation 2) transforms the data to a
new range [0,1] of values which is guaranteed by the
existence of bounded minimum and maximum values.

Xnew1 =
X −min(Xi)

max(X)−min(X)
(2)

The Z-Score Standardisation (Equation 3)
transforms the data to have zero mean and unit variance
with the assumption that the data distribution is normal.
It indicates how many standard deviations the data X
is from the mean. It is sensitive to outliers [12].

Xnew2 =
X − µ
σ

(3)

The Magnitude Scaling (Equation 4) transforms
the variable by its maximum magnitude to create a
maximum value of -1 or +1 depending on whether the

maximum magnitude is negative or positive but it is not
guaranteed to fill the entire range from -1 to +1.

Xnew3 =
X

max|X| , in the range [−1, 1] (4)

Data transformations can also to make machine learning
algorithms such as ANN to train faster, avoid saturation.

VII. DATA PARTITIONING

The percentage-split [18, pg. 182] was used to
partition the data into training (to build the model) and
the testing dataset to test the model.

VIII. MACHINE LEARNING MODELS

Data modelling and visualisation was done using Weka,
R [19] and RWeka by Kurt [20]. These are all open source
platforms for statistical computing and graphics. The most
important R and Weka packages used in this work include:
“nnet”package [21], [21], [22], “kknn”package [23].

VIII-A. Artificial Neural Networks

Artificial Neural Networks (ANN) are non-linear universal
function estimators inspired by the multi-tasking and
parallel processing of the nervous system [12], [24]; which
is supported by its massive amount of sensory data [25, pg.
197]. They are considered to be distributional free
models that are also robust to handle outliers and
noisy data [26]. The models consist of several neurons
connected by weighted edges. The interconnections facilitate
the exchange of data between neurons. Weka’s MLP and R’s
nnet and neuralnet packages were used in this work.

The learning process starts when the vector xi is supplied
to the input layer. The task involves the selection of
connecting weights wi between the neurons (depicted in
circles). Each neuron has two components [12, pg. 242]:
the transfer function (Tf) and the activation
function (Ac). First, the weights are initialised,
then a transfer function in Equation 5 is applied
to extract linear combinations of wi and xi, coupled with
some bias b.

Tf (xi, wi, bi) =
n∑

i=1

wixi + b0 ≈ xT w (5)

The weighted sum Tf is executed as an argument to Ac()
(see Equation 6) at each layer and then the function value
of Ac() is propagated to the next layer (another hidden layer
or the output layer). There are various common choices for
activation function Ac().

Ac

(
Tf ((xi, wi, bi)

)
= Ac

( n∑

i=1

wixi + b
)

(6)
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TABLE I
THE COMMON CHOICES FOR ACTIVATION FUNCTIONS

Squashing function Formula Range

Sigmoid (logistic) φ1(x) =
1

1+e−x 0 to 1

Hyperbolic tangent φ2(x) =
sinh(x)
cosh(x)

= ex−e−x

ex+e−x -1 to 1

VIII-B. k-Nearest Neighbourhood

The k-nearest neighbours (k-NN) algorithm is an instance-
based type of learning model where new data are classified
based on stored labelled instances (observations from the
training dataset (ג [27, pg. 33]. The algorithm measures
the distance between the input instance query and a set of
instances residing in (ג to form Ŷ .

Ŷ =
1

k

∑

xi∈Nk(x)

yi (7)

where Nk(x) is the neighbourhood of x defined by the k
nearest points xi ∈ .ג The main work of the kNN happens
during prediction time, where the prediction of a new test
data instance is derived based on some similarity distance
measure deployed to determine the distance between the
stored data and the new instance. The commonly distance
metric used are:

Minkowski distance function

d(x, y) = (

n∑

i=1

|xi − yi|r)
1
r , (8)

and when r = 1, the distance is referred to as Manhat-
tan, while r = 2 gives the Euclidean distance.
Absolute distance measuring

dABS(x, y) =
n∑

i=1

|xi − yi| (9)

The Euclidean distance is used to computed the distance
among the numerical attributes in k-NN.

In all the cases, n is the number of dimensions equivalent to
the number of attributes, and xi and yi are the ith attributes
of x and y. The k most similar training cases (i.e. neighbours)
are used to obtain the prediction for the given test case. If k
is too small, then the result can be sensitive to noise points,
but it should not be too large, since the neighbourhood may
include too many points from other classes. The value of k
should also be odd to avoid discrepancy in determining the
final class.

