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Abstract— Cognitive radio system is one of the viable solutions 

for effective spectrum management. Cooperative spectrum 

sensing is very often used to mitigate the challenge of interference 

encountered in single sensing systems. This paper is aimed at 

developing a model to determine the required number of cognitive 

radios that would optimize the performance of a communication 

network with respect to energy utilization and bandwidth 

requirement. Energy detection was used as the cognitive radio 

sensing technique due to the limited energy, computational and 

communication resources required. The noise variance of the 

channel was set to -25dB. Spectrum sensing was carried out at a 

frequency of 936MHZ and a bandwidth of 200kHz. Enhancement 

in specificity of the detection was also explored using machine 

learning in order to minimize interference. Genetic Algorithm 

(GA) was used to optimize the number of cognitive radios putting 

into consideration all constraints in the network. The optimization 

produced an overall reduction of 59.26% in energy conserved 

without compromising the detection accuracy.  

Keywords—cognitive radio; energy detection; genetic algorithm; 

cooperative spectrum sensing 

I.  INTRODUCTION 

Several portions of the radio spectrum  (3GHz – 300GHz 

region) are under-utilized while some portions are overcrowded 

due to the emergence of more telecommunication applications 

and services [1]. Spectrum spaces between 30MHz and 3GHz 

that are not as crowded can therefore be effectively utilized for 

telecommunication services [2]. If this is not effectively carried 

out, more of the limited electromagnetic resources required for 

the increasing wireless devices and services depletes faster [3]. 

The Radio Communication Sector of International 

Telecommunications Union (ITU-R) put in place regulations to 

ensure that the radio spectrum is efficiently allocated to needing 

sectors. This also helps to avoid interference among various 

subscribers particularly in the era of increasing bandwidth 

demanding wireless technologies. In Africa alone, mobile 

broadband is expected to constitute about 87% of total 

connections across 690 million smartphones by 2025. The 

world-wide population of mobile phone subscriptions is already 

over 7.5 billion with each subscriber individually contributing 

an average data usage of 2.1GB to worldwide 8.8EB total 

mobile data traffic [2], [4]. More than 1 million mobile phone 

subscribers is anticipated to be added to the annual mobile 

device subscription database by 2022 which would increase the 

mobile subscribers worldwide to 9 billion [2]. This increases 

the demand for more telecommunications resources such as 

bandwidth, power and communicating frequency slots. New 

radio access technologies are therefore limited by the shortage 

of the useable available radio spectrum. This limitation is due 

to fixed radio functions, static spectrum allocation and limited 

network coordination which still exists in the present spectrum 

allocation scheme [5]. Improvement is urgently required in 

form of dynamic spectrum management applications which can 

accommodate the increased demand for telecommunication 

resources [6]. 

Cognitive radio system (CRS) is a dynamic spectrum 

management technique which is applicable in the GSM white 

space utilization effort. CRS is a software defined radio which 

can manage the spectrum by exploiting spectrum holes and 

permitting the deployment of multiple wireless systems [6]–[8]. 

It can sense the status of the transmitting channels to determine 

the occupancy status of such channels. It can tune the usage of 

the spectrum dynamically based on certain network and 

environmental related factors such as type of radios in the 

network, bandwidth required allocation, location of the radios, 

time of the day etc. [9]. 

The spectrum sensing function in cognitive radio is required 

to check if a particular channel is in use by a licensed user a 
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specific point in time [10]. It is crucial to avoid interference and 

channel misallocation. One of the commonly used spectrum 

sensing techniques is Energy detection-based sensing. It 

requires minimal resources to detect the occupancy status of the 

channel and is not as  computationally demanding as the other 

techniques [11], [12]. But it has several limitations such as 

multipath fading, shadowing and consequently, the hidden 

terminal problem. It also cannot discriminate between the type 

of user occupying the channel (i.e. differentiating between 

Primary User (PU), Secondary User (SU) or Interfering User 

(IU)).  

Cooperative sensing is often utilized to overcome several of 

the shortfalls. But it increases the communication overhead of 

the network and is usually also not able to determine the type 

of user occupying the channel particularly if the cooperating 

cognitive radios are sensing through energy detection 

technique.  

Researchers have worked on improving detection sensitivity 

of energy detection-based spectrum sensing using several 

techniques using the concept of an adaptive threshold[13]. 

Several combining techniques for the cognitive radio users in 

cooperative spectrum sensing were considered while utilizing 

different modulation schemes. Significant improvements were 

recorded but the technique was not fully predictable in noisy 

channels.  

Authors in [14], also proposed a method of improvement that 

enhanced the classical energy detection scheme and maintained 

a similar level of computational complexity and cost. Detection 

time was also reduced in comparison to other more 

sophisticated methods of sensing. But it could not differentiate 

between the type of users in the network. [15] used an 

augmented spectrum sensing algorithm where the energy 

detector’s detection is augmented by cyclostationary detection. 