VIII-C. Ensembles

An ensemble can be seen as a set of multiple learning
methods where a model decision is taken by averaging the
results from various standalone models. Several models and
their respective clones/configurations can be applied to a
single data set (or several) to investigate their predictive
capabilities. Bagging, Boosting and Random Forests are
examples of ensembles [?], [12], [18]. This work deploys the
Random forests for variable selection as well as modelling.

IX. RANDOM FOREST

Literature shows that this algorithm implements Breiman’s
FORTRAN random forest algorithm for classification and
regression [?, pg. 17]; which adds some randomness to
bagging by constructing each tree using a different bootstrap
sample of the data. In standalone tree based models, each
node is split using the best split among all variables; while
in a random forest, each node is split using the best among
a subset of predictors randomly chosen at that node.

This work deploys R’s randomForest package to
provide an interface for coding. The method function takes
in as inputs: a formula interface, predictors - specified as
data frame via the x argument, responses denoted as a vector
via the y argument. The algorithm is very user-friendly,
requiring only two parameters: the number of variables in
the random subset at each node, and the number of trees in
the forest). Here, the response for classification is a factor;
and continuous for regressions.

X. EXPERIMENTAL SET UP

The methodology deployed is the percentage splitting,
where the models are fit to some training data, then evaluated
on some unseen testing data. various partition ratios are used
in this work, and the best parameters are selected based on
the errors in training and testing data.

X-A. Statistical metrics of model assessment

Marques de Sá defines a statistic is a function, tn,
of n samples values of xi [28]. The central idea in statistics
is to find the ünderlying law.of the data by averaging out
measurements errors from each single experiment.
Thus, in each of statistical metrics deployed, one first
computes the error of an estimate- the actual value minus
the predicted estimate, and then computes the appropriate
statistic based on those errors.

1. The Mean Squared Error provides a gross idea
of the magnitude of error.

MSE =

∑n
i=1(ypredicted − yactual)2

n
(10)

2. The root-mean-square deviation (RMSD) was also
used to measure the differences between values (sam-
ple or population values) predicted by a model and the
values observed.

3. The correlation was also used. The correlation coef-
ficient between X1 and X2 is the co-variance of the
standardisation of X1 and X2; and it is defined by

Cor(X1, X2) = ρ =
Cov(X1, X2)

σX1
, σX2

(11)

where −1 ≤ ρ ≤ 1. The parameter ρ measures the
linear relationship between between variables. If the
correlation is positive then when X1 is large, X2 will
tend to be large as well. If the correlation is negative
then when X1 is large, X2 will tend to be small.
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XI. SUMMARISING THE DATA VIA DESCRIPTIVE
STATISTICS

This sections articulates some descriptive statistics indices
used to give a global picture regarding where and how the
data is concentrated and as well as its shape of distribution.
The following indices will be analysed for the purpose of
summarising the SAWS dataset.

Measures of Location

The following measures of location are used in order to
determine where the data distribution is concentrated.

1. The arithmetic mean of the data x is the sample
estimate of the mean of the associated random variable
[28] and is denoted by

x̄ =
1

n

n∑

i=1

xi (12)

2. The median of a dataset is that value of the data
below which lie 50 % of the cases. Other measures of
location include the mode, and the quantiles (see [28,
pg. 59]).

Measures of Spread

The measures of spread (or dispersion) give an indication
of how concentrated a data distribution is. The most usual
measures of spread are presented below.

1. The range of a dataset is the difference between its
maximum and its minimum,

range = xmax − xmin (13)

It has a draw back that it is dependent on the extreme
cases of the dataset; and it also tends to increase with
the sample size [28, pg. 62].

2. The inter-quartile range is defined as:

IQR = x0,75 − x0,52. (14)

It has the advantage that it is less influenced by outliers,
extreme cases nor the sample size as compared to the
range.

3. The variance of a dataset can be interpreted as the
mean square deviation (or mean square error,
MSE) of the sample values from their mean. V ar(x)
(sample variance) is defined as:

V ar(x) =

n∑

i=1

(xi − x̄)2

n− 1
(15)

The variance has df = n−1 degrees of freedom; while
the mean, on the other hand, has n degrees of freedom
[28, pg. 62].

4. The standard deviation of a dataset is the root
square of its variance. It is, therefore, a root mean
square error (RMSE) defined as:

σ =
√
V ar(x) = [

n∑

i=1

(xi − x̄)2

n− 1
]
1
2 (16)

The standard deviation is preferable than the variance as a
measure of spread, since it is expressed in the same units as
the original data.

Measures of Shape

The coefficient of skewness was determinded, which is
the asymmetry measure around the mean, defined as

γ =
E[(X − µ)3]

σ3
(17)

This measure uses the fact that any central moment of
odd order is zero for symmetrical distributions around
the mean. For asymmetrical distributions γ reflects the
unbalance of the density or probability values around
the mean.
The work also determined the coefficient of excess,
kurtosis, which is just the degree of flatness of a
probability or density function near the center of the
data distribution.

κ =
E[(X − µ)4]

σ4
− 3 (18)

The factor 3 is introduced in order that κ = 0 for the
normal distribution. Distributions flatter than the normal
distribution have κ < 0; distributions more peaked than
the normal distribution have κ > 0. More on this can
be found in [28, pg. 65]

Measures of Association for Continuous Variables

The correlation coefficient (Pearson correla-
tion) is the most popular measure of association for conti-
nuous type data. For a dataset with two variables, V 1 and V 2
the sample estimate of the correlation coefficient
ρV 1V 2 is computed as

r = rV 1V 2 =
SV 1V 2

SV 1SV 2
, (19)

where

SV 1V 2 =

n∑

i=1

(xi − x̄)(yi − ȳ)

n− 1
(20)

This dimensionless measure of the degree of linear asso-
ciation of the two random variables has [-1,1] as the interval;
with:

-1 =⇒ Total linear association, with V1 and V2
varying in the opposite direction,
0 =⇒ No linear association; V1 and V2 are linearly
uncorrelated,
1 =⇒ Total linear association, with V1 and V2
varying in the same direction.
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Fig. 2. Summary statistics of the SAWS dataset. The mean value for
Precipitation (P) seem to be strange though; its maximum is 80,80 mm
while the minimum is 0,0 mm, yet the mean is 1,41 mm larger than the
median, 0 mm.

DATA VISUALISATION VIA CORRELATION PLOTS

A correlation analysis provides insights into the inde-
pendence of the numeric input variables. In this work, the
Pearson’s product-moment correlation was used to measure
the numerical relationship of one variable to another within
a 95 % confidence interval. Variables with high correlations
have values close to 1 for positive correlations, and close to
-1 one for negative correlations. The Figure 3 presents the
numerical plot articulated so far.

Fig. 3. The correlation coefficients for the SAWS dataset.

Visualisation via box-and-whiskers plots

A box-plot facilitated exploration of data distribution
(centre and spread of a numeric variables). It uses the five-
number statistics (Minimum, Q1 (first quartile), Q2 (median),
Q3 (third quartile), and Maximum) of a vector. It visualises
the range, outliers and skew of numerical variables, as well as
the comparisons of such variables. This was used to diagnose
the problems that are encountered within the data. Since
the numerical variables in the dataset were from different

instruments, they were normalised to allow a fair compari-
sons of the variables on the same scale. Figure 6 presents
box-plots for our dataset. Only those variables selected via
random forests are displayed. Among the variables with some
outliers, Leaf Wetness and Precipitation had extreme outliers
to the right; while Average Solar Radiation (AVG Solar R)
had some outliers in both extremes. These values can be
corrected to make the IQR box easier to visualise [29, pp.
62] .

Fig. 4. Thw box-plots for the selected variables for maximum air tempera-
ture. We can note that the variable air temperature has some outliers above
the extreme maximum whisker denoted by some dots

XI-A. Variable selection via Random Forest in R

Determining the influence measure of a variable is
a time consuming and challenging task due to intricate
interaction within the modelling variables. Fortunately, the
randomForest package optionally provide access to two
additional pieces (measures) of information: a measure of
the importance of the predictor variables, and a measure of
the internal structure of the data (the proximity of different
data points to one another).

Thus, this work deploys a randomForest algorithm
to estimate the importance of a variable regarding the target
variables. The algorithm works by looking at how much
prediction error increases when the modelling data for that
variable is permuted. The necessary calculations are carried
out tree by tree as the random forest is constructed.