However, the technique requires information about the primary 

users’ transmission characteristics which is not always 

available.  

Multiple antenna techniques to improve the performance of 

energy detection and cyclostationary feature detection-based 

was used in [13]. This was implemented in a cooperative 

spectrum sensing scheme using Equal Gain Combining (EGC). 

It improved the detection sensitivity but was not focused on 

interference mitigation.  

Authors in [16], used different channels without any 

information about the environment to improve on the usage of 

idle spectrum with due consideration for fairness in channel 

selection. This was improved upon by authors in [17] with the 

aid of a p-norm energy detector. The performance of the 

cooperative spectrum sensing was improved alongside 

improved gain in κ-μ fading channels. These improvements are 

the foundations on which the current paper is building on to 

increase the capacity of the cognitive radio identify the user 

occupying the channel. 

More recently, [18] proposed a two-stage reinforcement 

learning approach to improve the performance of the 

cooperative sensing. The method minimized the number of 

sensing operations and reduced the energy required in the 

sensing operation. The channel sensing and allocation was 

improved, but demanded computational resources and learning 

time.  

[19] further explored optimal threshold selection at low SNR 

to improve sensing performance. Better sensing performance 

was obtained compared to previous approaches which used 

constant false-alarm rate and constant detection rate threshold 

selection. However, there was no provision made for 

instantaneous SNR drop which sometimes occur.  

[20] used an adaptive simulated annealing particle swarm 

optimization (ASASPSO) to improve cognitive radio power 

allocation. Parameters considered were the interference power 

threshold of the primary user, transmission rate limitation of 

secondary users and the signal to interference and noise ratio 

(SINR). Thus, the power consumed was reduced was reduced 

and an improved SINR and transmission rate was achieved.   
The addition of more cognitive radios in the cooperative 

sensing scheme increases energy consumption and general 
communication overhead. What would therefore be the optimum 
number of cognitive radios in a communication network to 
ensure high quality performance in terms of interference 
mitigation and resource conservation? This paper seeks to find a 
solution to this salient question by developing a model to 
identify the required number of cognitive radios that would fulfil 
the objective of optimum performance. 

II. SYSTEM MODEL 

A. Theoretical Background 

Energy detection is a non-coherent detection method which 

detects the operation of a licensed user within a particular 

communication channel [21]. In energy detection, the energy 

detected in the channel being sensed is measured and compared 

with a predefined threshold to determine the presence or absence 

of the primary user (PU) signal [7]. Energy detector is largely 

employed in ultra-wideband communication to utilize an idle 

channel when not in use by a licensed user. 

In the implementation of the energy detector, the received 

signal 𝑥(𝑡) is filtered by a band pass filter (BPF) in line with the 

bounds of the frequency channel being sensed. This signal 

detected is then squared with a square law device. The band pass 

filter serves to reduce the noise bandwidth. Hence, noise at the 

input to the squaring device has a band-limited flat spectral 

density. The output of the integrator is the energy of the input to 

the squaring device over the time interval 𝑇. Afterwards, the 

output signal from the integrator (the decision statistic), 𝑌, is 

compared with a threshold to decide whether a primary 

(licensed) user is present or not. Decision regarding the usage of 

the band will be made by comparing the detection statistic to a 

threshold [22]. 

The mathematical model for energy detection is given by the 

following two hypotheses [8]:  

𝐻0: PU absent  

𝑦(𝑛) = 𝑢(𝑛)     𝑛 = 1,2, … 𝑁  (1) 

𝐻1: PU present  
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𝑦(𝑛) = 𝑠(𝑛) + 𝑢(𝑛)     𝑛 = 1,2, … 𝑁 (2) 

where 𝑢(𝑛) is noise and 𝑠(𝑛) is the PU’s signal 

Energy detector performs optimally in spectrum sensing if 

the noise variance is known. This is required to define the 

threshold which helps in deciding spectrum is occupied or not 

[23]. The challenge with the spectrum sensing of the energy 

detector is that it is unable to accurately detect the PU when the 

signal is weak i.e. at low SNR. The detection accuracy further 

deteriorates when the noise characteristics cannot be defined due 

to varying noise uncertainties [24], [25].  

This study is aimed at managing interference which may 

occur in energy-detection based cognitive radio by introducing 

supervised machine learning. This is expected to help the 

cognitive radio system (CRS) learn the patterns in the unknown 

noise characteristics through a clustering algorithm. The specific 

properties of the PU were used as training data in a supervised 

learning technique to serve a feature detection algorithm in the 

CRS. This scheme intends to improve the detection accuracy of 

the energy detector in scenarios when the SNR falls to the SNR 

wall level. 

Equation (3) shows the normalized test (decision) statistic 

for the detector and this was developed based on [26] as: 

𝑇′ = (
1

𝑁02
) ∫ 𝑦2(𝑡)𝑑𝑡

𝑇

0
   (3) 

where:  

𝑇′= test statistic in during sensing session  

𝑦 = received signal input  

𝑇 = sampling instant 

𝑁02 = two-sided noise power density spectrum 

If the test statistics exceeds a fixed decision threshold then it 

results in H1 hypothesis. However, when the test statistics is less 

than the decision threshold then H0 hypothesis occurs. 

As shown in [14], 𝜆 is the decision threshold which in the 

number of samples 𝑁 ≫ 1, can be expressed as a Gaussian 

distribution: 

              𝜆 = √
2

𝑁𝑄−1 (𝑃𝑓𝑎
𝐶𝐸𝐷 + 1)   (4) 

where: 

𝑃𝑓𝑎
𝐶𝐸𝐷 = 𝑄 (

𝜆−1

√
2

𝑁

)   (5) 

𝑃𝑑
𝐶𝐸𝐷 = 𝑄 (

𝜆−(1+𝛾)

√(
2

𝑁
)(1+𝛾)2

)  (6) 

𝛾 =
𝜎𝑠

2

𝜎𝑤
2    (7) 

𝜎𝑠
2 is the received average primary signal power 

𝜎𝑤
2  is the noise variance.  

B. Optimization Model 

The operating characteristics in the network can be assessed 

in frames (𝑁). Energy test statistic (𝑌
𝑝│𝑠│𝑥,𝑖
𝛼 ) at the 𝑖𝑡ℎframe of 

the user’s transmission operations can be extracted as input data. 

Similarly, 𝑌
𝑝│𝑠│𝑥,𝑖

𝛽
 and 𝑌

𝑝│𝑠│𝑥,𝑖

𝛾
can be extracted at specific points 

in the channel and receiver respectively.  

Energy test statistics for the primary user (𝑌𝑝,𝑖) is represented 

as: 

𝑌𝑝,𝑖 ∈ (𝑌𝑝,𝑖
𝛼 , 𝑌𝑝,𝑖

𝛽
, 𝑌𝑝,𝑖

𝛾
)  (8) 

Energy test statistics for a secondary user (𝑌𝑠,𝑖) is represented 

as: 

𝑌𝑠,𝑖 ∈ (𝑌𝑠,𝑖
𝛼 , 𝑌𝑠,𝑖

𝛽
, 𝑌𝑠,𝑖

𝛾
)              (9) 

Energy test statistics for an interfering user (𝑌𝑥,𝑖) is 

represented as: 

𝑌𝑥,𝑖 ∈ (𝑌𝑥,𝑖
𝛼 , 𝑌𝑥,𝑖

𝛽
, 𝑌𝑥,𝑖

𝛾
)               (10) 

The labels identifying these input data in specific frames as 

primary user (𝑈𝑝), secondary user (𝑈𝑠) or interfering user (𝑈𝑥) 

based on their respective energy test statistics can be represented 

as decisions (𝑑𝑖).  

Genetic Algorithm (GA) was selected as a suitable tool to 

optimize the number of cognitive radios putting into 

consideration constraints such as the spatial distribution of the 

cognitive radios, sensing time and noise characteristics. These 

are crucial to identify the optimal number of cognitive radios 

that would minimize resource consumption while ensuring 

interference mitigation in the system. This objective is achieved 

by the following function: 

min
𝑛

𝑌(𝑛) = 𝑛1𝑌𝑝,𝑖
𝛼 + 𝑛2𝑌𝑝,𝑖

𝛽
+ 𝑛3𝑌𝑝,𝑖

𝛾
+ 𝑛4𝑌𝑠,𝑖

𝛼 + ⋯  

𝑛5𝑌𝑠,𝑖
𝛽

+ 𝑛6𝑌𝑠,𝑖
𝛾

+ 𝑛7𝑌𝑥,𝑖
𝛼 + 𝑛8𝑌𝑥,𝑖

𝛽
+ 𝑛9𝑌𝑥,𝑖

𝛾
  (11) 

Subject to 

𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, 𝑛8, 𝑛9 ≥ 0   (12) 

𝑛1 + 𝑛2 + 𝑛3 ≥ 3     (13) 

𝑛4 + 𝑛5 + 𝑛6 ≤ 3     (14) 

𝑛7 + 𝑛8 + 𝑛9 ≤ 3     (15) 

Based on previous studies [27], cooperative sensing aids more 

accurate detection. The first constraint in (12) is therefore 

essential to ensure that sufficient cognitive radios operate 

cooperatively to minimize missed detections and false alarms. 
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The critical nature of primary user detection makes it imperative 

to include not less than 3 cognitive radios to cover every zone of 

operation. This is represented in the second constraint in (13). 