To determine the importance of each variable, the measure
is computed from permuting Out-Of-Bag (OOB) data. For
each tree, the prediction error on the OOB portion of the
data is recorded. For Regression, two metrics are used: the
mean decrease in accuracy and the mean decrease in Mean
Squared Error. In this work, the mean of squared residuals
is computed as

MSEOOB = n−1
n∑

i=1

(yi − ŷi)2 (21)
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where ŷi is the average of the model predictions. The smaller
the result value, the better the model; depending on the
problem. It is good to compare to a reference model though.

Fig. 5. The random tree model with 500 trees, and 13 predictors tried at
each tree split. It can noted that 97.27 % of the variation is .explained”by
our model, and the mean of squared errors is ≈ 0.47; quite good.

Fig. 6. Graph showing the importance of predictors on Maximum Air
Temperature

We can see that the most contributing variables are average
temperature (AVG.AT), Diurnal Temperature Range (DT),
average wind speed (Avg.WS), and humidity (H).

XII. RESULTS AND DISCUSSIONS

Different configurations were tested by varying the lear-
ning rate, momentum, number of iterations and the network
structure as seen in Figure 8. Though MLP 2 gave better
results during training compared to MLP 3, the later gene-
ralised well during the testing phase.

The k-NN was evaluated on the training (70 %) and testing
(30 %) data. Different values of ‘k’ were experimented, and
the model statistical results were recorded as shown in Table
II It can be noted that the correlation coefficient reduces
from 0.98 to 0.96 as more points are used as the number of
neighbourhoods (k) increases; while other statistical metrics
increases the training phase. Meanwhile, the opposite was
observed during the testing phase where all the model
replicas of k-NN showed some good performance on the

Fig. 7. Partial dependence of the first six elements selected based on random
Forest. The first three elements shows some strong dependency with the
Maximum air temperature

Fig. 8. The MLP with a sigmoid activation function. We note that the MLP
3 is more stable for both training and testing phase as compared to the other
configurations based on MAE and RMSE

testing data. A slight observation to the results from both
the training and testing phase revealed that the model with
15 nearest neighbourhoods was more stable than the rest of
the replicas; and with a MAE of 0:9 in the testing phase.

TABLE II
THE K-NEAREST NEIGHBOURHOOD WITH 75 % USED FOR TRAINING

Training phase K = 2 K = 3 K = 4 K = 15
Correlation coefficient 0.9841 0.9796 0.9769 0.9639
Mean absolute error 0.571 0.6407 0.6835 0.8783

Root mean squared error 0.7432 0.8432 0.899 1.1445
Time (seconds) 0.92 0.97 1.16 1.11
Testing phase K = 2 K = 3 K = 4 K = 15

Correlation coefficient 0.9397 0.9502 0.9519 0.958
Mean absolute error 1.0956 0.986 0.9775 0.952

Root mean squared error 1.4153 1.2938 1.2777 1.2552

Lastly, the ANN model configurations and the Random
Forest ensemble were selected to perform some final trends
since they demonstrated better predictive capabilities compa-
red to other models based on the proposed statistical metrics.
The results are shown below.

XII-A. Base line model construction via Random Forest in
R

In Figure 14, we can observe that the Red line is the Out
of Bag Error Estimates and the Yellow Line is the Error
calculated on Test Set. Both curves have a quite similar trend
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Fig. 9. The graph of the epoch versus error for minimum air temperature
based on ANN. We note that the models converge at roughly 25 iterations

Fig. 10. The graph of the actual minimum air temperature vs predicted
minimum air temperature based on ANN showing some perfect fit

and the error estimates are somewhat correlated too. The
Error Tends to be minimised at around mtry = 6. On the
Extreme Right Hand Side of the above plot, we considered
all possible 18 predictors at each Split which is only Bagging.

XIII. CONCLUSIONS

In this paper, we built predictive models for temperature
analytics and modelling. Variable selection was done using
Random forests and the modelling was done using ANN,
kNN and Random forests for the Shakawe weather station.
The results show that machine algorithms, can be add value
to the convectional weather models. The patterns and trends
were perfectly resembled by our models, with ANN out-
performing the other two method though the difference was
insignificant; all less than one in terms of Mean Squared
Errors. Thus the overall errors are within the threshold used
by the Botswana Department of Meteorological Services,
which is plus or minus two for summers and plus or minus
three for winters. Meanwhile, more weather stations should
be tried to validate the experiments.

XIV. FUTURE WORK

To expand the research to cater for on-line real time ma-
chine learning and predictive analytics; and ultimately design
a user friendly regional weather forecasting application based
on the designed models.
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