An assumption made is that 3 cognitive radios are sufficient to 

monitor operations of potential secondary users and interfering 

users. This is based on previous studies [28] where the provision 

of an extra cognitive radio for monitoring other non-PU 

operations produces a more accurate sensing outcome.  

C. Simulation Setup 

The model implemented with MATLAB Simulink on 
MATLAB 2017a software. The model consisted of transmitters 
with an energy detector based cognitive radio through an 
additive white gaussian noise (AWGN) channel. The noise 
variance of the channel was set to -25dB. The sensing technique 
was employed using a frequency of 936MHZ and a bandwidth 
of 200 kHz and the threshold set to 0.2. Setting up the cognitive 
radio spectrum sensor (energy detector) in Simulink. Details of 
the simulation parameters are presented in Error! Reference 
source not found..  

TABLE I.  SIMULATION PARAMETERS 

Parameters Value 

SNR  -25dB 

Pf 0.05 

Operating frequency 936 MHz 

Observation time 2 x 10-4 

Variance of the noise (σ2n) 1 x 10-12 

Threshold 0.2 

Operating power 40 mW 

Bandwidth 200 kHz 

Population type Double vector 

Population size 200 

Scaling function Rank 

Selection function Stochastic uniform 

Crossover fraction 0.8 

Crossover function Constraint dependent 

Generations 900 

 

The sensitivity of the cognitive radio system was first 
improved using ML to ensure that the sensing accuracy is not 
compromised as the optimization is done. Tree algorithms and 
KNN were selected based on a previous study [29] which 
revealed that the algorithms performed reliably. After ensuring 
the accuracy of the CRS through ML, GA was then utilized to 
obtain the optimum number of cognitive radios that would 
minimize the energy consumption.  

III. RESULTS AND DISCUSSION 

The quick-to-train classification algorithms used to train the 
data were Complex Tree, Fine KNN, Weighted KNN, Cubic 
KNN and Medium KNN. Table 2 shows the accuracy for the 
different classifiers considered at -25dB. The receiver operating 
characteristics (ROC) for the CRS at -25dB to compare the 
accuracy of the ML-improved cognitive radio to the 
conventional version is presented in Fig. 1.  

 

 

 

TABLE II.  ACCURACY OF CLASSIFIERS AT -25DB 

 PU SU IU  

CM TPR 
(%) 

FNR 
 (%) 

TPR 
(%) 

FNR 
(%) 

FNR 
(%) 

TPR 
(%) 

OA1 

(%) 

WKNN 93 7 89 11 91 9 91.1 

FKNN 91 9 89 11 92 8 90.8 

MKNN 95 5 88 12 89 11 90.7 

CKNN 95 5 88 12 89 11 90.4 

CTree >99 <1 85 15 87 13 90.5 

OA1: Overall accuracy 

CM: Classification methods 

WKNN: weighted KNN 

FKNN: fine KNN 

MKNN: medium KNN 

CKNN: cubic KNN 

CTree: Complex tree 

TPR: True positive rate  

FNR: False negative rate 

 

 

Fig. 1:ROC curve comparing five classifiers at -25dB 

The results reveal the ML-improved cognitive radio operated 
at a higher accuracy level than the conventional cognitive radio. 
Using complex tree, as one of the most accurate algorithms in 
this context, accurate detection of PU was >99%. The detection 
accuracy for the SU and IU were 85% and 87% respectively with 
an overall detection accuracy of 90.5%. These results were 
obtained with the assumption that 9 cognitive radios monitoring 
each category of users (PU, SU, IU) would give more accurate 
results. 

The result presenting the minimization of the number of 
cognitive radios using GA is presented in Fig.2. The results 
revealed that with 6 cognitive radios at various locations 
monitoring the PU, less resources would be incurred without 
compromising the detection accuracy. The results also show that 
5 cognitive radios are sufficient to sensing the activities of the 
SU and the IU. Using this number, the detection accuracy would 
be optimum, with resource utilization minimized. The overall 
reduction in energy conserved based on the minimization of the 
cognitive radios is 59.26%.  
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Fig. 2:Best Individual versus Number of Variables 

IV. CONCLUSION 

The results presented reveal that the use of GA optimized the 

number of cognitive radios used per sensing period. The ML 

introduced before the optimization helped in the reduction of the 

probabilities of false alarm and misdetections. Thus, enhancing 

the overall sensing outcomes of cooperative spectrum sensing in 

cognitive radio systems and conserving resources. 
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